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Quantum magnets on the honeycomb and triangular lattices at T = 0
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We use series expansions around the Ising limit to study several anisotropic quantum spin models
on the honeycomb and triangular lattices. These include the antiferromagnetic spin-2 and spin-
1 Heisenberg model, and the XY antiferromagnet on the honeycomb lattice, and also the XY
ferromagnet on the triangular lattice. Series are calculated for the ground-state energy, energy gap,
magnetization, and magnetic susceptibility in each spin direction. Extrapolating these series to the
isotropic limit, we find quite good agreement with the predictions of spin-wave theory.

The discovery of high-T, superconductivity in mate-
rials containing two-dimensional Cu-0 planes has gener-
ated a surge of interest in the Heisenberg antiferromagnet
in two dimensions. Recently, we have carried out series
expansions around the Ising limit and a second-order
spin-wave analysis for the Heisenberg antiferromagnet
on a square lattice and found the spin-wave predictions
to be in extremely good agreement with the results of
series estimates.

Other lattices are also of interest. Recently a Monte
Carlo (MC) simulation5 and a spin-wave calculation4
have indicated that quantum fluctuations for the HeIsen-
berg antiferromagnet on the honeycomb lattice are much
stronger than on the square lattice, but the system still
possesses Neel order.

The XY model has many features in common with
the Heisenberg antiferromagnet: it has recently been re-
viewed by Betts and Miyashita. s Oitmaa and Betts" esti-
mated the ground-state energy of the XY model on the

honeycomb lattice, using finite-cell methods. Previous
work on the XY ferromagnet on the triangular lattice in-
cludes the finite-cell calculations of Marland and Betts
and of Fujiki and Betts.

This paper presents the results of series expansions
about the Ising limit for the zero-temperature Heisen-
berg antiferromagnet and XY model on the honeycomb
lattice and the XY ferromagnet on the triangular lattice,
together with an analysis based upon series. It forms a
companion paper to a similar study of the square-lattice
Heisenberg antiferromagnet and XY model, which we re-
cently carried out. ~ The notations here have the same
meaning as in these previous papers.

To calculate the series, we used Nickel's cluster-
expansion method, which has been discussed and ex-
tended by Marland, Irving and Hamer, and Hamer
and Irving. ~ The techniques necessary were reviewed
recently in He, Hamer, and Oitmaa' and will not be

TABLE I. Series coefficients for the ground-state energy per site Ep/1V, the staggered magnetization M, staggered parallel
susceptibility yII and the energy gap m. CoefBcients of x" are listed for both the spin-2 and spin-1 Heisenberg antiferromagnets.

Ep/lV

0
2

6
8

10
12
14

-3/S
-3/16

0.273437500000 x 10
—0.126139322917x 10

0.707260885356x 10
-0.633543855761x 10

0.572416455774 x 10
—0.596881924367x 10

0
3/S

0.329861111111x 10
0.349116572627

-0.183672262247
0.621001303118

-0.667550589179
0.123052125571x 10

Spin--' XXZ model
1/2

-3/16
0.403645833333x 10

—0.521240234375 x 10
0.363588183996x10 '

—0.549560908381x 10
0.587184537380x 10

—0.789585827735 x 10

3/2
-15/S

0.230468750000 x 10'
—0.705102539062x 10'
0.263766856347 x 10

—0.111596182008x 10

0
2
4
6
8

10
12

-3/2
—3/10

—0.181666666667x 10
—0.431102391436x 10
-0.272844564317 x 10
—0.127998263541x 10
—0.817014232889x 10

Spin-1 XXZ model
1

-3/26
—0.332907407407x10 '
—0.138307230561x 10
—0.109725035060x 10
—0.716412836371x 10
—0.550075655175x 10

0
12/125

0.734217695473x 10
0.507964233362 x 10
0.508208807023 x 10
0.438943164418x 10
0.404687373995x 10

3
-39/20

-0.214601190476
-0.111765872310
-0.129172108748
—0.287788748355 x 10
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TABLE II. Series coefticients for the perpendicular sus-

ceptibility y&. CoeKcients of x are listed for both the spin-2
and spin-1 Heisenberg antiferromagnets.

0
1
2
3
4
5
6
7
8
9

10
11
12
13

Spm--2
I/3

-I/2
0.566666666667

-0.590277777778
0.595833333333

-0.637851060563
0.649541367026

-0.625790891852
0.622500161232

-0.679789419424
0.692650685491

-0.627079462804
0.623731925514

-0.725511320444

Spin-1

l/3
-2/5

0.409523809524
-0.429132275132
0.433224824206

-0.439821667828
0.441281954982

-0.446894480327
0.448328489653

-0.451717439927
0.452477386182

repeated here. The major difFerence is that a "low-
temperature" expansion is involved in the present case,
requiring the calculation of "strong" embedding con-
stants for the clusters involved.

