Anisotropic magnetoresistance of Co-Pd alloys

S. U. Jen*

Institute of Physics, Academia Sinica, Taipei, Taiwan, Republic of China (Received 19 August 1991)

The anisotropic magnetoresistance $\Delta \rho / \rho_0$ and electrical resistivity ρ_0 of $\operatorname{Co}_{100-x} \operatorname{Pd}_x$ alloys were measured at T = 4, 77, and 300 K. The temperature dependence of $\Delta \rho / \rho_0$ is used to yield $(\Delta \rho / \rho_0)_{imp}$ and $(\Delta \rho / \rho_0)_{ph}$ data for Co-Pd alloys as a function of x. A two-current model and theories based on extended versions of it are used to explain the spin-down resistivity ρ^{\downarrow} and spin-up resistivity ρ^{\uparrow} . There exists a maximum in ρ^{\downarrow} at x = 65 at. % Pd. For $x \ge 50-75$ at. % Pd, $\rho_{sd}^{\uparrow} \neq 0$ due to the magnetic weakness for the spin-up d band. ρ_{ss} follows Nordheim's rule, and ρ_{ss} increases, going from the Co-Ni to the Co-Pd case.

I. INTRODUCTION

The two-current model of Campbell, Fert, and Jaoul^{1,2} has been successful in accounting for the anisotropic magnetoresistance $\Delta \rho / \rho_0$ in most nickel-rich crystalline alloys. In short, this model states that, at $T \simeq 0$,

$$\Delta \rho / \rho_0 = \gamma (\rho^{\downarrow} / \rho^{\uparrow} - 1) , \qquad (1)$$

where ρ^{\downarrow} and ρ^{\uparrow} are the resistivities for the spin-down and -up bands, respectively, and $\gamma \simeq 0.01$. The condition $\rho^{\downarrow}/\rho^{\uparrow} \gg 1$ is assumed. In order to extend the theory to structurally disordered or weakly ferromagnetic materials, Malozemoff has given a more general formula,³ which may be given as follows:

$$\Delta \rho / \rho_0 = \gamma \frac{(\rho_{sd}^{\downarrow} - \rho_{sd}^{\uparrow})(\rho_{sd}^{\downarrow} + \rho_{ss}^{\downarrow} - \rho_{sd}^{\uparrow} - \rho_{ss}^{\uparrow})}{(\rho_{sd}^{\downarrow} + \rho_{ss}^{\downarrow})(\rho_{sd}^{\uparrow} + \rho_{ss}^{\downarrow})} , \qquad (2)$$

where ρ_{ss}^{\downarrow} and ρ_{sd}^{\downarrow} are the resistivities arising from the s-s and s-d scatterings, respectively, in spin-down bands. ρ_{ss}^{\uparrow} and ρ_{sd}^{\uparrow} are the resistivities from the corresponding scatterings in spin-up bands. Finally, to extend the theory to the region of concentrated alloys, Berger has discussed the case in which the scattering potential with alloy disorder is strong.⁴ The limitation of his approach is that both γ and r_F are assumed to be independent of the alloy composition x. $r_F \equiv |C_A(\varepsilon = \varepsilon_F)/C_B(\varepsilon = \varepsilon_F)|^2$, where A = Co and B = Pd. C_A or C_B is the average of the coefficient $C_{ln}(\varepsilon)$, used in the tight-binding approximation, over the atom A (Co) or B (Pd).

In this paper we will mainly discuss the anisotropic magnetoresistance of $\operatorname{Co}_{100-x}\operatorname{Pd}_x$ alloys. The magnetic and electrical resistivity properties for this same series of Co-Pd alloys have been studied previously.⁵ In Ref. 5 we find that, for $\operatorname{Co}_5\operatorname{Pd}_{95}$, $\alpha \equiv \rho^{\downarrow}/\rho^{\uparrow} \simeq 2$. Although, as discussed in Ref. 5, the localized picture is expected to be applicable, we nonetheless choose a band picture to explain our results. The main reason is that as x decreases from 95 at. %, the band model becomes increasingly more appropriate. Here we just use the $\Delta \rho/\rho_0$ and α

data of Co_5Pd_{95} to extract the value of γ , which is usually a parameter known only to an order of magnitude. In addition, we will show that even if we use a different γ , our main conclusion in this paper will be unaffected.

