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Four-band model for oxygen holes in copper oxide superconductors. I. Quasiparticles
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All the high-temperature superconductors have copper oxide planes with strong antiferromagnetic
correlations. In many of these, the charge is carried by quasiparticles which are based on holes that
move on the oxygen ions. We study the effect of the antiferromagnetic background of the Cu spins in the
CuO& planes on the spectrum of the mobile quasiparticles. We consider several possible quasiparticles,
which involve the spin of the hole and the spins of the two neighboring copper ions. For each quasipar-
ticle we obtain, using tight-binding methods, four energy bands. We find that the favored charge carrier
is a spin 2 quasiparticle. The minimum of the lowest energy band is at the points k=(0, +m. /2B) and

k=(+m/28', 0), where the x and y directions are along the nearest-neighbors oxygen-oxygen bonds (of
length 0') in the Cu02 plane. The effective mass is less than 3.7m„ in good agreement with measure-
ments of the London penetration depth for La2 „Sr„Cu04. It is also consistent with these measure-
ments for the Bi and Tl compounds. However, we obtain conflicting results for YBa&Cu306+~, possibly
due to the fact that the CuO chains also superconduct.

I. INTRODUCTION

Cu02 planes are a common ingredient in many high-
temperature superconductors (HTSC): La2 „Sr„CuO&,'

YBa2Cu306+y, T12Ba2Ca &Cu 02~ +4, and many
others. Therefore, it is commonly believed that the study
of these planes will help us reveal the properties of the
HTSC. In pure La2Cu04 or YBa2Cu306, for instance,
the Cu02 planes cannot be candidates for being building
bricks of a superconductor, since they are Mott insula-
tors. They conduct only when the doping of La2Cu04
with Sr or the doping of YBa2Cu306 with oxygen exceeds
some critical threshold. Therefore, one should figure out
the electronic structure of the perfect planes as well as
the nature of the holes, generated upon doping.

The electronic structure of the planes was the focus of
intensive experimental effort using various techniques, in-
cluding high-energy spectroscopy such as electron-
energy-loss spectroscopy in transmission, x-ray photo-
emission spectroscopy, x-ray absorption spectroscopy,
and nuclear magnetic resonance. The overall con-
clusions of these experiments and many others were: (a)
the Cu (in the undoped CuOz planes) is in a Cu + state
with a hole in the d & 2 orbital. (b) The doped holes arex —y
dominantly oxygen holes. (c) There is evidence that the
doped hole is probably in the antibonding p orbital of
the oxygen, hybridized with the Cu-d 2 2 state, but the

X —y
possibility that it is in the nonbinding p„orbital hybri-
dized with the Cu-d state is not ruled out. ' '

These compounds also exhibit interesting magnetic
features. The Cu in the Cu02 planes has a localized
spin- —,

' hole and there is an antiferromagnetic (AFM) cou-
pling J between neighboring Cu spins and also a weak
coupling between adjacent Cu02 layers. These induce a
three dimensional Neel transition in the undoped case."

Upon doping we generate spin- —,
' holes on the oxygen

sites. The oxygen spin has an exchange interaction J
with the two nearest-neighbor Cu's. The Cu-oxygen dis-
tance is half the Cu-Cu distance, therefore ~J

~
&&~J~,

thus introducing an effective ferromagnetic interaction
between the two Cu neighbors of the oxygen hole. This
was the basic idea of the frustration model of Aharony
and co-workers. ' This model correctly predicted the ex-
istence of a spin-glass state, which was simultaneously
detected experimentally. '

The doping rapidly decreases the Neel temperature un-
til the disappearance of the long-range AFM order. Nev-
ertheless, AFM spin correlations in the Cu02 plane of or-
der 10-20 A were detected by neutron scattering' and
nuclear quadrupole resonance, ' in the metallic and in
the superconducting phases of La2 Sr Cu04. There-
fore, AFM correlations are present and may play an im-
portant role in the superconducting phase. One should
notice that AFM order is not a pair breaker, ' thus there
is a possibility of coexistence of AFM order and super-
conductivity.

Many theoretical models were implemented in han-
dling the CuOz planes in the HTSC. These include (a) a
one-band tight binding model, (b) a one-band Hubbard
model ' for a complex local singlet quasiparticle consist-
ing of a Cu hole and a hole shared by its four oxygen
neighbors, (c) a three-band Hubbard model, where the
mobile holes can be on the Cu or on the oxygen sites,
(d) a Hamiltonian that combines Heisenberg exchange
and the kinetic energy of the mobile holes, so called t-J
one-band model, and (e) a two-band model in which
enhanced pairing interaction is obtained.

