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Collective excitations in superconductors: From Bardeen-Cooper-Schrieffer theory
to Bose condensation
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We study the collective excitations of a system with local attractive interactions as a function of the
coupling strength. The two-particle excitations are obtained in the random-phase approximation. For
the strong-coupling limit we reproduce the excitation spectrum of a hard-core Bose gas, while in the
weak-coupling limit we obtained a spectrum consistent with the BCS picture. The evolution of the exci-
tation spectrum from the weak- to the strong-coupling limits is continuous. We briefly discuss the effect
of these excitations in the thermodynamic properties of the system.

I. INTRODUCTION

The problem of the evolution from weak-coupling su-
perconductors to the Bose condensation of composite bo-
sons as a function of the attractive interaction strength
has been addressed by many authors. ' Consider a gas
of fermions with an attractive interaction U(r) If U. is
small, the usual BCS instability takes place. The ground
state is well described by the BCS wave function, pairing
is a collective effect, and the thermodynamics is dominat-
ed by pair-breaking excitations with an energy gap 26.
In the opposite limit, large-U bound states of single pairs
can occur. The system then can be described as a gas of
bosons which exhibits a Bose condensation. It has been
shown that the ground state evolves continuously from
one limit to the other. However, the excitations and con-
sequently the thermodynamic properties are quite
different in both limits. There are two relevant lengths
in the problem: the size of the pairs go, which in the
weak-coupling limit is the BCS coherence length, and the
average interparticle distance ro. The limit go/ro))1
corresponds to the BCS picture. For golro «1 pairs do
not overlap and the coherence of the ground state can be
destroyed without breaking them. The intermediate case
go/ro—= 1 may be relevant in the context of high-T, sys-
tems which have a low density of carriers and a very
short coherence length.

A simple model which can be used to describe the
crossover between these two regimes is the negative-U
Hubbard model. In the following sections we study the
two-particle collective excitations of this model for arbi-
trary values of the interaction U and different particle
densities. In Sec. II we present the model and calcula-
tions, and Sec. III includes results and discussion.

II. MODEL AND CALCULATIONS

Our starting point is the negative-U Hubbard model,
which is given by

H= tgc; cj— Ugc;tc—;tc;~c;t yacc; —c;
t, o

where c; creates a particle at site i with spin 0., t is the
hopping integral, U is the strength of the attractive in-

teraction, and p is the chemical potential. In what fol-
lows we consider the average particle number per site n

less than 1. In particular, we analyze the low-density lim-
it. For n -=1 the superconducting state competes with a
charge-density-wave state, an effect which is not dis-
cussed in this work.

For the weak-coupling limit (U/t «1), BCS theory
describes correctly the ground state and thermodynamics
of the system. There is, however, one type of excitation
which is not included in the usual mean-field theory: Be-
cause of the lack of long-range interactions in Hamiltoni-
an (1), there is a Goldstone mode with energy aRvF q (vF
is the Fermi velocity, a is a numerical constant of order
1, and q the crystal momentum ), which corresponds to
density oscillations. This type of excitation has been
studied extensively in the past. Long-range Coulomb
interaction lifts this branch to the plasma frequency co .
It has been shown that in this weak-coupling limit
plasmons are almost insensitive to the occurrence of su-
perconductivity. As one may expect and we discuss
below, in absence of long-range interactions the Gold-
stone mode retains a pure density-oscillation character
only if its wavelength A, is much larger than the BCS
coherent length. For A, =-go there is a strong mixing be-
tween density oscillations and pair-breaking excitations.
One may ask how these modes evolve when the strength
of the attractive interaction increases to reach the inter-
mediate situation (go/ro—= 1) or the strong-coupling re-

gime. The latter has been also studied in some detail.
For the sake of completeness, we briefly summarize the
results obtained for this regime.

