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The process of nucleation of magnetization reversal in bulk materials, by creating pairs of one-
dimensional, planar Bloch or Néel walls, is extended here to the creation of spherical or cylindrical
nuclei. Numerical integration of the appropriate differential equation leads to a saddle point in
energy, which gives the barrier to be overcome for reversing the magnetization. The results for both
cases are rather similar to the planar ones, but for vanishingly small fields the energy of the nucleus
of a reversal structure tends to infinity, which means that it takes some finite field for any reversal

to nucleate.

I. INTRODUCTION

Magnetization reversal by domain-wall motion is a
rather slow process. The process of nucleation of a pair
of Bloch or Néel walls' showed some promise? as a suffi-
ciently fast mechanism, but it was not possible to evalu-
ate the time dependence in a wall with planar symmetry:
It involves an infinite energy in an infinite material (even
though the energy per unit length is always finite every-
where), for any value of the applied field.

The present study presents a similar nucleation struc-
ture for a spherical or a cylindrical nucleation center. Its
energy also diverges for zero applied field, which makes
it theoretically impossible to reverse the magnetization
of any ferromagnet unless some field is applied. This
result is not surprising, because it implies the stability
of the ferromagnetic state, without an applied field, in
an infinitely large volume. However, for any finite field
the total energy barrier for the spherical nucleus (unlike
that for the planar or cylindrical center) is finite, which
should make it possible to estimate reversal times on a
more realistic basis than was ever done before.

For the spherical nucleation center we assume a mag-
netization which depends only on the radial coordinate,
in an infinite material. We have not tried to consider
any nucleation modes that have an angle dependence. In
case there exists a mode for which the energy barrier is
smaller than that calculated here, the present calculation
leads to an upper bound for the smallest possible energy
barrier. Similarly, we assume a dependence on the cylin-
drical radial coordinate only, for the case of a cylindrical
nucleation center, and the same limitations apply to this
case as well.

The spherical nucleus is meant to be an approxima-
tion to the more realistic nucleation processes at crys-
talline point defects, but the details of the defect itself
are not considered in this study. Similarly, the cylindrical
nucleation center is meant to be a crude representation
of nucleation around the dislocation lines, but again the
actual effect of these dislocations is neglected here.

II. SPHERICAL NUCLEUS

A. General

Consider a large spherical particle, whose radius is R
(which will later be taken in the limit R — o0). Let
it be made of a ferromagnetic material with a uniaxial
anisotropy, whose anisotropy constant is K,. Let the
magnetization vector in this sphere be expressed in terms
of a single function of space w, so that

M, =M,;smw, M,=0, M,=M,cosw, (1)
where M, is the saturation magnetization, and where w
is assumed to be a function of the spherical coordinate »
only. The magnetization thus lies in the zz plane, at an
angle w to the z axis, which gradually approaches 7 for
large 7. It should be noted that the assumption that w
depends only on r is arbitrary, and does not guarantee
that the lowest possible energy barrier is obtained.

The exchange energy of this structure is
W, = %/[(V sinw)? 4 (V cosw)?] dV, (2)

where C(= 2A) is the exchange constant, and where the
integration is over the sphere. Hence

W, = %/(%)2 dv. (3)

In order to simplify the notation, the energy terms here
will be normalized to the energy

Wo = 87C3% J(2K,)"?, (4)

while length will be expressed in terms of the reduced
parameter,

t = r/2K4/C. (5)

In Co, for example, C = 2.6 x 1075 erg/cm and K, =
4.3 x 10° erg/cm3 2 so that our unit for the energy is
Wo = 3.6 x 107! erg, and the normalization of length is
in units of about 5.5 nm.
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When this notation is used in Eq. (3), and the inte-
grations over the angles are carried out, the reduced ex-
change energy term becomes for the limit of R — oo,

CWe 1 [®, (dw)?
bt e (%) ®

Similarly, the anisotropy energy term, normalized by the
same factor, is

{o ]
Ea = go =i/0 t?sin w dt. (1)

Let a magnetic field H, be applied along the +2z direc-
tion. The reduced energy difference between the interac-
tion of the configuration of Eq. (1) with this field, and
the interaction of a sphere saturated in the —z direction
with the same field is

”’! h 2
2L __C dt = —h 8
& Wo 2/0 t*(1+ cosw) M, (8)
where
h=H,M,/(2K,). 9)

In the case of Co, with® M, = 1422 emu, the unit of A
corresponds to 6 kQOe.