The structure of the Cu02 planes in the paramagnetic
and in the AFM phases is shown in Figs. 1(a) and 1(b). In
the undoped case we have Cu + and 0 . Doping intro-
duces holes on some oxygen sites, which become 0
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These additional holes hop between oxygen sites and

there is also a strong exchange interaction between the

spin of the oxygen hole and the spins of its two Cu neigh-

bors.
Emery and Reiter (ER) presented for this system an

effective Harniltonian derived from a three-band Hub-

bard model,

H,ff=(t, +&~)
Q4h', m, o, o'

mo' mo m+g, o- m+g', o'

2
AWED', m, o

am++, oam+5', o

+J g (S S +q —
—,')n

m, h

where a ( a ) is the annihilation (creation) fermionic
operator, m indicates the Cu sites, and m +6 the neigh-
boring oxygen sites. 0. indicates a spin index. S is a
Heisenberg spin operator.

A process of an oxygen hole hopping between two oxy-
gen sites, which involves a spin Qip of the hole, may be in-
duced only by the first part of the Hamiltonian. Such a
hopping without a spin Hip may be induced by the two
first terms of the Hamiltonian. The amplitudes for these
two processes are therefore, t, +t2 and t„respectively.
This effective Hamiltonian contains only hops of oxygen
holes through the Cu sites; direct hops between nearest-
neighbor oxygen sites were neglected. However, numeri-

cal calculations' ' show that we should take into ac-
count these direct hops. Thus we add to the effective
Harniltonian another term, which distinguishes between
hops from site 1 to site 2 and hops from site 1 to site 4 in
Fig. 1(b),

ro g co(h6')at+~ a
bWh', m, o

(1.2)

1
t

2 2

2

t2=
U —2V —c.d

(1.3)

where to=tzz (tzz is the overlap integral of two oxygen
holes that are nearest neighbors, e.g. , sites 1 and 2 in Fig.
1), and where co( b„b,') = 1 when m +b, and m + b,

' are
sites of two nearest-neighbor oxygens [e.g. , sites 1 and 2
in Fig. 1(b)j and co(b„b,')=0, otherwise.

The values that were calculated numerically by a
variety of methods are: the onsite energies of a hole on
the oxygen (e ) or on the Cu (ed ), with E=e —ez, the
onsite Coulomb repulsion between two holes on a Cu site
(Ud ), the Coulomb repulsion between Cu-0 neighboring
holes ( V), and the hopping integral between Cu-0 neigh-
bors (t). The parameters t, and t&, which appear in the
effective Hamiltonian, are determined by the use of per-
turbation theory, and we quote
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FICx. 1. Nonmagnetic 1(a) and magnetic 1(b) unit cells.

In our case t/(Ud —2V —e) ((1, and therefore the regu-
lar perturbation theory is sufficient for determining t2.
However, t /e is of order one, thus the convergence of the
regular perturbation series is not fast enough. To over-
come this difficulty, ER used the Winger-Brillouin per-
turbation theory to evaluate t &.

In Table I we present some of these calculated parame-
ters. The Cu-0 hopping integral t depends on the sym-
metry of the oxygen hole. When the hole occupies a p or-
bital, which is directed in the Cu-0 direction (a so-called
o state), we denote t as t d and the band (so-called per
band) consists of oxygen p orbitals hybridized with Cu-
d & 2 orbitals. When the hole occupies a p orbital,

x —y
which is directed perpendicular to the Cu-0 direction (a
so-called estate) we de.note t as t d„and the band (a so-

called pm band) consists of oxygen p orbitals hybridized
with Cu-d orbitals. The parameters t and t~ are
the direct hopping amplitudes between two nearest-
neighbor oxygens when the hole occupies a o. or m. state,
respectively. As can be seen from Table I, there are some

differences between different numerical estimates of the
effective parameters. For the po. band we chose to use

tj =0.43 eV and t2=0.22 eV, as suggested by ER.
There is an ambiguity concerning the sign of tp. Frenkel

et al. argue that it should be negative, tp= 0.7 eV.
We accept this claim but, since the more common value

is ~Ito~=0. 65 eV, ' ' ' we use to= —0.65 eV. For a pm

band we use the relation t~d 0 5tzd —(R—efs.. 27 and 28)

to obtain t, =0.14 eV and t2=0.055 eV (also using the

ER set of parameters). Stechel and Jennison found that

t~ =t~ (indeed one can see that disregarding the Cu

effect on the oxygen orbitals, the overlap integral is the
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TABLE I. Comparison of the parameters that difFerent authors use in the Hubbard model.

tpdo

'w~
tppm.