One problem in this approach has already been encountered in Ref. 5: In the treatment of the temperature dependence of the resistivity Co₅Pd₉₅, there is a complication resulting from paramagnon scattering;⁶ i.e., for $T < T_{sf}$, the ideal resistivity ρ_T of the alloy is proportional to T^2 , but for $T > T_{sf}$, the behavior $\rho_T \propto T$ may result. For Pd-rich alloys, $T_{sf} \equiv 0.25T_s \simeq 20$ K. Perhaps the paramagnon theory can explain why in Ref. 5 we observed an anomalously large coefficient for the T^2 term in ρ_T for $T \leq 20$ K. But more significant is the fact that in Ref. 5 we took another temperature range, 20 < T < 50 K, for the fitting, in which only the T^2 and T^3 dependences are evident, to obtain α . In the 20 < T < 50 K region, there is little or no T dependence as predicted from paramagnon-scattering theory. Moreover, since, in Ref. 5, $\alpha \simeq 2$ is also obtained by another method, independent of the temperature effect, the same α value is used here for purposes of discussion.

II. EXPERIMENTS

The details of $\operatorname{Co}_{100-x}\operatorname{Pd}_x$ sample preparation were described before.⁵ The anisotropic-magnetoresistance measurements are performed with standard techniques. We used a CF1200 liquid-helium cryostat and an ITC4 temperature controller, both made by Oxford Instrument, to maintain the sample temperature. We made measurements at three fixed temperatures T=4, 77, and 300 K. The temperature stability was good to within ± 0.2 K. A 7-in. electromagnet produced external fields up to 1 T. The sample is aligned either parallel or perpendicular to the field to measure ρ_{\parallel} or ρ_{\perp} . Characteristic ρ_{\parallel} and ρ_{\perp} at 4 K for $\operatorname{Co}_{45}\operatorname{Pd}_{55}$ crystalline alloys are shown in Fig. 1. The anisotropic magnetoresistance is defined as

$$\Delta \rho / \rho_0 = (\rho_{\parallel}^s - \rho_{\perp}^s) / (\frac{2}{3}\rho_{\perp}^s + \frac{1}{3}\rho_{\parallel}^s)$$

where ρ_{\parallel}^{s} and ρ_{\perp}^{s} are the saturated resistivities of ρ_{\parallel} and ρ_{\perp} .

45 9819

FIG. 1. Anisotropic resistivities ρ_{\parallel} in parallel fields and ρ_{\perp} in perpendicular fields of $Co_{45}Pd_{55}$ at T = 4 K.

III. TEMPERATURE DEPENDENCE OF $\Delta \rho / \rho_0$ IN Co-Pd

According to theory,^{7,8} if $\alpha >> 1$, Matthiessen's rule can be used to derive the temperature dependence of $\Delta \rho / \rho_0$:

$$\frac{\Delta\rho}{\rho_0}(T) = \left(\frac{\Delta\rho}{\rho_0}\right)_{\rm ph} + \left[\left(\frac{\Delta\rho}{\rho_0}\right)_{\rm imp} - \left(\frac{\Delta\rho}{\rho_0}\right)_{\rm ph}\right] \frac{\rho_0(4.2 \text{ K})}{\rho_0(T)}, \quad (3)$$

where $\rho_{\parallel}(T) = (\rho_{\rm imp} + \rho_{\rm ph})_{\parallel}, \rho_{\perp}(T) = (\rho_{\rm imp} + \rho_{\rm ph})_{\perp}, \text{ and } \rho(4.2)$

FIG. 2. Fittings of $\Delta \rho / \rho_0$ as a function of $\rho_0(4.2 \text{ K}) / \rho_0(T)$ with Eq. (3) for Co₅Pd₉₅, Co₂₅Pd₇₅, and Co₆₅Pd₃₅ alloys.

FIG. 3. $(\Delta \rho / \rho_0)_{imp}$ is defined as $(\Delta \rho / \rho_0)$ at T = 4 K; $(\Delta \rho / \rho_0)_{imp}$ is plotted for each Pd concentration x.

