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Quantum magnets on the honeycomb and triangular lattices at T' =0
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We use series expansions around the Ising limit to study several anisotropic quantum spin models
on the honeycomb and triangular lattices. These include the antiferromagnetic spin-% and spin-
1 Heisenberg model, and the XY antiferromagnet on the honeycomb lattice, and also the XY
ferromagnet on the triangular lattice. Series are calculated for the ground-state energy, energy gap,
magnetization, and magnetic susceptibility in each spin direction. Extrapolating these series to the
isotropic limit, we find quite good agreement with the predictions of spin-wave theory.

The discovery of high-T, superconductivity in mate-
rials containing two-dimensional Cu-O planes has gener-
ated a surge of interest in the Heisenberg antiferromagnet
in two dimensions.! Recently, we have carried out series
expansions?3 around the Ising limit and a second-order
spin-wave analysis? for the Heisenberg antiferromagnet
on a square lattice and found the spin-wave predictions
to be in extremely good agreement with the results of
series estimates.

Other lattices are also of interest. Recently a Monte
Carlo (MC) simulation® and a spin-wave calculation?
have indicated that quantum fluctuations for the Heisen-
berg antiferromagnet on the honeycomb lattice are much
stronger than on the square lattice, but the system still
possesses Néel order.

The XY model has many features in common with
the Heisenberg antiferromagnet: it has recently been re-
viewed by Betts and Miyashita.® Oitmaa and Betts” esti-
mated the ground-state energy of the XY model on the

honeycomb lattice, using finite-cell methods. Previous
work on the XY ferromagnet on the triangular lattice in-
cludes the finite-cell calculations of Marland and Betts®
and of Fujiki and Betts.?

This paper presents the results of series expansions
about the Ising limit for the zero-temperature Heisen-
berg antiferromagnet and XY model on the honeycomb
lattice and the XY ferromagnet on the triangular lattice,
together with an analysis based upon series. It forms a
companion paper to a similar study of the square-lattice
Heisenberg antiferromagnet and XY model, which we re-
cently carried out.?® The notations here have the same
meaning as in these previous papers.

To calculate the series, we used Nickel’s cluster-
expansion method,'® which has been discussed and ex-
tended by Marland,!! Irving and Hamer,'? and Hamer
and Irving.!® The techniques necessary were reviewed
recently in He, Hamer, and Oitmaal'? and will not be

TABLE I Series coefficients for the ground-state energy per site Eo/N, the staggered magnetization M, staggered parallel
susceptibility xif, and the energy gap m. Coeflicients of z™ are listed for both the spin-% and spin-1 Heisenberg antiferromagnets.
n Eo/N Mt xf m

Spin-% X X7 model

0 -3/8 1/2 0 3/2

2 -3/16 -3/16 3/8 -15/8

4 0.273437500000 x 10" 0.403645833333x 107! 0.329861111111x10™* 0.230468750000x 10"

6 -0.126139322917x107? -0.521240234375% 107! 0.349116572627 -0.705102539062x10*

8 0.707260885356 102 0.363588183996x 107! —0.183672262247 0.263766856347x10°
10 -0.633543855761 %102 —0.549560908381x 107! 0.621001303118 -0.111596182008x 103
12 0.572416455774x 1072 0.587184537380x10~? -0.667550589179
14 -0.596881924367x 102 —0.789585827735% 107! 0.123052125571x10!

Spin-1 X X Z model

0 -3/2 1 0 3

2 -3/10 -3/25 12/125 ~39/20

4 —0.181666666667x10~* —0.332907407407x107! 0.734217695473x107! —-0.214601190476

6 -0.431102391436 %1072 -0.138307230561x 107! 0.507964233362x 10! -0.111765872310

8 —0.272844564317x 1072 -0.109725035060% 10! 0.508208807023x107! -0.129172108748
10 -0.127998263541x 1072 -0.716412836371x 102 0.438943164418x 107! ~0.287788748355x 107"
12 -0.817014232889x10~3 -0.550075655175x 1072 0.404687373995x 107!
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TABLE II. Series coefficients for the perpendicular sus-
ceptibility x 1. Coefficients of z™ are listed for both the spin-%
and spin-1 Heisenberg antiferromagnets.