Ud

Up

V

t1

t2

Ref. 25

1.5
1

9
6
1.5
0.43
0.22

Ref. 27

1.5
1.07
0.53
0.53
9
6
1.5
0.47
0.25

Ref. 29

1.5
1.4

—0.7

9
6
1.6
0.68
0.46

Ref. 28

3.5
1.3
0.65

8.8
6

Ref. 26

3.6
1.3
0.65

10.5
4
1.2
0.39
0.37

Ref. 10

1.2
—1.6

0.65

8.5
4.1 —7.3
0.6-1 ~ 3

Our choice

1.5
1

—0.65
—0.65

9
6
1.5
0.43
0.22

same in both cases). Therefore, for consistency, we use
t = —0.65 eV.

In this paper we handle the Cu02 plane by using the
following simplifying assumptions: (a) The charge carrier
[the quasiparticle] is an eigenstate of the exchange in-
teraction part, i.e., the last term in Eq. (1.1). (b) The Cu
spins are in a Neel state (at low enough temperature) even
in the superconducting phase. (c) The movement of the
quasiparticle does not disturb the Neel state of the Cu
spins.

Assumption (a) was introduced by Aharony and co-
workers' and it is reasonable, since the spin of the doped
oxygen hole is strongly coupled to the spins of its two Cu
neighbors. Thus, we may consider these strongly coupled
three spins as the relevant moving quasiparticle in our

system.
We are aware that experiments do not indicate the ex-

istence of a Neel state in the superconducting phase [as
assumed in (b)], but rather find finite range AFM correla-
tions. Nevertheless, AFM order can, in principle, coexist
with superconductivity. Since there exist AFM correla-
tions, the hole "sees" an AFM background and this ap-
proximation may not be too bad. The nonmagnetic unit
cell of the Cu02 plane [Fig. 1(a)] consists of one Cu and
two oxygens. However, the magnetic unit cell [Fig. 1(b)]
consists of two Cu's and four oxygens. A priori, we would
have six bands (two coppers and four oxygens). Assum-

ing that the holes move only on the oxygens, reduces the
number of bands to four.

When the quasiparticles move on the AFM back-
ground they naturally disturb the AFM order. However,
this disturbance makes the calculation of the bands very
complicated and actually brings us back to the t-J model,
which cannot be solved exactly. For the sake of having
simple analytic results we have decided to lose some of
the accuracy by considering only quasiparticle hops that
do not disturb the AFM background. This implies that
the effective mass of the quasiparticles, which is calculat-
ed under such constraints, is an overestimate.

Our plan is to identify the quasiparticles that are eigen-
states of the exchange part in the effective Hamiltonian.
Then we determine the hopping amplitudes of the quasi-
particles. We use these amplitudes in a tight binding
model. Since we assume that the Cu spins are in a Neel
state, the unit cell consists of four oxygens, thus leading
to a four-band model. We choose the best quasiparticle
and the lowest energy band. We then calculate the in-
plane effective mass, and compare the results with rnea-

surements of the London penetration depth in several
materials.

The remainder of this paper is organized as follows. In
Sec. II, we study the nature of the quasiparticle. In Sec.
III, we obtain the parameters of the tight-binding model
for the various quasiparticle. In Sec. IV, we obtain the
four tight-binding bands. In Sec. V, we use the lowest en-

ergy band to calculate the effective mass and the London
penetration depths and Sec. VI contains our summary
and discussion.

II. THE QUASIPARTICLES

The excess mobile holes in the Cu02 planes reside
mainly on the oxygen ions. Each hole is strongly coupled
to its two neighboring Cu's holes and the relevant Hamil-
tonian [which is the exchange term in Eq. (1.1)] is'

H,„=—J-(S,+S3) S~, (2.1)

S=S)+S2+S3

where S2 is the oxygen spin and S& and S3 are the neigh-
boring Cu's spins.

Since the overlap integral that determines the strength
of the exchange interaction decreases exponentially with
the distance between the spins, we would expect that
~J ~»(J~, where J is the exchange between the neigh-
boring Cu's in the undoped case (Frenkel et al. , for in-
stance, estimated J= —0. 13 eV and J = —0.36 eV,
when the oxygen hole is assumed to be in a o state).
Indeed, Monte Carlo simulations confirmed that the
doped holes on oxygen sites couple strongly with the
neighboring Cu spins. Thus it is reasonable to regard the
spin eigenstates of H,„as the relevant mobile quasiparti-
cles. Once the quasiparticles are determined and fixed we
can drop H,„ from the effective Hamiltonian. The idea
that the charge carrier is a complex particle of this sort
received different names, like spin polaron, spin hy-
brid, and spin bag. ' Nevertheless, we believe that the
basic physics is common.