K) $\simeq \rho_{\rm imp}$. For Co-Pd alloys, the condition $\alpha >> 1$ is not as strictly satisfied as for Co-Ni, Ni-Fe, and Ni-Mn alloys. As will be discussed later, the α of concentrated Co-Pd is about 5. Hence Eq. (3) is considered here as an empirical formula for obtaining $(\Delta \rho / \rho_0)_{\rm imp}$ and $(\Delta \rho / \rho_0)_{\rm ph}$ for Co-Pd alloys. Figure 2 shows the fitting of $\Delta \rho / \rho_0$ of Co₅Pd₉₅, Co₂₅Pd₇₅, and Co₆₅Pd₃₅ versus $\rho_0(4.2 \text{ K}) / \rho_0(T)$ at three temperatures T = 4, 77, and 300 K. From the diagram the linear fit of Eq. (3) seems pretty good. By extrapolating each line to the vertical axis where $\rho_0(4.2 \text{ K}) / \rho_0(T) = 0$, we can determine $(\Delta \rho / \rho_0)_{\rm ph}$. On the lowest-temperature side, we use $(\Delta \rho / \rho_0)(4.2 \text{ K}) = (\Delta \rho / \rho_0)_{\rm imp}$.

FIG. 4. $(\Delta \rho / \rho_0)_{\rm ph}$ vs Pd concentration x.

The $(\Delta \rho / \rho_0)_{imp}$ of $\operatorname{Co}_{100-x} \operatorname{Pd}_x$ alloys is displayed as a function of the Pd concentration x in Fig. 3. From this picture we can see that there exists a maximum of $(\Delta \rho / \rho_0)_{imp}$ at $x \approx 55$ at. % Pd. A detailed discussion about $(\Delta \rho / \rho_0)_{imp}$ will be given in the next section. At present, we show that $(\Delta \rho / \rho_0)_{ph}$ data as a function of x in Fig. 4. Besides the irregular datum point at x = 40 at. %, the general trend in Fig. 4 is clear: (i) For small x, $(\Delta / \rho / \rho_0)_{ph}$ is positive; (ii) as x increases, $(\Delta \rho / \rho_0)_{ph}$ becomes negative; and (iii) $(\Delta \rho / \rho_0)_{ph}$ has a minimum near x = 55 at. % Pd, which looks like an inverted mirror image of $(\Delta \rho / \rho_0)_{imp}$ in Fig. 3. The theoretical explanation, based on the idea of resistivity saturation of ρ^+ , is given in Ref. 7 to account for this phenomenon.

IV. ρ^{\downarrow} AND ρ^{\uparrow} OF Co-Pd ALLOYS

The idea of the two-current model can also be used to write the residual resistivity ρ_0 of the alloy as

$$\rho_0^{-1} = (\rho^{\downarrow})^{-1} + (\rho^{\uparrow})^{-1} .$$
(4)

Then, by combining Eqs. (1) and (4), it is easy to calculate ρ^{\downarrow} and ρ^{\uparrow} , respectively, for each alloy, provided that γ is known.

As stated before, γ is determined experimentally, and it is difficult to compare it with theoretical values.¹ For example, it is estimated that $\gamma \simeq 0.01$ for Ni alloys and $\gamma \simeq 0.018$ for Fe alloys.⁴ Here we can use only one set of known $\Delta \rho / \rho_0$ and α data of Co₅Pd₉₅ to evaluate γ ; i.e., we tentatively assume that Eq. (1) is applicable to Co₅Pd₉₅. Then, by substituting $\Delta \rho / \rho_0 = 1.80\%$ and $\alpha \simeq 2$ into Eq. (1), we find $\gamma \simeq 0.018$ for Co-Pd alloys. On the other hand, it is known from the magnetization data⁵ of Co-Pd alloys that when $x \ge 75$ at. % Pd, a magnetic weakness occurs. Obviously, as x becomes large enough, ρ_{sd}^{\dagger} is finite and nonzero. Then it may not be correct to use Eq. (1). We may want to use Eq. (2) instead. Before employing Eq. (2) to extract γ from the Co₅Pd₉₅ data, we make the following assumptions:

$$\rho^{\downarrow} = \rho_{ss}^{\downarrow} + \rho_{sd}^{\downarrow} ,$$

$$\rho^{\uparrow} = \rho_{ss}^{\uparrow} + \rho_{sd}^{\uparrow} ,$$
(5)

$$\rho_{ss}^{\dagger} = \rho_{ss}^{\dagger} = \rho_{ss}$$

FIG. 5. Pd concentration x dependence of the spin-down resistivity ρ^{\downarrow} of Co-Pd alloys. The solid circles are data obtained from Eqs. (1) and (4), and the open squares are from Eqs. (4) and (6).