To these terms one should add the magnetostatic self-
energy term. However, the contribution of the volume
charge just cancels that of the surface charge, and the
total magnetostatic energy is exactly the same as in the
saturated sphere. This equality has been noted* for a
particular form of rotation of a small sphere at the center
of a large sphere. It is proved in the Appendix to be a
general property of the magnetization structure studied
here, with w a function of r only. Since only the energy
difference from the saturated state is considered, it is zero
for this energy term. In comparing with experiments on
crystals with a real surface, the magnetostatic term is
naturally included by taking H, in Eq. (9) to be the
internal field.

Neglecting the effect of possible imperfections® and of
an incomplete saturation,® the total energy to be consid-
ered is

£=£e+£a+gf:£d—hM. (10)

The Euler differential equation which minimizes this total
energy is

1d [ ,dw 1. .

e (t Et_> —§s1n(2w)—hsmw_0, (11)
with the boundary condition

dw /dt = 0 (12)

at » = R, namely t = co. There is no a priori condition
for t = 0, but it will be shown later from the properties
of the differential equation (11) that Eq. (12) must also
hold at ¢ = 0.

In its linearized form, for |w| < 1, this equation is a
particular case of the nucleation problem in a sphere, for
which the solution is known.? In its nonlinear form no
analytic solution is known, and a numerical solution had
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to be undertaken, as will be described in the following.
However, since most of the previous calculations in the
literature involve just a guess of a reversal mechanism,
which is then modeled on a computer, it may be worth
mentioning that we have also looked for a more conven-
tional Ritz model, which will illustrate our present result.
We have not been able to guess a variational function that
leads to a saddle point.

B. Numerical integration

In the integration of Eq. (11), it is convenient to start
from large values of ¢, for which the behavior can be
expressed by the eigenfunctions of a linear differential
equation. Consider first a more general case in which the
solution of Eq. (11) is sought in the vicinity of a given

value wg, namely for
W = wp + €,

(13)

and € is small. Substituting this relation in Eq. (11) and
neglecting higher than linear terms in ¢,

1d [ ,de 2
e (t dt) — a’e = A, (14)
where
a? = cos(2wo) + h coswo, (15a)
A = 1sin(2wo) — hsinwy. (15b)
It can be verified by substitution that
C1 et + Cy e—ot A

is a solution of Eq. (14). It is also the most general
solution because it contains two arbitrary constants, C;
and Cz.

In particular, for very large t we are interested in the
solution for which w approaches m. Substituting wg = =
in Egs. (15), it is seen that A = 0 and « = v/1 — h. Also,
C; must be zero for large t, or w will diverge. Therefore,
the solution in that region is

w=m-— %e" 1-h (16a)
and its derivative is

dw VI—h 1\ _, i

E:b( ; +t—2>e“". (16b)

In the other extreme, near the point ¢t = 0, regularity
requires that C; = —C5 in Eq. (15c), whatever wy is,
which means

dw/dt = 0, for t=0. (17)

Therefore, the strategy used was to choose some T,
and take Eqs. (16) as the solution for t > T, for a cer-
tain value of the parameter b. From the initial values of
w and its derivative at ¢ = T, Eq. (11) was integrated
numerically in about 1000 steps down to the vicinity of
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t = 0. The value of b was then adjusted so as to fulfill
Eq. (17). In some cases we made a plot of w’(0) vs b, and
the pattern was always the same: This derivative first
increased from the value 0 at b = 0 [which corresponds
to the trivial solution w = = of Eq. (11)], then passed
through a maximum, and decreased through 0. We have
never encountered more than one zero in this process.
The number of steps between ¢t = T and t = 0, as well
as the value of T was varied to check convergence to the
same results. Once w(t) was thus found, the energy terms
were computed numerically from Eqs. (6)-(8) for the re-
gion t < T. To the values thus obtained we added the
contribution for the region ¢ > T, taken as the first-order
terms for small exponentials, namely