We can easily find the eigenstates of H,„by diagonaliz-
ing its 8 X 8 matrix in the basis of the three spin states,
(S„,S2, S3, ). This matrix has three eigenvalues —0.5J,J, and 0. Notice that we can rewrite Eq. (2.1) in the
form'

H,„=—J (S —S,3
—S2)/2, (2.2)

where
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and

S&3=S)+S3 and

I y ) & =( I &&2)( I I I I &
—

I I I I & )

(I& I~ &+ II & I &+I t~ i &),
3

-(II&»+I&II &+I&~I &),3

(2.3)

There are two eigenstates IP; & with the eigenvalue J,
s=2, ands»=1:

—[2I t I& &
—(II & I &+ I T I i &)],

I~2&= —[2li1'~ &
—(l~~i&+Ii&I&)]v'6

(2.4)

Both cases of s» = 1 imply a strong ferromagnetic corre-
lation between S& and S3. Since this competes with the
AFM order, it causes the emergence of a spin-glass
phase, ' when the quasiparticle is localized.

There are also two states,

Since H,„commutes with 5, 5&3, and S„ its eigen-

states may be classified according to the eigenvalues of S
and S&3, which are s(s+1) and s&3(sf3+ I ), respectively,

and of S„which has the 2s+1 eigenvalues s, s —1,
s —2, . . . , —s. The eigenvalues of H,„are given by

—0.5J [s(s+1)—s,3(s»+ I)—
—,'] .

There are four eigenstates ln; & with the energy eigen-
value —0.5J, s =—'„and s» = 1:

ly, & =(Ii&2)(II I I &
—

I I Ii&),
with energy eigenvalue 0, which correspond to s =

—,
' and

s ]3
=0. However, these states are never the groundstate.

The sign of J determines which of the other two sets of
eigenstates is favorable. This sign depends on the orbital
of the doped hole. Hund's rules, as well as numerical cal-
culations (e.g., Ref. 28) have demonstrated that if the
doped hole is in the antibonding o state (nonbinding m)

then J (0 (J )0). These calculations also seem to
favor the O.-state option, which implies that J &0.
However, photoemission studies, which probe the hole
symmetry cannot differentiate between o holes or in-
plane ~ holes. Therefore, a priori, we cannot rule out the
n.-holes option. From now on we call the eigenstates with
eigenvalue —0.5J, spin- —', states and those with eigen-
value J, spin- —,

' states.
We expect the best quasiparticle to be a superposition

of spin- —,
' eigenstates or of spin- —,

' eigenstates. Consider
first the spin- —,

' case. Assuming that the spin of the quasi-
particle points along the z direction (chosen to be the
direction of the Cu AFM staggered magnetization), then
the quasiparticle state would be

lqp& =IP)&= —[2ltit& —(litt&+Istic&)].1

(2.5a)

If, on the other hand, the spin of the quasiparticle is or-
thogona1 to the z axis, then a representative state of the
quasipartic1e would be

Iqp&, = —(lu, &+le, &)= —[2IIi» —(I»»+l»i &)+21»»-(I»»+I»»)],
&Z ' ' v'12

where the quasiparticle spin points along the x axis.
For the spin- —, case, we similarly consider the following quasiparticles

Iqp& =lt &= —(lill &+It&I &+III&&),
1

(2.5b)

(2.6a)

Iqp& = —(l~ &+ ltz &)= —(I &I & &+IIII &+II && &+
I
t iI &+ I &I & &+

I &&I &),4 Q2 2 3

Iqp& =l~ &=ItII& .

(2.6b)

(2.6c)

III. TIGHT-BINDING PARAMETERS

Having diagonalized the last term in Eq. (1.1), we now derive the tight-binding Hamiltonian, which describes the
hops of the quasiparticles between the oxygen sites. We start with the effective Hamiltonian

H,tt=(t, +t2)
A&h', m, o, o'

am' am~am+~ oam+6' ~' t& ~ am+6 ~am+~ o m+5, o m+5', o
b,Wh', m, o b, Wh', m, o

We consider two cases. In the first case (which is more probable) the hole is in a o state; the effective parameters are

t, =0.43 eV, t2 =0.22 eV, and Iqp &, and Iqp &z have the lowest exchange energy (J (0). In the second case the hole is

in a n state; t, =0.14 eV, t2 =0 055 eV, and Iqp &3, Iqp &4, and Iqp &s have the lowest exchange energy (J )0). In both
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cases we use to = —0.65 eV.
Let us examine Fig. 2. Five sites participate in a hopping of a quasiparticle: (1), (3), and (5}are Cu sites and (2) and