For Ui t »1 particles are always coupled in pairs. An
effective Hamiltonian up to order t /U can be obtained
by projecting out states corresponding to unpaired parti-
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cles. The e6'ective Hamiltonian reads

H =Jg S,'S/ —,' (S—,+S/ +S; S~.
+ ),

(Ej)
(2)

with J=4t /U.
In Hamiltonian (2) the spin-up and -down states at site

i correspond, respectively, to an empty and doubly occu-
pied state of the fermions in (1). The longitudinal antifer-
romagnetic term S,'S&' describes a repulsion between
nearest-neighbor doubly occupied sites, while the trans-
verse ferromagnetic term accounts for the hopping of the
composite boson (fermion pairs) through a virtual pair-
breaking excitation. The particle density n is related to
the total magnetization through (S') =(1 n)—/2. In
spin-wave theory the ground state of Hamiltonian (2) cor-
responds to an ordered state of tilted spins plus zero-
point fluctuations. The angle 8 between the z direction
and spins is fixed by the density cost9=1 —n. This or-
dered phase corresponds to a superfluid phase of the
composite bosons. The superfluid order parameter is
given by the magnetization in the x-y plane. The orienta-
tion of (S+ ) is the phase of the superfiuid order parame-
ter. It is well known that the ground state in the mean-
field approximation of Hamiltonian (2) corresponds to a
BCS approximation of Hamiltonian (1). The low-energy
excitations are clearly the sound waves of the superfluid
phase of the hard-core Bose gas —magnons in the pseu-
dospin language of Hamiltonian (2). The dispersion rela-
tion of this collective excitations is given by'

01=2(gJ) I 1+(Zcos 8—1)y —2cos Hyq],

where g is the coordination number and
)'k =(1/'S )Xne

'"'
In this limit pair breakings are high-energy excitations

with a characteristic energy of the order of U. The
superfluid-normal phase transition is driven by the collec-
tive excitation described above.

Recently, it has been shown" that Hamiltonian (1)
possesses a so-called "pseudospin" symmetry. By sym-
metry arguments one can show that there are at least two

collective modes with infinite lifetime, one at the center
and the other at the corner M of the Brillouin zone. The
former is the Goldstone mode mentioned above, and the
latter has an energy —U —2p. These results are exact for
any sign of U, any filling of the band, and any dimension.

As we have already mentioned, the BCS ground state is
a good approximation for both limits and it has been ar-
gued ' that the evolution from weak- to strong-coupling
superconductivity is smooth with the BCS wave function
as a reasonable interpolation. Although the ground state
for the negative-U Hubbard model has been studied in
some detail, the low-energy excitation spectrum is un-
known for the intermediate regime.

In what follows we calculate the collective excitations
for arbitrary values of the crystal momentum q and ratio
U/t. The excitation spectrum should reproduce the two
limits discussed above and the exact results known for q
at the center and at the corner of the Brillouin zone.

To calculate the collective excitations, we proceed in
the following way: %e use a Bogoliubov transformation
to rewrite Hamiltonian (1) in the form H =H0+H' with

H0 C+X+k(alkalk+a2ka2k )
k

(4)

1 1

2 +g2)1/2 (5a)

1 ~k

(&2 +g2)1/2 (5b)

where N is the number of lattice sites.
The Hamiltonian H' describes the residual two-particle

interactions and is given by

where C is the ground-state energy Ek =(ek+5 )', ek
is the kinetic energy measured from the chemical poten-
tial renormalized by the Hartree contribution
p=p+nU/2, and 5 is the BCS order parameter. These
last two quantities are calculated self-consistently accord-
ing to the usual mean-field equations:

mn
1 k, k', q lk+q 2k'+qa2k' lk+ k, k', q(alk+q lk' lk'+q 1k+ 2k+qa2k' 2k'+q 2k )

Nkk,

k k' q lk+q 2k'+q lk' 2k+ k k' q lk+q 2k'+q 2k 2k' k k' q lk+q 2k'+q lk' lk (6)

The coefficients A, B, C, D, and F can be easily calculated
and are given by the coherence factors uk and Uk of the
Bogoliubov transformation.

The excitations of the Hamiltonian Ho correspond to
the creation of two quasiparticles a, ka2k+q and form a
continuum with a gap 2b, (q). This gap is equal to the
BCS gap 2A for q & 2k~ and increases for q )2k+.