1 [% b _/ih
Mp = = t“ |1 —cos | —e dt
2 Jr ?

b? /°° - 2VTTR g,

~ 2 T
b2e—2TVI=h
T TRvioh (19

w(t) = w(ma) + ;;-43 (r_nt_c_z_ cosh [a(t — ma)] — 1) + (maw’(ma) +

t t

W'(t) = [mawl(ma)-{-% (1 _mﬂ coshfa(ma — t)] [—thgw’(ma)+A (_1_ _ma)] sinhfa(ma — )]

where the prime designates the derivative. Substituting
the particular value ¢ = (m — 1)a, expanding in powers
of a, and taking the first nonvanishing term only,

w[(m — 1)a] = w(ma) — mmflw'(ma)
Aa? 1
+'——2(m — 1) (m - 5) , (22)
, _ m?u'(ma) Aa 1
wWilm=1Da] = o537 — 57 ("” 3(m — 1))'
(23)

Because of the factor m — 1 in the denominator, this
kind of iteration can be carried down to m = 2 only,
so that the last value is the derivative at ¢t = a, not
t = 0. However, this last value is sufficient for aiming
at Eq. (17), because this very equation proves that the
derivative is always zero at the last point, ¢ = 0, and
the procedure has only to assure the continuity between
t=0andt=a.

III. CYLINDRICAL NUCLEUS
A. General

We consider also the case of a reversal nucleus in the
form of a circular (infinite) cylinder, instead of a sphere,
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1 [ dw\?
Ea, = Z/T t? (_Ecti) +sinzw} dt

2 o0 T _
L (2—h+-2—1t—h+i) e HVI=hgy

Q

1 Jy 2
b2 1 2—h —2TVi=h

For the numerical integration of Eq. (11) it was usually
sufficient to transform it to a difference equation. Nev-
ertheless, a more accurate method was also used, mostly
as a check of the less sophisticated standard method.
To this end we use again Eq. (15¢) in the vicinity of
wo = w(ma), for an integer m, where a is the integration
step. The constants C; and C, are chosen so that both
w and its derivative pass continuously to their values for
t = ma, thus leading to

A sinh[a(t — ma)]
) etz el (20)
ot at (21)

I
along the same lines of the prévious section. One case of

this form is the curling mode® in a cylinder, in which M
is a function of p only, in a cylindrical coordinate system,
p, z, . This form has been studied® already, and will
not be repeated here. In this study we consider the same
functional form as in Eq. (1), namely

M, = M,sinwcos ¢, (24a)
My = —M,sinwsin ¢, (24b)
M, = M, cosw, (24¢)

where now we take w to be a function of p only, and the
radius R is taken to be that of a large cylinder.

In order to calculate the magnetostatic energy term,
we start from the potential

(25a)
(25b)

Vour = A(R/p)cos¢, for p< R
Vin = A[f(p)/f(R)]cos¢, for p<R
where A is a constant. It can be seen by substitution

that this potential is continuous on p = R, and that it
fulfills the differential equation

V2V,ue = 0. (26)
It also satisfies
V3Vin = 47V - M, (27)

which in the present case is



45 SPHERICAL AND CYLINDRICAL NUCLEATION CENTERSIN . .. 9845

oM d .. with the same boundary condition as in Eq. (12) at ¢t =
4 (aﬁp (pMp)+——c'?Tﬁ£> =47 M, cosqb:i—l;[smw(p)], 0. y a- (12)
p It should be noted that in the curling mode studied in
(28) . 1 the

) Ref. 9 the differential equation is nearly, but not exactly
provided the same as in Eq. (39) here. The main difference is in the
() arM. [° exchange energy, which gives rise to a t~2sin(2w) term
ALY U] ' sinw(p') dp’ . 29 in the differential equation for the curling. This term en-