(4) are oxygen sites. The quasiparticle is initially in sites (1), (2), and (3), and it hops to sites (3), (4), and (5) [see Figs.
2(a) and 2(b)]. Before the hopping, the z component of the spin at site (5) is equal to o, determined by the Neel ordering
(o.= J, in the example of Fig. 2). Since sites (1) and (5) belong to the same AFM sublattice we assume that after the hop-
ping the z component of the spin at site (1) is also equal to o. Initially, the five spins are in the state If ) = I(qp)Ocr ),
where (qp) denotes one of the quasiparticle states discussed above, the "0" denotes an "empty" oxygen site and o.

denotes the spin of site (5}. For example, for lqp)5 we have Ig )=IlttOcr). The final state is similarly written as

I P.') —=
I
crO(qp)').

For a spin- —', quasiparticle, we use

Iqp&= g c;l~;&, Iqp&'= g c l~;& (3.2)

and find

&y„lHefflff) (c)c)+3cpc2+-c33c3)[t)+rpci)(6 6 )]

and

& y, lHefflfg) (c4c4+ 3c3c3+ 3c2cz)[r)+tpct)(6&6 )] .

Similarly for a spin- —, quasiparticle we use

(3.3)

(3.4)

Iqp&= g d;IP;&, Iqp&'= g dI IP;&, (3.5)

and thus

&ptIH fflg')) =(r)+t2)( ——', d)'d', + —,'d~dz)+[ t2+tpcp(A—, b')]( —,'d) d) + ,'d2d2)—

and

&g)IHefflg)& (t)+—r2)( 3dpdp+ 6d) d) )+[ tz+rpco(~, ~ )](6d2d2+ 6d) d) ) .

(3.6)

(3.7)

(}) ~

(2)~

(3)
o

o
()) i

0
(2)

i(5)
~o~ o

(4)
I ~ y

(3)
0 0

The explicit dependence on o represents the dependence
of the hopping of the quasiparticle on the magnetic back-
ground. Therefore, a tight-binding model will consist of
four oxygen sites in each unit cell. in Fig. 3 we show the
unit cell and the four hopping amplitudes, t„ti„t„td.
The amplitudes t, and tb represent hopping between
nearest-neighbor oxygen sites, i.e., with co(b„b,') = 1, as in
Fig. [2(a)]. We use r, (rb) for the case 0 =f (cr=$).
Similarly, t, and td represent hopping between next-
nearest-neighbor oxygens, with cp(b„h')=0, as in Fig.
[2(b)]. From Eqs. (3.3), (3.4), (3.6), and (3.7) we thus find

(l) ~
0 ~Oi

( 2)'
QO

(3)

(4)
(5)&

0

(l)0 0
(2) r &

' ~ X
(3) ~

0 gO& 0
(4) &

~ w

(5)&-
'

O 0 O

o =o I o
tp

0 t 0 ( 0I

I

j
0=

tb

(b)

FIG. 2. Two possible hops of a quasipartiele. FIG. 3. Tight-binding amplitudes of the quasipartiele's hops.
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:(t'1+tp)(C1C1+ &Cpcp+ 3C3C3 )

( t1 + tp )( T~c 2 C 3 +
3

C 3 C 3 +C4 C4 )

t, =t, (c*,c', + ,'C—3cz+ ,'c3—c3),

td —t 1 ( —C 2 C 2 +—C 3 C 3 +C 4 C 4 )

for the spin- —', quasiparticle and

t, =(t, +tz)( ——,'d,*d', + ,'d2d—,')

+( t 2+t p)(6d1d1+6d2d2)

tb —(t, +t2)( ,'d2d—2+—,'d*, d', )—

+( tz—+tp)( —', dzdz+ —,'d;d', ),

(3.8)

In our case,

P13=P31=»3=P31=P34=P43=P34=P42= t.
P14 P41 P23 P32

(4.7a)

(4.7b)

and

y, 2(R, ) =y34(R, ) =y2, (R, ) =y43(R, )= tt, ,

y 1 3( R3 ) = y 34( R3 ) =y „(R2 ) =y 42( R3 ) = tb

y4, (R3)=y,4(R3)= td,

(4.8a)