The Heisenberg antiferromagnet with anisotropy can
be described by the following Hamiltonian:

H = —) (si s + zsfs" ),
&lan&

(2)

where the points z = 0 and z = 1 correspond to the fer-
romagnetic Ising model and isotropic ferromagnetic XY
model (F), respectively. For bipartite lattice such as the
honeycomb lattice, the isotropic antiferromagnetic XY
model (A),

II" = ) (s;s*+sss~),
&lm&

pairs. The limits z = 0 and z = I correspond to the
antiferromagnetic Ising model and isotropic Heisenberg
model, respectively. The series have been calculated for
the ground state energy per site Eo/N, the energy gap m,
the staggered magnetization M+, the parallel staggered
susceptibility

p~~
and the uniform perpendicular suscep-

tibility y~. The staggered perpendicular susceptibility
gf is related to g~ by the relation gf (z) = g~(—z) .

The quantum XY model with anisotropy can be de-
scribed by the following Hamiltonian:

II= ).[s;s'+ (s;s +sos&)j,
gimp

where & lrn) denotes a sum over all nearest-neighbor

is related to the ferromagnetic one by a simple spin trans-
formation. Hence, there exist the following relations be-
tween the isotropic XY ferromagnet (F), antiferromag-
net (A) and the model described by Eq. (2):

TABLE III. Series coefficients for the ground-state energy per site Ep/N, the magnetization M, and the parallel suscepti-
bility y of spin-2 XY model. Coe%cients of x" are listed.

Ep/N

0
1
4
6
8

10
12
14

0
1

2
3
4
5
6
7
8
9

10
11

Spin-2 XY model on the honeycomb lattice
I/2

-3/64
—0.789388020833x 10
—0.585550096300x 10
-0.310399798228x 10
—0.236391068449x10
—0.170132238119x 10
—0.136039067101x 10

-3/S
—3/64

—0.219726562500 x 10
—0.107243855794x 10
—0.379281057252x 10
—0.227691587386x 10
—0.131617242867x10
—0.888694343778x 10

-3/4
0

—3.750000000000 x 10
—7.500000000000 x 10
—3.102678571429x 10
—1.557667824074 x 10
—9.211778440233x 10
—5.949645601858x 10
—4.102048269505x 10
—2.965849752473x10 4

—2.225228426269 x 10
—1.719313540898x 10

Spin- 2 XY ferromagnet on the triangular lattice
I/2

0
—1.500000000000x 10
—6.000000000000 x 10
—3.979804421769x 10
—2.712120351999x 10
—2.036015126868x 10
—1.595024933200x 10
—1.293661312397x 10
—1.076042759738 x 10
—9.131920333434x 10
—7.875467446608 x 10

0
3/32

0.393889208333x 10
0.403963481762x 10
0.301486151342x10 '
0.283352420881x10 '
0.248037012945 x 10
0.231427460008 x 10

0
0

1.200000000000x 10
7.200000000000 x 10
6.881251349746x 10
5.955784808394x 10
5.458238255317x 10
5.043787122963x 10
4.715484327163x 10
4.442176283847 x 10
4.211586729215x 10
4.013342629066x10
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Ep(z = 1) = Ep(z = —1) = Eo ——Eo

M (z = 1) = M (z = -1) = M = M —0.4

A, S F
xmas(z= 1) =x„„'=x„„,

x, ( = —1) =x„"„=x„„',
—0.45
z

x"(*= —1) = x",.' = x,.',
where the superscript S denotes the staggered magneti-
zation and susceptibility.

The triangular lattice is not a bipartite lattice, and the
ground-state energy Eo, and its derivatives are functions
of z, rather than functions of zz as in the case of bipartite
lattices. Therefore, we can easily obtain effective longer
series compared with those on the bipartite lattices.

The resulting series for the spin-& and spin-1 Heisen-

berg antiferromagnet, spin-
&

XY model on a honeycomb
lattice, and the spin-& XY ferromagnet on a triangular
lattice are listed in Tables I—IV. The calculation of the

—0.5

055 I I I I I I I I I I I I I I I I I I I
——

0 0.2 0.4 0.6 0.8

FIG. 1. Graph of the ground-state energy per site Eo/lV
against 5 = 1—(1—z ) for the spin- ~ Heisenberg antiferro-
magnet on the honeycomb lattice. The three curves shown are
the series estimate, and the first- and second-order spin-wave
predictions, corresponding to solid, long-dashed and short-
dashed lines, respectively.