n Spin—% Spin-1
0 1/3 1/3
1 -1/2 -2/5
2 0.566666666667 0.409523809524
3 -0.590277777778 -0.429132275132
4 0.595833333333 0.433224824206
5 -0.637851060563 -0.439821667828
6 0.649541367026 0.441281954982
7 —-0.625790891852 -0.446894480327
8 0.622500161232 0.448328489653
9 -0.679789419424 -0.451717439927
10 0.692650685491 0.452477386182
11 -0.627079462804
12 0.623731925514
13 -0.725511320444

repeated here. The major difference is that a “low-
temperature” expansion is involved in the present case,
requiring the calculation of “strong” embedding con-
stants for the clusters involved.®

The Heisenberg antiferromagnet with anisotropy can
be described by the following Hamiltonian:

H= ) [SiSi +z(SFSZ +SYSL)], (1)
<lm>

where <!m> denotes a sum over all nearest-neighbor
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pairs. The limits £ = 0 and z = 1 correspond to the
antiferromagnetic Ising model and isotropic Heisenberg
model, respectively. The series have been calculated for
the ground state energy per site Eq/N, the energy gap m,
the staggered magnetization M*, the parallel staggered
susceptibility Xif , and the uniform perpendicular suscep-
tibility x1. The staggered perpendicular susceptibility
x3 is related to x1 by the relation x5 (z) = x1(-z) .

The quantum XY model with anisotropy can be de-
scribed by the following Hamiltonian:

H=- ) (57Sn+z5!S%), 2

<im>

where the points £ = 0 and £ = 1 correspond to the fer-
romagnetic Ising model and isotropic ferromagnetic XY
model (F), respectively. For bipartite lattice such as the
honeycomb lattice, the isotropic antiferromagnetic XY

model (A),

HA = )" (S7S% +SYSY) , (3)
<Im>

is related to the ferromagnetic one by a simple spin trans-
formation. Hence, there exist the following relations be-
tween the isotropic XY ferromagnet (F'), antiferromag-
net (A) and the model described by Eq. (2):

TABLE III. Series coefficients for the ground-state energy per site Eg /N, the magnetization M., and the parallel suscepti-

bility xzz of spin-% XY model. Coefficients of £ are listed.

n EO/N Mz Xzz

Spin-% XY model on the honeycomb lattice

0 -3/8 1/2 0

1 -3/64 -3/64 3/32

4 -0.219726562500% 102 -0.789388020833x102 0.393880208333%10~?

6 -0.107243855794x 102 ~0.585550096300% 102 0.403963481762x 107!

8 -0.379281057252%x 103 -0.310399798228 %102 0.301486151342%107!
10 -0.227691587386x 1073 -0.236391068449% 102 0.283352420881 %10~}
12 -0.131617242867x1073 -0.170132238119x10~2 0.248037012945x107!
14 -0.888694343778x10™* -0.136039067101x1072 0.231427460008x10~*

Spin-% XY ferromagnet on the triangular lattice

0 -3/4 1/2 0

1 0 0 0

2 -3.750000000000% 102 -1.500000000000% 102 1.200000000000% 102

3 -7.500000000000x 103 —6.000000000000% 103 7.200000000000x10~3

4 -3.102678571429x103 —-3.979804421769%1073 6.881251349746x1073

5 -1.557667824074%x103 —-2.712120351999% 103 5.955784808394x10~3

6 -9.211778440233x10~* -2.036015126868x10~3 5.458238255317x103

7 -5.949645601858x10~* -1.595024933200% 1073 5.043787122963%x10~2

8 -4.102048269505x10~* -1.293661312397x10~2 4.715484327163%103

9 ~2.965849752473x10* -1.076042759738x 102 4.442176283847x1073
10 -2.225228426269%10~* -9.131920333434x10™* 4.211586729215%1073
11 -1.719313540898%10~* —7.875467446608x10™* 4.013342629066x10~3
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Eo(z =1)= Ey(z = -1) = Ef = E}

My(z =1) = My(z = -1) = MF = M25 |

Xeo(z = 1) = Xzo(z = —1) = x5, = x5,

Xyy(z = 1) = x{5° = Xgy» (4)
Xyy(z =-1) = X;y = Xfy’sl

Xe2(z =1) = x& = X1,

Xoo(2 = =1) = x55° = x3.°,

where the superscript S denotes the staggered magneti-
zation and susceptibility.

The triangular lattice is not a bipartite lattice, and the
ground-state energy FEjy, and its derivatives are functions
of z, rather than functions of z2 as in the case of bipartite
lattices. Therefore, we can easily obtain effective longer
series compared with those on the bipartite lattices.