FRY T e " roe f bound d 0 0 for th
0 orces a boundary condition w = 0 or 7 at ¢t = 0 for the
This equation also determines the constant A as curling, instead of w’ = 0 at ¢t = 0 for the present, rota-
tional mode, which turns out to make a large diﬂ‘erem{e
A = 47 My LU d 30 in the result. The scale of ¢t and h is also different in this
~ R J, psinw(p)dp, (30) case, but it does not affect the solution, which depends

and it is readily seen that the foregoing solution also ful-
fills the boundary condition,

a‘/in 6Vout _
() - (%) = oren D)

Since the magnetostatic problem can have only one solu-
tion for a given magnetization structure, the result

V. = 4T M,

p
cosd)/ p' sinw(p’)dp’ (32)
0
is the solution of the potential problem.
The magnetostatic self-energy per unit length along 2
is
1

R 2T
War = _/ M - VVin pdé dp. (33)
0 0

2

Substituting from Eq. (32), and performing the integra-
tion over ¢,

R
Wan = 272 M2 / sin?w(p) pdp, (34)
0

which has the same form as that of the anisotropy energy.
Actually, by using the notation

2(Ky +7M2
t=p\/———( CW ),

_ H,M,
= 2K, + nM2)’

(35a)

(35b)

all the energy terms become similar to those of the spher-
ical case discussed in the foregoing. The total energy per
unit length along z can then be written as

& = Wiota/(7C) = €4 — hM, (36)
with
& __/00 sin? +(d_w ’ tdt (37)
d — o w dt )
M = 2/ (1+ cosw)tdt. (38)
0

The Euler differential equation which minimizes this total
energy is

1d ( dw 1. .
1% (ta) — =sin(2w) — hsinw = 0, (39)

2

only on the mathematical form.

B. Numerical integration

The integration of Eq. (39) is similar to that of Eq.
(11), and it is also convenient to start it from large val-
ues of ¢, for which the behavior can be expressed by the
eigenfunctions of a linear differential equation. However,
these eigenfunctions are not as easy to handle as those of
the spherical nucleation center, and we did not use the
full possibilities of Eq. (13) as in that case. We consider
only the start, for large ¢, and substitute the relation

w=mT—¢€ (40)
in Eq. (39). To a first order in ¢,
1d [/ de

The solution which is regular at infinity of Eq. (41) is
€ = b"Ko(tv1 - h),

where b* is a constant, and K is the modified Bessel
function of the third kind. These functions can be
handled,!® but not as easily as the exponential functions
encountered in the foregoing, for the spherical nucleus.
Therefore we have linearized the equation in this cylin-
drical case only for the vicinity of w = 7, namely for large
t. In this region, when the argument is sufficiently large,
we replace the Bessel function by its asymptotic value,!!
and use just

€ =be Vv 1_h/\/t_.

The strategy of the solution was the same as in
Sec. II B, but in this case we used only a transforma-
tion of the differential equation to a difference equation.
The contribution of the region ¢t > T was calculated sim-
ilarly to Eqgs. (18) and (19), and gave exactly the same
expression as in Eq. (18) for My, and

1 [ dw?
gdL = Z/T 4 (T;ti) + sinzw] dt

* 1-h 1Y\ _ayi=s
/ (2—h+—t—+zt—2'>e t dt

[<i+ 2t )e-2N1_-F+E], (44)

(42)

(43)

Q
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~
-
|
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with

© —-2t/1-h
E = \/l—h/ £ (45)
T

t

We approximated this term by the first three terms of
the expansion in Ref. 12. Its contribution to the total
energy was very small in all cases, and the inaccuracy in
its evaluation was negligible.

IV. RESULTS
A. Sphere

Results of the numerical integration of Eq. (11) are
plotted in Fig. 1 for various values of h. For rather large h
the integration was straightforward, but it became more
tedious with decreasing h. The reason is quite obvious
from Fig. 1, which shows a high slope, almost an abrupt
change, for the smaller values of h. This high slope re-
quires more accuracy than is necessary for larger values
of h. It also requires very large values of the initial pa-
rameter b in Eq. (16a), and becomes very sensitive to the
initial choice of that parameter.