TABLE IV. Series coeflicients for the transverse susceptibility g», y „and the energy gap m of spin-2 XY model.
Coe%cients of x" are listed.

0
1
2
3
4
5
6

8
9

10
11
12
13

1/3
5/12

0.433333333333
0.447395833333
0.451324404762
0.462027653401
0.464960119431
0.470034894435
0.471507036544
0.475584052742
0.476865500686
0.479664327048
0.480600097830
0.482868059374

Spin-~ XY model on the honeycomb lattice
1/3

-1/12
0.166666666667x10

—0.572916666667x 10
0.144841269841x 10

—0.135928753012x 10
0.289790709710x 10

—0.369601665434x 10
0.438493259190x 10

—0.170841551828x 10
0.474438423932 x 10

—Q.744433257870 x 10
—0.109293285502x 10
—0.424038822569 x 10

S/2
-5/4

-0.468750000000
0.187500000000

-0.184082031250
—0.536295572917x 10

0.102287038167
-0.139394598714

0.278560177338x 10
0.997611138995x 10

-0.186450762222

0
1
2
3
4
5
6
7
8
9

10

1/6
—1/60

7.142857142857x 10
—6.408730158730x 10
—1.800546199232x 10
—1.342299379565x 10
—8.198102604710x 10
—5.839468270410x 10
—4.218621969602x 10
—3.186501396235x 10
—2.469393761322x10 ~

Spin-z XY ferromagnet on the triangular lattice
1/6

11/60
1.907142857143x 10
1.946442743764 x 10
1.973205733120x 10
1.992487719282x 10
2.007544340145x 10
2.019580934726x 10
2.029518171697x 10
2.037901728331x 10
2.045101675703x 10

3
—3/2

—5.625000000000 x 10
—1.275000000000 x 10
—1.188066406250 x 10
—6.786934964850 x 10
—5.515799640553x 10
—4.117578477384x 10
—3.384263314391x 10
—2.807294719610x 10
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ground state energy and its derivatives involved a list of
1223 linked clusters (up to 14 sites) for the honeycomb
lattice, or 6634 linked clusters (up to 11 sites) for the tri-
angular lattice, together with their lattice constants and
embedding constants; the calculation of the energy gap
required a further 638 clusters (up to 11 sites), or 3763

clusters (up to 10 sites), both linked and unlinked. The
calculation took about 40 h on an IBM 3090.

The analysis of these series was carried out along
the same lines as our previous papers and we will
not repeat the details here. Firstly, we have endeav-
ored, by use of D log Pade approximants and di8'erential

TABLE V. Estimates of singularity parameters for the series given in Tables I—IV. Both un-
biased estimates and estimates biased by setting x, = 1 are listed. The index values predicted by
spin wave theory are also given for comparison.

Function

m
S

~//

dM+
dx2
d Ep

d($2)2
dx&
dx
S

m
S

&//
dM+
dx2
d Ep

d(x~)~
dx
dx

XJ,

dM
dx
d E

d(*')'
Xxs
m (x & 0)
~vs (x&o)
d+QP'"" (*&0)

2

($&0)
2

d
(x «)

dM
dx

d E
dx2

x~x
&su

2
gZZ

dx2
dm

dx

Singularity index
Unbiased Biased

1.0(3) —0.58(20) —0.50(8)

0.85(30)

xi = 1.04(20)

x, = 0.99(1)

—0.6(3)'
—1.06(10)

-O.48(4)

-1.O7(7)

Spin-1 XXZ model on the honeycomb lattice
1.00(8) 0.55(10) 0.55 (6)
1.06(10) -0.8(4) —0.65(10)

1.0(1)

o.9(4)

x. = O.9(3)

x, = 1.003(10)

—0.6(2)

-o.9(s)

-o.3(3)
—1.07(8)

-o.ss(6)

-o.6(3)

-0.4(2)

—1.05(5)

Spin-2 XY model on the honeycomb lattice

1.01(1) -0.52(3) —0.50(1)

1.o(2)

1.O2(3)
xi = 1.01(3)
x, = 1.001(2)

x, = —0.95(10)

—0.58(6)
o.6(1)

—1.06(5)
—0.25(20)

—0.53(3)
o.s6(6)

-1.O4(3)

—0.4(1)

*,= o.7(2)

x, = —1.2(4) -o.4(4)

-0.9(6)'

—0.3(2)

Spin-2 XY model on the triangular lattice

1.01(3) —0.55(10) -0.50(5)

1.00(2)

1.O1(2)
1.002(2)

1.05(6)

0.99(2)

—0.57(10)

-0.6(2)
-1.O3(3)

-1.o(2)

—0.4(1)

-o.s2(3)

-o.so(s)
-1.O2(2)

-o.7(3)

-O.47(7)

Singular point
x'.