The resulting series for the spin—-lz- and spin-1 Heisen-
berg antiferromagnet, spin-% XY model on a honeycomb
lattice, and the spin-% XY ferromagnet on a triangular
lattice are listed in Tables I-IV. The calculation of the
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FIG. 1. Graph of the ground-state energy per site Eo/N

against § = 1—(1—22)!/? for the spin-3 Heisenberg antiferro-
magnet on the honeycomb lattice. The three curves shown are
the series estimate, and the first- and second-order spin-wave
predictions, corresponding to solid, long-dashed and short-
dashed lines, respectively.

TABLE IV. Series coefficients for the transverse susceptibility xyy, X2z, and the energy gap m of spin-% XY model.

Coefficients of ™ are listed.

n Xyy Xzz m
Spin-% XY model on the honeycomb lattice
0 1/3 1/3 3/2
1 5/12 ~1/12 -3/4
2 0.433333333333 0.166666666667x107? —-0.468750000000
3 0.447395833333 -0.572916666667x10~2 0.187500000000
4 0.451324404762 0.144841269841x1072 —0.184082031250
5 0.462027653401 -0.135928753012x1072 -0.536295572917x107?
6 0.464960119431 0.289790709710%x107~3 0.102287038167
7 0.470034894435 -0.369601665434x 1072 —0.139394598714
8 0.471507036544 0.438493259190%10~* 0.278560177338x1072
9 0.475584052742 —0.170841551828x10~3 0.997611138995x10~*
10 0.476865500686 0.474438423932x107¢ —0.186450762222
11 0.479664327048 -0.744433257870x10™*
12 0.480600097830 -0.109293285502x10~*
13 0.482868059374 —0.424038822569x10~*
Spin-; XY ferromagnet on the triangular lattice
1/6 1/6 3
-1/60 11/60 -3/2

O WO IO U b WO

b

7.142857142857%x10~*
-6.408730158730%x10™*
~1.800546199232x10~*
-1.342299379565x10™*
-8.198102604710%10~°
-5.839468270410x10~°
-4.218621969602x10~°
-3.186501396235x10~°
-2.469393761322x10~°

1.907142857143% 1071
1.946442743764x107?
1.973205733120%107?!
1.992487719282x1071
2.007544340145x107!
2.019580934726x10~!
2.029518171697%107!
2.037901728331x107*
2.045101675703x10!

~5.625000000000% 107!
~1.275000000000% 107!
-1.188066406250x107!
—6.786934964850x 1072
~5.515799640553x 102
—4.117578477384x1072
-3.384263314391x1072
~2.807294719610x 102
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ground state energy and its derivatives involved a list of
1223 linked clusters (up to 14 sites) for the honeycomb
lattice, or 6634 linked clusters (up to 11 sites) for the tri-
angular lattice, together with their lattice constants and
embedding constants; the calculation of the energy gap
required a further 638 clusters (up to 11 sites), or 3763

clusters (up to 10 sites), both linked and unlinked. The
calculation took about 40 h on an IBM 3090.

The analysis of these series was carried out along
the same lines as our previous papers®® and we will
not repeat the details here. Firstly, we have endeav-
ored, by use of D log Padé approximants and differential

TABLE V. Estimates of singularity parameters for the series given in Tables I-IV. Both un-
biased estimates and estimates biased by setting zZ = 1 are listed. The index values predicted by

spin wave theory are also given for comparison.

Singular point Singularity index Spin-wave
Function z2 Unbiased Biased prediction
Spin—% X XZ model on the honeycomb lattice
m 0.9(4) 0.5(3) 0.56(15) 0.5
X7 1.00(15) -0.6(3) -0.6(1) -0.5
dMm+*
—_— . -0.58 -0.50(8 -0.5
127 1.0(3) 0.58(20) (8)
d’E,
.85(30 -0.5
A7) 0.85(30)
"3‘—* z. = 1.04(20) —0.6(3)* -0.48(4) -05
T
x3 z. = 0.99(1) ~1.06(10) -1.07(7) -1.0
Spin-1 X XZ model on the honeycomb lattice
m 1.00(8) 0.55(10) 0.55(6) 0.5
x5 1.06(10) -0.8(4) -0.65(10) -0.5
dM+
—_ . -0. -0.55(6 -0.5
o 1.0(1) 0.6(2) 55(6) 0
d’E,
reon 0.9(4) -0.9(5) -0.6(3) -0.5
% zc = 0.9(3) -0.3(3) -0.4(2) -05
x5 z. = 1.003(10) -1.07(8) -1.05(5) -1.0
Spin-% XY model on the honeycomb lattice
dM.
e 1.01(1) -0.52(3) -0.50(1) -0.5
d%E,
m 1.0(2) -0.5
Xzz 1.02(3) -0.58(6) -0.53(3) -0.5
m (z>0) z. = 1.01(3) 0.6(1) 0.56(6) 0.5
Xyy (z >0) . =1.001(2) -1.06(5) -1.04(3) -1.0
% (z <0) ze = —0.95(10) ~0.25(20) -0.4(1) -0.5
i1&( > 0) =0.7(2) 0.9(6)* -0.5
gz " Te =0 —0.9(6) .
dezz
e (z<0) T = —1.2(4) -0.4(4) -0.3(2) -0.5
Spin-% XY model on the triangular lattice
dﬁ’ 1.01(3) ~0.55(10) -0.50(5) -0.5
d2
y :’} 1.00(2) -0.57(10) -0.52(3) -05
Xzx 1.01(2) -0.6(2) -0.50(5) -0.5
Xyy 1.002(2) -1.03(3) -1.02(2) -1.0
d2XIZ a
s 1.05(6) —-1.0(2) -0.7(3) -05
'fl—’: 0.99(2) ~0.4(1) -0.47(7) -0.5