However, for a very small h it is quite clear that the
obtained magnetization structure approaches asymptot-
ically the phenomenological model where the nucleation
center becomes essentially a large sphere saturated along
the z direction, which is surrounded by a rather sharp
domain wall, the outside of which is saturated along —z.
It is the picture postulated in Ref. 13, but it should be
noted that a factor of 2, needed to account for reversal,
has been omitted from Eq. (3) of Ref. 13, so that the
factor 64 in Eq. (4) of Ref. 13 is actually 16. Also, W of
Ref. 13 is shown in the present study to vanish, and the
applied field H, in the present notation is to be identified
with H — 4w M /3 of Ref. 13. Since there is no additional
magnetostatic energy when M is a function of 7 only, as

m
3
o I |
o 2
c
(o]

O 1 1 1 1 T T 1 1 T

o 5 10
reduced radius t

FIG. 1. The magnetization structure in the spherical re-

versal nucleus as obtained from the numerical integration of
the Euler differential equation (11). The values of the reduced
field, h, are (from the bottom to the top on the left-hand side)
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, and 0.98.
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proved in the Appendix, the wall energy per unit area, o,
is a constant on the sphere, and can be taken as that of
a planar (one-dimensional) Bloch wall, when the sphere
radius, Ry, is large enough so that its curvature may be
neglected over distances of the order of the wall thickness.
The energy of this model is

W, = 4tR30 — 2M,H,(47/3)R}, (46)

where the second term is the interaction with the applied
field, H,. Normalizing to the reduced units used here, by
dividing the energy by Wy of Eq. (4), using the field as
in Eq. (9), and the length as in Eq. (5), namely

T = Ry\/2K,/C, (47)
Eq. (46) becomes
W, oT? hT3
& = L = —Y—m— - —. 48
T W 2V2K,.C 3 (18)
Substituting the Bloch wall energy value!*
o = 2v/2K.C, (49)

and equating to zero the derivative with respect to T,

T = 2/h. (50)

Subsituting this value in Eq. (48), the total energy is
& = 4/(3h7) (51)
and the integrated magnetization is

M, = 8/(3h%). (52)

It is possible to use this relation also for estimating b
of Eq. (16a) for starting the computations from a large
t. Since a Bloch wall centered at T" can be written as

tan(w/2) = '~ T, (53)
it may be approximated, for large ¢ by
(54)

w=r — QeT_’,

where T is given by Eq. (50). Equating this to Eq. (16a)
one obtains the following relation, which turned out to
be a very good start for searching the numerical solution
at some chosen (large) value of T

b = oteT-t+tVI-h (55)

Figure 2 plots the total reduced energy, £ as computed
from the magnetization structures of Fig. 1, and com-
pares it with the phenomenological &, of Eq. (51). The
agreement for small h (namely T >> 1) is seen to be sat-
isfactory, so that it is not necessary to compute below
the region shown. The figure also shows the numerical
results for h > 0.6 on a larger scale.

Similar results for the integrated reduced magnetiza-
tion, M, are shown in Fig. 3 and compared with the phe-
nomenological M, of Eq. (52). In this case the agreement
is much better than in Fig. 2, and extends to h = 0.5, and
even larger. It is still quite a good approximation even
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FIG. 2. The reduced total energy, £, as computed from

the solution of the Euler differential equation (11), given as
points. The full line is the phenomenological approximation
of Eq. (51). The points between the dashed line are plotted
on the expanded scale on the right-hand side.

for h = 0.9, where the exact solution starts to increase
with increasing h.

For the numbers plotted in Figs. 2 and 3 we have also
computed

6 = Ea(h+€) — hM(h £ €) — [Ea(h) — RM(R)],  (56)

for different values of h and e. We found this § to be al-
ways a negative number, as was the case! for the planar
walls. This negative value means that there are nearby
configurations for which the energy is smaller than that
of the computed configuration. In other words, the com-

=100 4 10
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c \
2 \ I
S b ;
N 80 % 18
= \ _ !
2 N i
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h A
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reduced internal field h
FIG. 3. The reduced integrated magnetization, M, as

computed from the solution of the Euler differential equa-
tion, given as points. The full line is the phenomenological
approximation of Eq. (52). The points between the dashed
lines are plotted on the expanded scale on the right-hand side.
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puted structure is a saddle point in configuration space.
It is also interesting to note that &£;(h) — A’ M(h) was
always negative for A’ > 1.1. This result suggests that a
range of small reversal nuclei may be the fastest reversal
mechanism for an overcritical applied field.