Spin-2 XXZ model on the honeycomb lattice
o.9(4) 0.5(3) 0.56(15)
1.00(15) -o.6(3) -0.6(1)

Spin-wave
prediction

0.5
-0.5

-0.5

—0.5

—0.5

—1.0

0.5
—0.5

—0.5

—0.5

—0.5

—1.0

—0.5

—0.5

—0.5
0.5

—1.0
—0.5

—0.5

—0.5

—0.5

—0.5
—0.5
—1.0
—0.5

—0.5

All estimates defective
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approximants, to test whether the singularities of these
functions at z = +1 are of the form predicted by spin
wave theory. 4 The results, given in Table V, show that
the singularities and the indices are by and large quite
consistent with the predictions of spin-wave theory. For
the XXZ and XY model on the honeycomb lattice, just
as for the square lattice, 2 we did not get very consistent
results between the series estimates and spin-wave the-
ory for the singularity of the ground-state energy series
because the series is too short and the singularity is very
weak. But for the XY ferromagnet on the triangular lat-
tice, we have a longer series, and Table V does show that
the singularity of the ground-state energy is of the form
predicted by spin-wave theory.

Next, we assume the singularities are those predicted
by spin-wave theory, and estimate, by using integrated
differential approximants, the coefficients of the leading-
order terms for each given function f in the asymptotic
expansion near z = +1 defined by

0.5

0.45

0.4

0.35

0.3

or

f(x ) = ) A„(1—x')"i' (x -1)
0.2 0.4 0.6 0.8

FIG. 2. Graph of the staggered magnetization M+
against b for the spin-& Heisenberg antiferromagnet on the
honeycomb lattice. Notation as in Fig. 1.

TABLE VI. Series estimates for the leading order amplitudes A„of the spin-2 and spin-1
Heisenberg antiferromagnets at x = 1 [as defined by Eq. (5)]. Also listed are the spin-wave
predictions at first and second order.

Function

Amplitudes A
Spin-wave predictions

First order Second order
Series

Estimate

EolN

(1 —x)y f

Eo /N

(1 —x)Xi

0
2
3
0
1
0
1

1
2

—1
0
0
1

0

2
3
0
1
0
1

1
2

—1

0
0
1

Spin-2 XXZ model
-0.5324

0.2723
-0.2068

0.2418
0.4135
0.1667

1.5

0.2757
-0.3595

0.3333

Spin-1 XXZ model
-1.8148

0.5447
-0.4135

0.7418
0.4135
0.1667

0.1378
-0.1797

0.3333

—0.5489
0.1317
0.2003
0.2418
0.1132
0.0456
0.1378
0.725
1.240
0.4180

—0.2840
0.5754

—0.2757

—1.8313
0.4040

—0.0065
0.7418
0.2634
0.1061
0.0689
2.2254
1.24
0.1734

—0.1609
0.4544

—0.1378

—0.5443(3)
0.162(3)

-0.0134(10)
0.266(9)
0.18(3)
0.0756(10)
0.060(4)
0.80(8)
0.3(2)
0.466(10)

—0.37(2)
0.75(4)

—0.38(6)

—1.8278(8)
0.42(1)

—0.14(3)
0.748(3)
0.28(2)
0.115(5)
0.045(6)
2.27(4)
0.6(1)
0.177(6)

—0.15(2)
0.49(1)

—0.15(2)
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I 1 I

j
I I I

J

I I I
f

I I I

J

I I I

0.3
—0.76

Eo/N

0.2
—0.78

0.1
—0.8

I I I I I

0.2 0.4 0.6 0.8 1

I I t t I

0.2 0.4 0.6 0.8

FIG. 3. Graph of the perpendicular susceptibility y~
against b for spin-2 Heisenberg antiferromagnet on the hon-

eycomb lattice. Notation as in Fig. 1.

FIG. 4. Graph of the ground-state energy per site Eo/N
against 5 = 1 —(1 —x) ~ for the spin-- XY ferromagnet on
the triangular lattice. Notation as in Fig. 1.