2 All estimates defective
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approximants,'® to test whether the singularities of these
functions at £ = +1 are of the form predicted by spin
wave theory.? The results, given in Table V, show that
the singularities and the indices are by and large quite
consistent with the predictions of spin-wave theory. For
the XX Z and XY model on the honeycomb lattice, just
as for the square lattice,23 we did not get very consistent
results between the series estimates and spin-wave the-
ory for the singularity of the ground-state energy series
because the series is too short and the singularity is very
weak. But for the XY ferromagnet on the triangular lat-
tice, we have a longer series, and Table V does show that
the singularity of the ground-state energy is of the form
predicted by spin-wave theory.

Next, we assume the singularities are those predicted
by spin-wave theory, and estimate, by using integrated
differential approximants, the coefficients of the leading-
order terms for each given function f in the asymptotic
expansion near z = =1 defined by

f@) =Y Al =22 (2® ~ 1) (5)

n=ng

or

0.5

0.45 —

0.4

0.3 —

0.25 |-

0

FIG. 2.

against é§ for the spin-

Graph of the staggered magnetization Mt

honeycomb lattice. Notation as in Fig. 1.

TABLE VI. Series estimates for the leading order amplitudes A, of the spin-% and spin-1

Heisenberg antiferromagnets at z
predictions at first and second order.

1 [as defined by Eq. (5)]. Also listed are the spin-wave

Amplitudes A,

Spin-wave predictions Series
Function n First order Second order Estimate
Spin—% X X Z model
Eo/N 0 -0.5324 -0.5489 -0.5443(3)
2 0.2723 0.1317 0.162(3)
3 -0.2068 0.2003 -0.0134(10)
Mt 0 0.2418 0.2418 0.266(9)
1 0.4135 0.1132 0.18(3)
XL 0 0.1667 0.0456 0.0756(10)
1 0.1378 0.060(4)
m 1 1.5 0.725 0.8(()(?)
2 1.240 0.3(2
xj -1 0.2757 0.4180 0.466(10)
0 -0.3595 ~0.2840 -0.37(2)
1 -z)x3 0 0.3333 0.5754 0.75(4)
1 ~0.2757 -0.38(6)
Spin-1 X X Z model
Eo/N 0 -1.8148 -1.8313 -1.8278(8)
2 0.5447 0.4040 0.42(1)
3 -0.4135 -0.0065 -0.14(3)
Mt 0 0.7418 0.7418 0.748(3)
1 0.4135 0.2634 0.28(2)
XL 0 0.1667 0.1061 0.115(5)
1 0.0689 0.045(6)
m 1 3 2.2254 2.27(4)
2 1.24 0.6(1)
xi -1 0.1378 0.1734 0.177(6)
0 -0.1797 -0.1609 -0.15(2)
1-z)x3 0 0.3333 0.4544 0.49(1)
1 -0.1378 -0.15(2)

Heisenberg antiferromagnet on the
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FIG. 3. Graph of the perpendicular susceptibility x.
against § for spin-% Heisenberg antiferromagnet on the hon-
eycomb lattice. Notation as in Fig. 1.

f@) = D> A1 F2)"? (z~%1). (6)

n=ng

Our series estimates of these amplitudes A, are listed
in Tables VI-VIII, together with the predictions of spin-

TABLE VII.

-0.76

Eo/N

-0.78
-0.8
TSI NN ST SN ANNS ST S SN NN S U S SR S
0 0.2 0.4 0.6 0.8 1
9
FIG. 4. Graph of the ground-state energy per site Fo/N

against § =1 — (1 — £)*/? for the spin--;- XY ferromagnet on
the triangular lattice. Notation as in Fig. 1.

wave theory at first and second order in 1/S.