By substituting Eq. (5) into Eq. (2), a simpler equation is obtained:

$$\Delta \rho / \rho_0 = \gamma (\alpha - 1)^2 / \alpha . \tag{6}$$

Hence, if Eq. (6) is used instead of Eq. (1), γ would turn out to be 0.036.

Having found γ , we may calculate ρ^{\downarrow} and ρ^{\uparrow} from $\Delta \rho / \rho_0$ and ρ_0 with either Eqs. (4) and (6) or Eqs. (1) and (4). Table I summarizes all the ρ^{\downarrow} and ρ^{\uparrow} values for each $\operatorname{Co}_{100-x}\operatorname{Pd}_x$ sample. If we plot ρ^{\downarrow} as a function of Pd concentration x, the result is shown in Fig. 5. There are two sets of data in Fig. 5: The solid circles are ρ^{\downarrow} data with $\gamma = 0.018$ and Eq. (1), and the open squares are that with $\gamma = 0.036$ and Eq. (6). Two conclusions can be made from Fig. 5: (i) A maximum of ρ^{\downarrow} is located at $\overline{x} = 65$ at. % Pd. This is true, irrespective of which data plot is considered. (ii) The value of maximum ρ^{\downarrow} is about 70 or

	TABLE	; I.]	Magneto	resistance	$\Delta \rho / \rho_0$:	and residua	l resistivit	y $ ho_0$ at 4	K for	the	$Co_{100-x}Pc$	i _x alloys	and
ρ^{\downarrow}	and ρ^{\dagger}	calc	ulated.										

	$\Delta \rho / \rho_0$	$ ho_0$	ρ^{\downarrow}	ρ^{\uparrow}	ρ^{\downarrow}	$ ho^{\uparrow}$	
		$(\mu \Omega \ { m cm})$	$(\gamma = 0)$	0.018) ^a	$(\gamma = 0.036)^{b}$		
Sample	(%)		(μΩ	2 cm)	(μΩ	l cm)	
Co ₅ Pd ₉₅	1.80	6.91	20.73	10.37	20.73	10.37	
Co15Pd85	3.90	15.28	63.67	20.11	56.54	20.94	
Co ₂₅ Pd ₇₅	6.73	14.68	84.25	17.78	67.38	18.77	
Co35Pd65	7.72	14.25	89.62	16.94	69.64	17.92	
Co45Pd55	7.96	12.49	80.21	14.79	61.95	15.64	
Co55Pd45	7.51	11.02	68.02	13.17	53.23	13.90	
Co ₆₅ Pd ₃₅	7.52	9.89	51.21	12.26	47.77	12.47	
Co ₇₅ Pd ₂₅	6.32	6.78	37.86	8.39	30.69	8.85	

^a γ is defined from $\Delta \rho / \rho_0 = \gamma(\alpha - 1)$, where $\alpha = \rho^{\downarrow} / \rho^{\uparrow}$.

^b γ is defined from $\Delta \rho / \rho_0 = \gamma (\alpha - 1)^2 / \alpha$.

90 $\mu\Omega$ cm, depending on which set of data is used.

Discussions about the existence of a maximum for ρ^{\downarrow} and the shifting of the maximum from x = 50 at. % are the main subject in Ref. 4. In short, Ref. 4 stresses the fact that if the scattering potential associated with alloy disorder is strong enough to cause a variation of the 3dwave function between chemically different atoms, d-d scattering is strong and resonant. In turn, Nordheim's rule is not obeyed for ρ^{\downarrow} , and a shifted maximum is observed in ρ^{\downarrow} . To consider Co-Pd alloys, first, the valence difference |Z| between Co and Pd is 1. Therefore the split-band limit⁹ is as marginal for Co-Pd as for Co-Ni. Second, from neutron-diffraction data,¹⁰ magnetic moments $\mu_{Pd}=0.43\mu_B$ and $\mu_{Co}=1.97\mu_B$, where μ_B is the Bohr magneton. Then, according to Ref. 4, $r_{>} \equiv \mu_{\rm Co} / \mu_{\rm Pd} = 4.58$, which is pretty large and indicates a strong scattering potential. Hence the case of shifted maximum in ρ^{\downarrow} is expected. Indeed, that is observed for Co-Pd. Another parameter of the theory is r_F , which is related to the \overline{x} location of the maximum in ρ^{\downarrow} by $(1-\bar{x})=(1+r_F)^{-1}$. From Fig. 5, obviously, $\bar{x}=0.65$. Then it is easy to show $r_F = 1.9$ for Co-Pd. This value is the same as that for Co-Ni.