(4.8b)

(4.8c)

For R1 = (+2a, 0), R2 = (0, +2a ), R3 = (+2a, +2a ), and
R4 = (+2a, + 2a ) we have

(3.9) 23(R4)=y32(R4) = td (4.8d)

t, =(t, +t2)( —
—,'d*, d', + —,'d2d~) —t2( —,'d1dI+ —,'d3d2),

td=(t, +t2)( ——', d2d2+ ,'d", d', —)
—t2( —,'d2d2+ ,'d1dI ), —

From now on we take the distance between two neighbor-
ing cells 2a as unity. Solving Eq. (4.4) amounts to finding
the eigenvalues of the following 4 X4 matrix,

for the spin- —,
' quasiparticle.

We can check these results in an extreme limit. For
~qp), we find tt, =td =0. Similarly, for ~qp) =~ ill) we

have t, = t, =0. We notice that the quasiparticle
~

1' 1'1 )
is localized around a spin-down Cu, whereas the quasi-
particle

~ 1 1 1 ) is localized around a spin-up Cu. Clearly,
these quasiparticles cannot move without breaking the
AFM order. where

0 a(k) 8(k) 5(k)
a'(k) 0 5(k) 8(k)
8'(k) 5'(k) 0 a(k)
5 *(k) 8'(k) a'(k) 0

(4.9)

IV. THE BANDS

g(r)= ge'" P(r —R),
R

(4.1)

where R is in the Bravais lattice and p is the wave func-
tion in each unit cell. In our case,

In this section we calculate the tight-binding bands.
The wave function of the mobile quasiparticle g is
periodic. Thus it can be written as

a(k}=t.+B(k)t„, 8(k) t =+.C(k)t, ,

5(k)=t, +B(k)C(k)td, 5(k)=t, +B'(k)C(k)td,
(4.10)

B(k)=e ", C(k)=e

There are special points (I', L, and X) in the Brillouin
zone, where B(k) and C(k) are real,

B C 1 at k ky 0

L: B=C=—1 at k~=ky=+~,

4

P(r)= g b„4(r d„), —

where

(4.2)
X: B=—C=1 at k =0, k =+~

y

X: B=—C= —1 at k, =0, k. =+m.

At these points we can find the eigenvalues analytically,

d„=(0,0), (O, a), (a, O)(a, a) . (4.3)

Here, a =a /&2 is the nearest-neighbor distance between
oxygens, where a is the distance between two Cu sites.
d„denotes the sites (1), (2), (3), and (4) in Fig. 1(b). As is
well known, the energy spectrum is obtained by solving
the equations

s1=2t, +(B+C )t1, + t, +BCtd,

s, =(B C)t, —t, BCtd, — —

E,=(C—B)t, t, BCt„, — —

E,= 2t. (B+C)t, +t, +B——Ct„.

(4.11)

e(k)b = —g P „+g y „(R)e'" b„,
n R

where

P „=—J dr b U(r)4*(r —d )4{r—d„)

and

(4.4)

{4.5)

y „(R)= —J dr b, U(r)C&*(r —d )4(r —d„—R) . (4.6)

Notice that the notation used above does not mean that
the values of c.,-, for different values of B and C, should

belong to the same band i. It is just the set of four ener-

gies at each specific point.
For other values of k we diagonalized M numerically,

and the resulting four bands are presented in Fig.~ 4. The
four parts of the figure were calculated for the four quasi-
particles defined in Eqs. (2.5a), (2.5b), (2.6a}, and (2.6d),
using the parameters given after Eq. (3.1).



45 FOUR-BAND MODEL FOR OXYGEN HOLES. . . . I. 9921

V. RESULTS
A. The best quasiparticle

The favored quasiparticle is the one for which the sum

of exchange and kinetic energy is the lowest. From Fig. 4
we see that Iqp), (and of course also the spin-reversed

quasiparticle) has the lowest kinetic energy. Its minimum

value is —3 eV. The minimum in the kinetic energy for
the spin- —', quasiparticles is —0.8 eV. If J & 0 then I qp ),
also has the lowest exchange energy and Iqp ), is favored.

For J = —0.36 eV (Ref. 29) the energy difFerence be-

tween the lowest energy of Iqp ), and the spin- —', quasipar-

ticles amounts to ——2.8 eV. Since experimental and

numerical results support the option of a negative J we
assume that indeed Iqp)& is the favored quasiparticle. If
J )0, then J should be greater than 1.5 eV in order to
make the spin- —', quasiparticles favored. We would also
like to add that the quasiparticle that can be formed by a
superposition of Iy, ) and Iy2), with zero exchange ener-

gy [mentioned after Eq. (2.4)], does not have a lower ki-
netic energy, and it is never favored.