A Ap

Our series estimates of these amplitudes A„are listed
in Tables VI—VIII, together with the predictions of spin-

wave theory at first and second order in I/S.
The agreement between the spin-wave predictions and

the series estimates is very good: the situation for the
honeycomb lattice is not quite as good as in the case of
the square lattice, 2 but the situation for the triangular

TABLE VII. Series estimates for the leading order amplitudes A„ in asymptotic expansion at
x = +1 [defined by Eq. (5) or Eq. (6) as the case may be] of spin-z XY model on the honeycomb
lattice. Also listed are the spin-wave predictions at first and second order.

Function

Amplitudes A„
Spin-wave predictions

First order Second order
Series

Estimate

Eo/N

+ZZ

XZZ

0
2
3
0
1

—1
0
1
2

0
2
0
1
0
1
0
2
0
2

—0.41672
0.080815

—0.0731
0.4201
0.14619
0.09746

—0.1555
1.5

1.5

1/3

1/6

1/3

1/3

—0.42440
0.06127
0.01054
0.4173
0.06530
0.10113

—0.0225
1.0768
1.2405
1.4436
0.23155
0.4770

—0.2757
0.09483
0.13783
0.27118
0.1029
0.39548

-0.1029

—0.4261(1)
0.0659(3)

—0.0225(8)
0.4133(3)
0.084(2)
0.104(4)

—0.03(1)
1.13(1)
G.50(5)
1.1(1)
0.9(4)
G.522(4)

-0.25(3)
0.1105(10)
0.040(4)
0.26062 (8)
0.0730(8)
0.44286(3)

—0.1541(2)
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TABLE VIII. Series estimates for the leading-order amplitudes A in the asymptotic expansion
at x = 1 [defined by Eq. (6)] of the spin-2 XY ferromagnet on the triangular lattice. Also listed
are the spin-wave predictions (Ref. 4) at first and second order.

Function

Amplitudes A„
Spin-wave predictions

First order Second order
Series

Estimate

Eo/N 0
2
3
0
1

-1
0
1
2

—2
—1

0
2

-0.79839
0.20278

-0.27566
0.448533
0.1378
0.02297

—0.05292
3

1/6

1/6

—0.80301
0.1686

—0.0749
0.448402
0.0889
0.02339

—0.02474
2.4374
1.654
0.21173

-0.0919
0.1498
0.0310

—0.8033(2)
0.173(2)

—0.136(6)
0.4483(3)
0.095(4)
0.0234(2)

—0.029(1)
2.485(3)
0.93(2)
0.2191(2)

—0.085(2)
0.14942(4)
0.022(1)

lattice is actually better. The agreement is further illus-
trated in Figs. 1—6, which graph the series estimates and
spin-wave predictions as function of b = 1 —(1 —x2)'/~
for Eo/N, M+ and X~ for the spin-2 Heisenberg antifer-
romagnet on the honeycomb lattice and XY ferromagnet
on the triangular lattice.

For the Heisenberg antiferromagnet on the honeycomb
lattice, the series estimates give the amplitude ratio R
(defined in Ref. 2):

R(S = ~2) = 086(17)

R(S = 1) = 0.95(12),
(7)

which are in good agreement with the universality hy-
pothesis.

For the spin-
&

Heisenberg antiferromagnet on the hon-
eycomb lattice, the staggered magnetization obtained

0.5 I I I

)

I I I
f

I I I

]
I I I

[
I t T I

I

0.49

M„

0.48— 2.8

0.47—

0.46—

0.45—

0.4
I

0.6 0.8 0 0.2 0.4 0.6 0.8

FIG. 5. Graph of the magnetization M against b = 1—
(1 —x) for the spin-- XY ferromagnet on the triangular
lattice. Notation as in Fig. 1.

FIG. 6. Graph of the energy gap (1 —x) ~ m against
5 = 1 —(1 —x) ~ for the spin-- XY ferromagnet on the
triangular lattice. Notation as in Fig. 1.
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here is slightly larger than the spin wave prediction and
the Monte Carlo estimates of Reger, Riera, and Young, s

who find M+ = 0.22(3) and Eo/N = —0.5445(12). The
zero-point spin reduction for the classical Neel state is
larger than for the square lattice, indicating the stronger
quantum fluctuations on the honeycomb lattice.

The ground-state energy per site for the XY ferromag-
net on the triangular lattice obtained here is Eo/N =
—0.8033(2), which agrees with the finite lattice calcu-

lation by Fujiki and Betts who estimated Eo/N
—0.7989(45), but our result is substantially more accu-
rate.
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