Of course, finding a saddle point does not necessar-
ily mean that it is the lowest possible saddle point. In
this kind of a solution it is not possible to consider all
configurations, and find the easiest route for going from
w = mtow = 0, as was done!® in the rather simple
case of an energy barrier which is made of an anisotropy
energy only. In certain computer models the lowest en-
ergy barrier may be found numerically,'® but even then
it is usually restricted to certain imposed modes. In the
present calculations, the study is restricted to a spherical
symmetry, and it is not clear if the reversal may not be
easier when an angular dependence is allowed. In this re-
spect, the energy barrier computed here is only an upper
bound to the best route, or the easiest mode of reversal.
Therefore, any switching time calculated from it will also
be only an upper bound to the lowest possible switching
time.

Nevertheless, such a time estimation from the present
results will at least be realistic, unlike the wild guesses
found in the literature. For example, in a recent
publication!? the energy barrier is taken as the difference
between the saturated states before and after magneti-
zation reversal, while the reversal time is estimated from
the arbitrary assumption that the reversal is “initiated
in an activation volume V,” in spite of the proof* that
such a mechanism is ruled out by the exchange interac-
tion on the border of the “activation volume.” It should
be noted that quite large volumes are involved in the
solution reported here.

The energy we obtain is also quite large, even when it
does not tend to infinity at very small h. The total energy
we find for h = 0.95 is 0.38W)p, which is 1.37 x 107! erg
for cobalt, or one order of magnitude larger than the
estimated? barrier, which can be overcome by thermal
agitation, within an experimental time of 102 sec, at room
temperature.

B. Cylinder

Results of the numerical integration of Eq. (39) are
plotted in Fig. 4 for various values of h. Qualitatively,
these results look very much the same as Fig. 1, and
the whole computation was quite similar to that de-
scribed in the foregoing. In particular, for rather large h
the integration was straightforward, but it became more
and more tedious and time consuming with decreasing
h. Therefore, for this case as well we tried the asymp-
totic picture of a saturated cylinder, surrounded by a
wall which separates it from an outer cylinder, saturated
in the opposite direction. This picture, which should be
valid for a small h, yields an energy per unit length,

W, = 2rRoon — 2M,H, TR2, (57)

where on is the energy per unit area of a Néel wall.
Normalizing to the reduced energy and field units used
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here, and normalizing the length as

T = Rov/2(K, + 7M2)/C, (58)
Eq. (57) becomes
& = W,/(nC) = 4T — 2T?h. (59)

Equating to zero the derivative with respect to T,

T = 1/h. (60)
Subsituting this value in Eq. (59), the total energy is

& = 2/h (61)
and the integrated magnetization is

M, = 2/h% (62)

Figure 5 plots the total reduced energy £, as computed
from the magnetization structures of Fig. 4, and com-
pares it with the phenomenological &, of Eq. (61). It is
obvious that the lines approach each other asymptotically
for h — 0, but in the region shown, the agreement is not
nearly as good as in the case of the spherical nucleus. The
same can be said about the results for the integrated re-
duced magnetization, M, plotted in Fig. 6 and compared
with the phenomenological M, of Eq. (62). Both figures
also show the numerical results for the larger h on an
expanded scale.