The state
I qp ), is favored over

I qp )2 by a small energy
difference, of order 0.1 eV [compare Figs. 4(a) and 4(b)].
A classical calculation, which included the canting of all
the Cu spins due to the frustration caused by the hole, in-
dicated that the spin of the quasiparticle prefers to be or-

C)

C)

C)

I

CL

Z C)

I

o
Q

z I

C)
LA

I

C)

I

C3

o
Q

CD

o
CI

bJ

C7

I

C3

PJ
I

(c )

. 4. Energy bands of the four studied quasiparticles: Iqp)i, Iqp)~, Iqp)„and Iqp) in Figs. (a), (b), ( ), d (d),
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tI, +td )0 .

For this quasiparticle [see Eq. (3.9)]

(5.1)

thogonal rather than parallel to the staggered magnetiza-
tion in the planes, ' and this would suggest that ~qp)z
should be favored. Therefore, we carried out the calcula-
tions described below for this quasiparticle as well. The
results for the phase diagram and for the effective mass
are strongly inconsistent with the experimental data, and
therefore this quasiparticle seems to be inappropriate.
We cannot rule out the possibility that a state, whose spin
is orthogonal to the staggered magnetization, would be-
come favored if more Cu spins are included in the quasi-
particle state.

The lowest band of the favored quasiparticle has its
minimum at the points X, with k=(0, +m ) or k=(+sr, O).

The band looks Aat in comparison with the interband

gap. Therefore, one might worry that the location of the
minimum could be determined by small errors in the pa-
rameters. In order to check this possibility we notice
that the lowest band corresponds to the values of e& [Eq.
(4.11)]. The minimum remains at X provided that

to+ 2t
&

=0.21 eV (5.4)

Therefore a small change in the choice of parameters
cannot change this result. Actually, Eq. (5.3) holds for all

the values presented in Table I. However, it would help

to reduce the scatter in the values of the parameters that

is manifested in this table.

B. Density of states

The density of states of the lowest energy band was
evaluated by diagonalizing the matrix M [Eq. (4.9)] for a
dense grid of points in the Brillouin zone. Since we are
interested in the properties of our system as a function of
doping, we present in Fig. 5 the density of states as a
function of the doping concentration x. We see that the
maximum density of states is obtained at x =0.45 and
that the density of states is very low for x ~0.65. In the
second paper in this series" we shall use the density of
states and the BCS equation to calculate the supercon-
ductivity phase diagram.

t t, + td =—
6( t 0 +2 t ] ),

thus the condition is

to+2t& & 0

For our choice of parameters,

(5.2)

(5.3)

C. Effective mass and penetration depth

We next calculate the in-plane effective mass of the
best quasiparticle. We first expand the eigenvalue c., near
the extremum s& [Eq. (4.11}],in a perturbation series in
the deviations hk and hk„

(t,B+tdBC)', (t,C+tdBC)'

=e „5k,+e hk (5.5)

For the best quasiparticle, the minimum occurs at the
point X, i.e., B= —C =+1. We next write,

$2

Pl aa
(5.6)

Since in our case we took the length 2a =a&2 (a being
the Cu-Cu distance} as unity we should divide m by
2a and a =1.4X 10 ' m. Measuring e in units of eV
we end up with

m 013
me eaa

(5.7)

For the parameters to= —0.65 eV, t&=0.43 eV, and

tz =0.22 eV, we substitute for ~qp) & d& = 1 and dz =0 in

Eq. (3.9) and obtain t, = —1.16 eV, ti, = —0.04 eV,
t, = —0.62 eV, and td =0.72 eV. We use these values in

Eq. (5.9) to obtain e =0.051 eV or 0.017 eV. Thus,
near k=(+m, O), m„„=2.5m, and m~~ =7.5m„whereas
near k = (0, +m ), m„„=2 5m, and m„=7.5m, .

The effective mass, obtained by averaging the deriva-
tives of the energy over all four X points, is

l

0.2

FIG. 5. Density of states of the lowest-energy band as a func-

tion of doping.
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TABLE II. Comparison of the estimated concentration of holes in the Cu02 planes x~ by inserting the measured in-plane penetra-
tion depths A,, the volume of the unit cell V, and the number of Cu02 planes per unit cell l.