V. ρ_{ss} OF Co-Pd ALLOYS

Since it is assumed that there is no exchange splitting between the spin-up and -down s bands, $\rho_{ss}^{\uparrow} = \rho_{ss}^{\downarrow} = \rho_{ss}$, as shown in Eq. (5). However, though we do not distinguish between ρ_{ss}^{\uparrow} and ρ_{ss}^{\downarrow} , when ρ_{ss} is mentioned here, we take it to mean ρ_{ss}^{\uparrow} .

From Table I it is seen that ρ^{\uparrow} is not very different from ρ_0 . This is understood from Eq. (4), that since $\rho^{\downarrow} > \rho^{\uparrow}$, ρ_0 approximates ρ^{\uparrow} more than ρ^{\downarrow} . If $\rho^{\downarrow} >> \rho^{\uparrow}$, as in the case of Co-Ni, it is also certain that $\rho_0 \simeq \rho^{\uparrow}$. In Fig. 6 we have plotted the ρ_0 (solid circles) data as a function of Ni concentration x for Co-Ni. Then it is known that

FIG. 6. Spin-up resistivity ρ^{\dagger} of Co-Pd and Co-Ni alloys plotted vs the Pd or Ni concentration x.

(i) Co-Ni is a strong ferromagnet for all x, and (ii) the ρ_{ss} of the 4s band follows Nordheim's rule^{4,11} $\rho_{ss} \propto x (1-x)$. We use the equation

$$\rho_{ss} = Ax \left(1 - x\right) \tag{7}$$

to fit all the Co-Ni data in Fig. 6. A in Eq. (7) is taken as a fitting parameter. For Co-Ni, $A = 13.7 \times 10^{-4} \,\mu\Omega$ cm.

For Co-Pd, we have used the ρ^{\uparrow} data (open squares) in the fourth column of Table I to plot Fig. 6. It is to be noted that whether the third or the fourth column of Table I was used does not made much difference.

Since it is considered that (i) Co-Pd becomes weak ferromagnetic when $x \ge 75$ at. % Pd and (ii) the ρ_{ss} of the 5s band still abides by the Nordheim's rule, we take the following steps to analyze our data.

The long-dashed line in Fig. 6 represents the experimental fit to Eq. (7), using x = 25, 35, 45, 55 at. % Pd data. A is found to be $60 \times 10^{-4} \mu\Omega$ cm. From our assumptions (i) and (ii) just mentioned and Eq. (5), ρ_{sd}^{\uparrow} can be estimated and is shown by the short-dashed line in Fig. 6. Because there exists some degree of arbitrariness in the fitting procedure, the set point x_{set} for ρ_{sd}^{\uparrow} not being equal to zero, $x_{set} \simeq 50$ at. % Pd, cannot be taken too seriously. The downward arrow in Fig. 6 indicates the set point of magnetic weakness x_w , as implied from the magnetization data. It is seen that x_w differs from x_{set} . However, x_w lies in the region where ρ_{sd}^{\uparrow} is near x = 85 at. % Pd, which is the same maximum as viewed from ρ^{\uparrow} .⁵

From the previous discussions, we have $\rho_{sd}^{\uparrow} \simeq \rho_{ss}$ in Co-Pd. Therefore $\rho^{\downarrow} > \rho_{ss}$ or ρ_{sd}^{\uparrow} . From Eq. (5) we may further state that $\rho_{sd}^{\downarrow} > \rho_{sd}^{\uparrow}$, and ρ_{ss}^{\downarrow} follows Nordheim's rule also. Therefore, even if we had subtracted the ρ_{ss} contribution from ρ^{\downarrow} , the discussions of Sec. IV would be expected to be ρ_{sd}^{\downarrow} , except when ρ_{sd}^{\downarrow} is slightly smaller than ρ^{\downarrow} .