It is not quite clear if the energy of the present mode is
larger or smaller than that of the curling mode, as com-
puted in Ref. 9, because the published numerical results
for the latter mode are for the case @ = 0 only. It is also
not easy to estimate a prior: which is larger, because
there are two competing effects. On the one hand, the
curling mode has an extra exchange energy term, which
does not exist in the present mode. On the other hand,
the curling is constrained to w = 0 at ¢ = 0, which does

m
3 T
[ 3] — el
> 2
c
o

o I 1 1 1 T 1 1

0] 4 8
reduced radius t

FIG. 4. The magnetization structure in the cylindrical re-

versal nucleus as obtained from the numerical integration of
the Euler differential equation (39). The values of the reduced
field, h, are (from the bottom to the top on the left-hand side)
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, and 0.98.
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FIG. 5. The reduced total energy, £, as computed from

the solution of the Euler differential equation (39), given as
points. The dashed line connecting the points is only meant
to guide the eye. The full line is the phenomenological ap-
proximation of Eq. (61). The points between the dotted lines
are plotted on the expanded scale on the right-hand side.

not allow the central cylinder to grow as much as it does
in our mode, and this smaller reversal nucleus may in-
volve a smaller total energy.

APPENDIX: MAGNETOSTATIC ENERGY

In spherical coordinates, the direction cosines of the
magnetization vector expressed by Eq. (1) are

()]
(@]

D
(@)

N
(@]

reduced integrated magnetization M

o L
0.2 04 0.6 0.8 1.0
reduced internal field h

FIG. 6. The reduced integrated magnetization, M, as
computed from the solution of the Euler differential equation,
given as points. The dashed line connecting the points is only
meant to guide the eye. The full line is the phenomenologi-
cal approximation of Eq. (62). The points between the dotted
lines are plotted on the expanded scale on the right-hand side.
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a, = sinw(r)sinfcos¢ + cosw(r)cosb, (Ala)
ag = sinw(r)cosfcos¢ — cosw(r)sinb, (Alb)
ay = —sinw(r)sin ¢, (Alc)

which may be supplemented by

9849

a, = sinw(r) cos ¢. (Ald)

Substituting these relations in Eqgs. (7) and (8) of
Ref. 18, and carrying out the integrations over the an-
gles ¢ and ¢/,

W _ /R /’f r2g(r,0)sin 0 df dr — li Z MQ /}2M7‘—)/r(1")"'*'1 sinw(r') dr' dr (A2)
27T2M32 0 0 ’ 2n=1m:il (n+m)' 0 rr 0
Il
since all the terms containing either cosw(r) or cosw(r’)  The same applies to m = —1, because
which do not vanish because of the integration over either 1 1
¢ or ¢’ are readily seen to be proportional to n(n+1)P; " (cosd) = Py(cosb), (A8)

/ Ppy1(cos 8)sind db,
0

which is zero. Here

2

g(r,0) = sin?wsin? 0 + 2cos®w cos? § (A3)

Q. = /0 £1(6)d6 /0 £2(8)de, (A4)

f1(0) = (n—m + 1) cos 0P, (cos ) — nPy*(cosb),
(A3)

£200') = (n+m)cos@’' P (cos ') — (n+ 1) P*(cos8’).
(A6)

Now, it can be seen from the rules of differentiating
the Legendre functions that

:i% [sin6P,_ (cos8)] = (1 —n)[cosbP,_, — Pp].

(A7)

By integrating this equation between 0 and , it is seen
that the integral of fo vanishes for n > 1 and m = 1.

so that €2,,,, may at most be nonzero for n = 1. However,
for n = 1 the function f, is proportional to (3cos?§ —
1)sin @, which also integrates to zero.

It has thus been shown that only the first term of Eq.
(A2) need to be considered. Using Eq. (A3) in this term,
and integrating over 6, the result is

R
Wy = —7r2M,2/ ridr, (A9)
0

3
which is independent of w. It is also the same as the
magnetostatic self-energy of a saturated sphere.

For a phenomenological understanding of the result,
consider first two concentric spheres, whose radii are R
and R,. If the region between the R; and R, is magne-
tized homogeneously, the field due to the charge on R;
cancels that due to the charge on R3, and the hollow re-
gion r < R, is field free. Therefore, the magnetization
of another hollow sphere inserted in that space can be
rotated without doing any work. One can then imagine
a whole series of concentric spheres whose magnetization
is rotated at some different angles with respect to each
other, and the effect of the volume charge created in this
way still cancels the effect of the charge on the outer sur-
face, Rz, so that the total energy is still the same as that
of the homogenenously magnetized, saturated sphere.
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