The agreement between the spin-wave predictions and
the series estimates is very good: the situation for the
honeycomb lattice is not quite as good as in the case of
the square lattice,?® but the situation for the triangular

Series estimates for the leading order amplitudes A, in asymptotic expansion at

z = =+1 [defined by Eq. (5) or Eq. (6) as the case may be] of spin-2 XY model on the honeycomb
lattice. Also listed are the spin-wave predictions at first and second order.

Amplitudes A,

Spin-wave predictions Series

Function z n First order Second order Estimate
Eo/N +1 0 -0.41672 -0.42440 -0.4261(1)

2 0.080815 0.06127 0.0659(3)

3 -0.0731 0.01054 -0.0225(8)
M, +1 0 0.4201 0.4173 0.4133(3)

1 0.14619 0.06530 0.084(2)
Xzz +1 -1 0.09746 0.10113 0.104(4)

0 -0.1555 -0.0225 -0.03(1)
m 1 1 1.5 1.0768 1.13(1)

2 1.2405 0.50(5)
1-2)""m -1 0 1.5 1.4436 1.1(1)

2 0.23155 0.9(4)
(1= z)xyy 1 0 1/3 0.4770 0.522(4)

1 -0.2757 -0.25(3)
Xuy -1 0 1/6 0.09483 0.1105(10)

1 0.13783 0.040(4)
Xzz 1 0 1/3 0.27118 0.26062(8)

2 0.1029 0.0730(8)
X2z -1 0 1/3 0.39548 0.44286(3)

2 -0.1029 -0.1541(2)
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TABLE VIII. Series estimates for the leading-order amplitudes A, in the asymptotic expansion
at ¢ = 1 [defined by Eq. (6)] of the spin-3 XY ferromagnet on the triangular lattice. Also listed
are the spin-wave predictions (Ref. 4) at first and second order.

Amplitudes A,

Spin-wave predictions Series
Function n First order Second order Estimate
Eo/N 0 ~0.79839 ~0.80301 -0.8033(2)
2 0.20278 0.1686 0.173(2)
3 -0.27566 -0.0749 -0.136(6)
M, 0 0.448533 0.448402 0.4483(3)
1 0.1378 0.0889 0.095(4)
Xzz -1 0.02297 0.02339 0.0234(2)
0 -0.05292 -0.02474 —0.029(1)
m 1 3 2.4374 2.485(3)
2 1.654 0.93(2)
Xyy -2 1/6 0.21173 0.2191(2)
-1 -0.0919 -0.085(2)
Xzz 0 1/6 0.1498 0.14942(4)
2 0.0310 0.022(1)

lattice is actually better. The agreement is further illus-
trated in Figs. 1-6, which graph the series estimates and
spin-wave predictions as function of § = 1 — (1 — z2)!/2
for Eg/N, M* and x, for the spin-1 Heisenberg antifer-
romagnet on the honeycomb lattice and XY ferromagnet
on the triangular lattice.

For the Heisenberg antiferromagnet on the honeycomb
lattice, the series estimates give the amplitude ratio R

(defined in Ref. 2):

0.5

0.49
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Ly 0y

0.47
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FIG. 5. Graph of the magnetization M, against § = 1 —
a- z)'/? for the spin-1 XY ferromagnet on the triangular
lattice. Notation as in Fig. 1.

R(S =1)=0.86(17)

R(S =1) = 095(12) ,

(™

which are in good agreement with the universality hy-

pothesis.
1

For the spin-3 Heisenberg antiferromagnet on the hon-
eycomb lattice, the staggered magnetization obtained

(1-x)""*m

54 P O S S B

FIG. 6. Graph of the energy gap (1 — £)~!/?>m against
6§ =1—(1—-2) for the spin-1 XY ferromagnet on the
triangular lattice. Notation as in Fig. 1.
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here is slightly larger than the spin wave prediction and
the Monte Carlo estimates of Reger, Riera, and Young,®
who find M+ = 0.22(3) and Eo/N = —0.5445(12). The
zero-point spin reduction for the classical Néel state is
larger than for the square lattice, indicating the stronger
quantum fluctuations on the honeycomb lattice.

The ground-state energy per site for the XY ferromag-
net on the triangular lattice obtained here is Eo/N =
—0.8033(2), which agrees with the finite lattice calcu-

9841

lation by Fujiki and Betts® who estimated Ey/N =
—0.7989(45), but our result is substantially more accu-
rate.
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