From fittings to Eq. (7), it is found that A for Co-Pd is 4.38 times larger than that for Co-Ni. Then we can make the following estimates. From theory⁴ it is known that

$$\rho_{ss}^{\uparrow} = \frac{m_s}{n_s e^2} D_{\uparrow}^s(\varepsilon_F) x(1-x) \frac{1}{\tau_{ss}} , \qquad (8)$$

where m_s is the electron effective mass, n_s is the number of carriers per unit volume, e is the electron's charge, $D^s_{\uparrow}(\varepsilon_F)$ is the density of states of the spin-up s band, and τ_{ss} is the electron's relaxation time for s-s scattering. τ_{ss} can be expressed as

$$\tau_{ss}^{-1} = 2\pi \int_0^{\pi} (1 - \cos\theta) P(\theta) \sin\theta \, d\theta \,, \qquad (9)$$

where θ is the angle between the wave vectors **k** and **k'** of a free electron and $P(\theta)$ is the differential scattering cross section per unit solid angle. In the approach of Mott and Jones,¹² using the screened Coulomb potential

$$V_{\text{Co-Pd}} = V_{\text{Co}} - V_{\text{Pd}} = (\Delta Z \ e^2 / r) e^{-qr}$$

where ΔZ is the nuclear-charge difference between Co and Pd and 1/q is the screening length, $P(\theta)$ is calculated to be

$$P(\theta) = \left(\frac{2m_s \,\Delta Z \,e}{\hbar^2}\right)^2 \frac{1}{\left[q + 4k^2 \sin^2(\frac{1}{2}\theta)\right]^2} \,. \tag{10}$$

Then

$$\tau_{ss}^{-1} = \frac{\pi}{2} \frac{(\Delta Z)^2 e^4}{\varepsilon_F^2} \left[\ln \left[1 + \frac{4k_F^2}{q^2} \right] - \left[1 + \frac{q^2}{4k_F^2} \right]^{-1} \right],$$
(11)

where ε_F is the Fermi energy and k_F is the Fermi wave vector. Alternatively, the approach of de Casteljau and Friedel¹³ gives

$$au_{ss}^{-1} \propto \sum (L+1) \sin^2(\eta_L - \eta_{L+1})$$
 ,

where L is the angular momentum and η_L is the phase shift. If only one η_L dominates, τ_{ss}^{-1} $\propto \sin^2(\Delta Z \pi/4L + 2)$. Though the result of de Casteljau and Friedel agrees with the experimental data better, the determination of phase shifts is, in general, a more complicated problem. Here we take the $(\Delta Z)^2$ form of Eq. (11) of Mott and Jones for the purpose of discussion. First, n_s , ε_F , q, k_F , and $D^s_{\uparrow}(\varepsilon_F)$ are assumed to be roughly constants for both Co-Ni and Co-Pd. Combining Eqs. (7), (8), and (11), we obtain $A \propto (\Delta Z)^2$. For Co-Ni, $|\Delta Z| = 1$. However, for Co-Pd, because the shielding of electrons on nuclear charges is less effective and the Born approximation is less valid, its effective $|\Delta Z|$ may not be equal to the valence difference |Z| exactly and may become larger than 1. The experimental data of Sec. V show that $A(\text{Co-Pd})/A(\text{Co-Ni}) \simeq 4.38$. In turn, $|\Delta Z|$ for Co-Pd appears to be about 2.09.