Compound

Bi2(Sr,Ca)2CuOS+~
Bi2CaSr2Cu208
T12Ca2Ba2Cu30io
YBa2Cu 307

T, K

84 (Ref. 45)
82 (Ref. 46)
105 (Ref. 46)
90 (Ref. 49)

A, A

3500 (Ref. 45)
1950 (Ref. 46)
1850 (Ref. 46)

1300—1470 (Ref. 49)

V A (Ref. 3)

714 (Ref. 45)
453 (Ref. 47)
529 (Ref. 48)
174 (Ref. 50)

0.15
0.31
0.27

0.42—0.54

3.7me (5.8}

' 0.5
m*c
4m.ne

(5.9}

Using our estimate for m ', this yields

We may compare this value with m *=3.2m„which Ta-
naka et al. estimated from optical spectra in the La
compound or with m *=4m„which Krusin-Elbaum
et al. estimated for the YBazCu306+y compound. In
our calculations we disregarded hops that disturb the
AFM order. This limitation may increase the effective
mass of these quasiparticles, which means that we should
regard Eq. (5.8) as an upper limit.

The penetration depth in the planes A, is given by the
London Equation,

of holes in the CuOz planes. ' A possible explanation
for this discrepancy could be a different effective mass.
However, there is no clear reason why the effective mass
fits the other compounds and does not fit YBaCu307.
Moreover, as mentioned before, independent experirnen-
tal evidences indicate that this is indeed the approxi-
mate value of the effective mass in YBa2Cu307. It is pos-
sible that not only the Cu02 planes superconduct but also
the CuO chains. This suggestion is supported by the two
recent reports, one by Welp et al. ' who observed metal-
lic behavior of the CuO chains in resistivity measure-
ments of a single and untwinned YBa2Cu307 crystal in its
normal state and the second report was by Loram et al.
who concluded that there is a chain superconductivity
from specific heat measurements of
YBa2(Cu, „Co„)307—s.

I,= 102+V/1x A (5.10) VI. SUMMARY AND DISCUSSION

where V=a Xb X c is the volume of the unit cell in A (a
and b are the nearest-neighbors distances between Cu's in
the Cu02 plane), l is the number of Cu02 planes per unit
cell, and x~ is the number of holes in the Cu02
planes per Cu in these planes. For La& „Sr„Cu04

0 0
the lattice constants are a =b =3.80A and c = 13.17 A.
Therefore,

1010 A.
&x

(5.1 1)

Grebinnik et al. measured A, L, for x =0. 1 and x =0.15,
and obtained (3200+70 A) and (2420+70 A), respective-
ly. These experimental results may be compared with
=3190 A and =2600 A, obtained from Eq. (5.11). This
agreement is quite encouraging.

For the other HTSC the comparison is more diScult,
since we usually do not have for the same sample data on
the concentration of holes and on the penetration
depth. However, the measured phase diagrams
for La2 Sr Cu04, ' YBa2Cu306+y s and

Bi2Sr2CaCu208+&, where T, is measured as a function
of the concentration of holes in the Cu02 planes, indicate
that high-temperature superconductivity is obtained only
in the range 0. 1 ~ x & 0.3. Therefore, we insert the data
on the penetration depth in Eq. (5.10) in order to estimate
the concentration of holes and then check its consistency
with the measured phase diagrams. In Table II we
present the estimated concentrations based on the data of
the penetration depths. We find consistent results for Bi
and Tl compounds. For YBa2Cu307 we find x~ =0.54
and this is inconsistent with the measured phase diagram
and also with direct rneasurernents of the concentration

We studied a tight-binding model for the doped CuOz
planes, which are a common ingredient in many HTSC.
We took into account the inhuence of the AFM correla-
tions of the Cu's spins on the oxygen doped holes, thus
obtaining a four-band model for the doped holes. The
spin of the doped hole strongly couples with the spins of
the two neighboring Cu's. We therefore considered
eigenstates of this interaction as possible quasiparticles.

We calculated hopping integrals for various quasiparti-
cles. For simplicity we neglected disturbances of the
AFM background due to hoppings. We found that the
spin- —, quasiparticle is favored and that its effective mass

is bounded from above by 3.7m, .
We checked our estimate for the effective mass by

evaluating the London penetration depth. We found en-
couraging agreement with experimental data for
La& Sr„Cu04. We also found that the penetration
depths in Bi and Tl compounds are consistent with our
estimates. However, the penetration depth of
YBazCu307 is totally inconsistent. A plausible explana-
tion for this discrepancy may be that in the CuO chains
also superconduct.

In the next paper in this series we will study the super-
conductivity phase diagrams, and we will discuss the
main factors that determine their shapes.
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