The residual interaction H' mixes these excitations and
generates a low-energy collective mode in the gap. As H'
does not conserve quasiparticle number, the excitation
operator contains not only terms with two-quasiparticle
creation operators, but terms with two-quasiparticle an-
nihilation operators, thus taking into account ground-

state correlations. Other possible terms such as akak do
not appear in the simplest random-phase approximation
(RPA). Then we propose an excitation operator

B =g(aka, k+ a2k+bka2k+ a,k),
k

where ak and bk are the solutions of the equations

1 1
Ek Ek+q )ak +

hark,

k ,qak
— g~'k, k ,q'bk''

Nk, ' ' Nk

(8a)
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1 1(co+Ek+Ek+q)bk — —gyk k. qbk. + —g5» k. qa», =0, &/4t 0 8

where the coeScients pk k q
and 5k k q

are given by

rkk', , (~k k+ ~k'uk'+ + kUk+ k' k'+

+ Qk Vk +qQ»'+qU»'+ Qk +q V» 9»'Vk'+q )

~k, k', q U(~k+qU»~k'+q~k'+~»U»+quk'Uk'+q

V» V» +qQ» Elk +q +El»Q»+q Vk Vk +q )

(8b)

(9a)

(9b)
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The integral equations (8} are solved numerically. In
these equations we use the values of the gap parameter 5
and the chemical potential p obtained self-consistently
from Eq. (5}. To minimize the computational work, we
have considered a two-dimensional (2D} square lattice.
However, in the present approximation we do not expect
dimensional effects and the results are representative of
the behavior of a 3D system.

III. RESULTS AND DISCUSSION
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FIG. 1. Dispersion relations for the collective mode in the
strong-coupling limit (U=158; where 8'is the half-bandwidth
of the uncorrelated fermions), for three difterent values of the
band filling: n =0.1 (dot-dashed line), n =0.5 (dashed line), and
n =0.8 (solid line).

The energy co of the collective mode associated with
the operator B given in Eq. (7) is always smaller than the
pair-breaking excitations with the same total momentum
q. We first present the results corresponding to the
large-U limit. The results for U=158', where 8'is the
half-bandwidth of the uncorrelated particles, and for
different particle densities n are shown in Fig. 1. For the
particle density n going to zero, the dispersion relation
co reproduces the one-particle spectrum. As the density
increases, there is always a region for small q where co is
linear in q. For q = (n., qr) —the zone boundary —the en-

ergy of the collective excitations decreases with increas-
ing density, indicating the tendency of the system to form
a charge-density wave. The dispersion relation in this
limit is exactly the same as that given in Eq. (3), which
was obtained by means of a canonical transformation of

FIG. 2. Dispersion relations for the collective mode and
two-particle continuum for n =0.2 and three values of the
strength of the attractive interaction U.

the Hamiltonian in Eq. (I). Our RPA calculation then
gives the correct result for the strong-coupling limit.

As U decreases, there are two effects: On the one
hand, the total bandwidth of the collective excitations in-
creases, and on the other hand, the energy of the pair-
breaking excitations decreases. In Fig. 2 we present re-
sults of the two-particle excitation spectrum for different
values of U corresponding to the weak-, intermediate-,
and strong-coupling regimes. As U decreases, the veloci-
ty of the collective mode for q going to zero increases and
in the weak-coupling limit it reaches the value
A'UF(I —Up)/2, UF being the Fermi velocity and p the
density of states at the Fermi level. This is a well-known
result obtained by Anderson, although in the present case
the numerical constant is different because we are work-
ing in a two-dimensional system. For small U this collec-
tive mode reaches the continuum for q-=46/AUF. This
indicates that if the wavelength of the collective excita-
tion is larger than the coherence length $0, the sound
wave can be propagated in the superconducting gas.
Clearly, the existence of this Goldstone mode is due to
the lack of long-range repulsion in the Hubbard model.
For q )4h/AU~ there is also a bound state with an energy
which is very close to 2A except for q close to the zone
boundary where there is a split of the two types of modes.
For intermediate values of U, there is a qualitative
change in the energy spectrum consisting of a split, for
the whole range of q, of the energy of the two types of ex-
citations. This change occurs for values of U and density
such that go= ro. This is precisely the Le—ggett criterion'
for the crossover between a BCS regime and a Bose con-
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densation of tightly bound pairs.
The crossover criterion corresponds to having the

chemical potential just at the bottom of the band. This
condition can be put in the form

28'
tanh '( 1 n—)

(10)

[H,J+ ]=(—U —2p)J+ . (12)

Thus J+ acting on the ground state creates an eigenstate
of H with an excitation energy —U —2p. We have
checked that the energy of the zone-boundary mode ob-
tained in the RPA is given exactly by —U —2p with the
chemical potential p given by the self-consistent equation

I
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I
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I
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U/t
25

For a fixed n the transition will be Bose like (BCS like)
for U) U, (U(U, ).