Strictly speaking, n_s , ε_F , q, k_F , and $D_{\uparrow}^s(\varepsilon_F)$ may show different values and may be x dependent for $\operatorname{Co}_{100-x}\operatorname{Ni}_x$ and $\operatorname{Co}_{100-x}\operatorname{Pd}_x$. However, we are going to show that these variations are small. For example, considering the free-electron model $\varepsilon_F \propto n_s^{2/3}$, $D_{\uparrow}^s(\varepsilon_F) \propto n_s^{1/3}V$, and the term

$$\left[\ln(1+4k_F^2/q^2)-(1+q^2/4k_F^2)^{-1}\right]\simeq_{\frac{1}{2}},$$

in Eq. (11). Then $A \propto V(n_s)^{-2} \propto a_0^3$, where a_0 is the lattice constant of the alloy. Here $N \equiv V n_s = (0.54e/\text{atom})$ (4 atoms/cell) for the strong ferromagnets Co-Ni and Co-Pd. Since, in general, the a_o of Co-Pd is slightly larger than that of Co-Ni, the A of Co-Pd is larger. Using the data $a_0 = 3.86$ Å (Co₂₅Pd₇₅) and $a_0 = 3.55$ Å (Co₂₅Ni₇₅), we also find A to be increased by a factor of 1.28 going from Co-Ni to Co-Pd. However, this is only a minor reason to explain the change observed in A. We believe the main cause for the change still comes from the variation of $|\Delta Z|$, due to less effective shielding in Co-Pd. Hence, if the effect of a_0 has been taken into account, by setting the ratio $A(\text{Co-Pd})/A(\text{Co-Ni}) \simeq 4.38/1.28$, then $|\Delta Z|$ for Co-Pd becomes 1.85, which is a more reasonable value.

VI. CONCLUSIONS

Some magnetoresistance and electrical-resistivity data of Co-Pd alloys are reported in this study. Based on the two-current model and later extended theories, we are able to analyze ρ^{\downarrow} and ρ^{\uparrow} as a function of the Pd concentration x. For $x \ge 50-75$ at. % Pd, the spin-up and d band is not full, and $\rho_{sd}^{\uparrow} \neq 0$.

 $(\Delta \rho / \rho_0)_{imp}$ and $(\Delta \rho / \rho_0)_{ph}$ are obtained by the application of Matthiessen's rule to $\Delta \rho / \rho_0$. The location in x of the maximum of $(\Delta \rho / \rho_0)_{imp}$ is the same as that of the minimum of $(\Delta \rho / \rho_0)_{ph}$.

 ρ_{ss} is known to obey Nordheim's rule. ρ_{ss} increases considerably from Co-Ni to Co-Pd and then from Co-Pd to Co-Pt,¹⁴ while ρ^{\downarrow} or ρ_{sd}^{\downarrow} does not increase as much in the corresponding case. Therefore the value of $\Delta \rho / \rho_0$ decreases substantially, going from Co-Ni to Co-Pt.

ACKNOWLEDGMENTS

I am grateful to T. P. Chen for performing some experimental measurements. This work is supported by the National Science Council of ROC under Grant No. NSC80-0208-M001-85.

- *Present address: Dept. of Physics, Queens College, CUNY, Flushing, NY 11367-1597.
- ¹I. A. Campbell, A. Fert, and O. Jaoul, J. Phys. C. Suppl. **1**, S95 (1970).
- ²O. Jaoul, I. A. Campbell, and A. Fert, J. Magn. Magn. Mater. **5**, 23 (1977).
- ³A. P. Malozemoff, Phys. Rev. B 32, 6080 (1985).
- ⁴L. Berger, J. Appl. Phys. **67**, 5549 (1990).
- ⁵S. U. Jen, T. P. Chen, and S. A. Chang, J. Appl. Phys. **70**, 5831 (1991).
- ⁶A. B. Kaiser and S. Doniach, Int. J. Magn. 1, 11 (1970).
- ⁷L. Berger, P. P. Freitas, J. D. Warner, and J. E. Schmidt, J.

Appl. Phys. 64, 5459 (1988).

- ⁸R. Parker, Proc. Phys. Soc. London A 64, 447 (1951).
- ⁹L. Berger, Physica **91B**, 31 (1977).
- ¹⁰J. W. Cable, E. O. Wallan, and W. C. Koeller, Phys. Rev. 138, A755 (1965).
- ¹¹L. Nordheim, Ann. Phys. (N.Y.) 9, 607 (1931).
- ¹²N. F. Mott and H. Jones, *The Theory of the Properties of Metals and Alloys* (Oxford University Press, Oxford, 1936).
- ¹³P. de Faget de Casteljau and J. Friedel, J. Phys. Radiat. 17, 27 (1956).
- ¹⁴S. U. Jen and T. P. Chen (unpublished).