As we mentioned above, because of the pseudospin
symmetry of the Hubbard model, a state at the zone
boundary IQ = ( n /a, m /a ) ] with an energy equal to
—U —2p should occur. The existence of this mode can
be proved by defining the operator"

J+ =pe 'cj&c~&,
iQR .

(11)
J

where R. is the coordinate of site j. It can be easily
shown that J+ is an eigenoperator of H, satisfying the
equation

(5). As expected, the RPA calculation preserves the
pseudospin symmetry of the model Hamiltonian.

From the analysis of the symmetries of the Hubbard
Hamiltonian, one can only conclude that there should be
a Goldstone mode for q ~0 and another mode for q ~Q.
What our results indicate is that bound states exist for all
values of q and the two modes obtained by symmetry ar-
guments correspond to the same branch of excitations.

In order to check quantitatively our results, we have
studied numerically a small cluster of 4X4 sites. We
evaluate the ground-state energy and lowest excited states
and compared the results with the RPA calculation for a
cluster of the same size. In Fig. 3 we present this com-
parison for q=Q and Q/2. As can be seen from the
figure, the results are in excellent agreement.

These excitations will play an important role in both
the spectral and thermodynamic properties of the system.
These excitations are not coupled with transverse elec-
tromagnetic fields' ' and, in consequence, are not
directly observable in optical transitions. However, other
spectroscopies such as electron-energy-loss experiments
could give a direct measure of these modes.

The effect of these modes on the thermodynamics may
be very relevant: (i) In the large-U limit these excitations
drive the superfiuid-normal transition. (ii) In the weak-
coupling limit the pair-breaking excitations are the ones
responsible for the transition since we do not expect the
collective mode to play an important role. Only very
close to the zone center is there a low-energy excitation
which differs in character from the pure pair-breaking ex-
citation. In most of the Brillouin zone, the collective
mode has an extremely small binding energy and the na-
ture of the excitation is essentially of the pair-breaking
type. (iii) In the intermediate regime both types of exci-
tations will contribute to the thermodynamic properties.
To visualize the characteristic energy of both types of ex-
citations, we present in Fig. 4 the minimum pair-breaking
energy and total bandwidth of the collective modes as a
function of U.

The characteristic energies are of the same order of
magnitude for U and n, satisfying the crossover criterion
of Eq. (10).
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FIG. 3. Comparison between RPA results (solid line) and the
exact diagonalization of 4 X4 clusters with band 611ing n =0.25,
for two values of the total crystal momentum: (a) q = t,'m, ~) and
(b) q =(m./2, m/2).

FIG. 4. Pair-breaking excitation energies (vertically shaded
area) and total bandwidth of the collective mode (horizontally
shaded area) as a function of the interaction strength U for
n =0.2.
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In summary, we have calculated the two-particle col-
lective modes of the negative-U Hubbard model in the
RPA. The calculation preserves the pseudospin symme-
try of the Hubbard model. It reproduces correctly the
weak- and strong-coupling limits. By comparing with ex-
act results in a small cluster, we have shown that the ap-
proximation is qualitatively correct for all values of the
interaction U. The collective modes evolve continuously
from the weak- to strong-coupling limits. We have at-
tempted to characterize the collective excitations of the
intermediate regime, where the physics is richer and may
be relevant in the context of the new high-T, materials.

The low-temperature properties of the model can be easi-
ly obtained from the knowledge of the excitation spec-
trum; however, in real systems the long-range Coulomb
repulsion raises the Goldstone mode up to the plasma fre-
quency. However, the long-range repulsion will not
aftect the short-wavelength excitations very much.
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