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Exact results for a finite-sized spherical model of ferromagnetism at the borderline dimensionality 4
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We report exact results on the zero-field susceptibility y{T;L), the correlation length g{T;L ), and the
"singular" part of the specific heat c"( T;L) of a finite-sized spherical model of ferromagnetism subject-
ed to periodic boundary conditions. We take the total dimensionality of the system d to be 4 and deal
with the geometry L X 00" (d' ~ 2). In the region of first-order phase transition {T & T, ), our results
are formally the same as in other cases with d & 2. The "core" region (T= T, ), however, is character-
ized by the appearance of factors involving lnL, which appear only when d =4. The relationship be-

tween these results and the corresponding ones following from the hyperscaling regime as d ~4—or
from the mean-field regime as d ~4+ is explored, and a formulation in terms of the finite-size scaling
theory is presented.

I. INTRODUCTION

Spurred by the seminal work of Fisher and collabora-
tors, ' considerable progress has been made in the study
of finite-size effects in systems undergoing phase transi-
tions and in the formulation of a scaling theory that en-
ables one to understand the origins and implications of
these effects in a systematic manner; for a review of these
developments, see Barber and Privman. The systems
considered in most of these studies are the ones with O(n)
symmetry, whose upper critical dimension d & is 4, while
the lower critical dimension d & is 1 in the case of discrete
symmetry (n =1, Ising model), 2 in the case of continuous
symmetry (n )2, of which the spherical model, with
n ~ao, is the extreme example); at the same time, the
boundary conditions imposed on the system have been
generally periodic, though occasionally nonperiodic
boundary conditions have also been considered. While
the evaluation of finite-size effects for systems with arbi-
trary n and confined to general geometries, such as
L X ao (with d' & d & and d unrestricted) presents
some serious difficulties of analysis, special cases, notably
the "block" geometry (d'=0) and the "cylinder"
geometry (d'= 1) turn out to be relatively more tractable;
in the case of the spherical model, however, a host of
analytical results have been obtained for general d' ~ 2
and d such that either 2 (d (4 or d & 4. All in all, expli-
cit results for the borderline dimensionality 4 are conspi-
cuously few and far between.

Some of the major results pertaining to d =4 that we
know of are the ones derived by Brezin on the correla-
tion length g of an O(n) model with n ))1, confined to
geometry L "Xao with d'=0 or 1, by Luck on the
same quantity g but with n ~ ao and d'=1, by Rudnick,
Guo, and Jasnow on the specific heat of an Ising model
with d'=0, and by Shapiro and Rudnick on the magnet-

ic susceptibility of the spherical model, again with d'=0.
A common feature of these results is the appearance,
along with algebraic terms that characterize the behavior
of the system for 2 & d &4 or for d & 4, of logarithmic
factors of the form [ln(L/a)]" where a is a microscopic
length, such as the lattice constant, of the system while x
is an exponent that depends on the physical quantity un-
der consideration but is otherwise universal. The pur-
pose of the present paper is to report exact results on the
correlation length, the magnetic susceptibility, and the
"singular" part of the specific heat of a spherical-model
system in geometry L X ao (d'&2), which covers
not only the block and cylinder geometries as special
cases but also the "slab" geometry (d'=2) that throws in
further factors of the form ln ln(L/a).

In Sec. II we summarize the basic elements of our ap-
proach and quote explicit results for the aforementioned
quantities for a finite-sized spherical-model system in four
dimensions —in regions of both jirst order (T & T,-) and
second order (T= T-, ) phase transitions; wherever possi-
ble, we compare our results with the ones obtained by the
previous authors and find complete agreement with them.
In Sec. III we explore the relationship between the
present results, especially the ones at T =T„and the cor-
responding ones following from the hyperscaling regime
(2&d &4) as d —+4—or from the mean-field regime
(d )4) as d~4+. This enables us to understand the
manner in which factors involving lnL emerge in lieu of
ones involving 1/(4 —d) in the former regime or those in-
volving 1/(d —4) in the latter. In view of the fact that
the spherical model has generally served as a useful guide
for systems with arbitrary n, especially the ones with
n ~2, we hope that the relationships explored here will
be of help in foreseeing similar situations in other models
as well. Finally, in Sec. IV, we present a finite-size scal-
ing hypothesis appropriate to dimensionality 4, to which
the results reported in this paper are found to conform.
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II. A FINITE-SIZED SPHERICAL MODEL
IN FOUR DIMENSIONS

We consider a spherical-model system confined to
geometry L X ~ (d' ~ 2) and subjected to periodic
boundary conditions. Following the procedure laid down
in previous publications, ' the "singular" part of the
free-energy density of the system in zero field turns out to
be

where

a 2 2

+ Ic.l

—~(lid*;y),
8m. L 2ay

(4)

t =(K,—K)/K, =(T —T, )/T

[K =J/TK, =J/T, ], (5)

T, being the critical temperature of the corresponding
bulk system. Once y (T;L) is known, the various quanti-
ties of interest, such as the correlation length g( T;L), the
magnetic susceptibility per unit volume y(T;L), and the
"singular" part of the specific heat per unit volume
c"(T;L) can be obtained from the formulas

where y is the scaled length parameter,

y =-,'(L/a)P'~' [P=(A, /J) —8], (2)

L

L 2

x=
8Ja y

(7)

a is the lattice constant, A, is the spherical field, while J is
the nearest-neighbor interaction parameter for the spins
constituting the system; the constant C4 comes from the
theory of the bulk system and is approximately equal to'
—4.7920. . . . The functions%'(vld* y) are defined as

and

32~2K2 /a 4

2 ln(L /2ay)+ I C~ I

—1+ZR(0 d', y)

(8)

K„(2yq)
&(vld', y) = g'

(yq)

We shall now examine these results in di6'erent regimes of
the variables T and L.

[q =(qf+ +q„, )'~ &0], (3)

where K,(z) are modified Bessel functions, while
d'(=4 —d') is the number of dimensions in which the
system is finite. The parameter y (T;L), which is crucial
to our analysis, is determined by the constraint equation

A. Case 1: ( T (T„L~ 00 )

In this region —the region of the erst order phase-
transition —the correlation length ( is known to be much
greater than L; the parameter y would, therefore, be
much less than unity. The functions R appearing in Eqs.
(4) and (8) would then assume the asymptotic forms"

-'~"-"""I((2—d')/2)y-"-" (d'&2),
2

I

— ',y =,
~y -2(ln(1/y2) lnI [I'(I/4))4/4~3] ) (d, 2)

(9a)

(9b)

and

%(OI4 —d'y) =—'m' '~ I ((4—d')/2)y ' ' (d' ~ 2) . (10)

Equations (4) and (9) enable us to write y as a function of T and L:

h, [K, ltl(L/a) ]
' ' ' (d'&2),

h2 exp[ —4nK, ltl(L/a) ] (d'=2),y(v. ;r.)=-

where

h, =[I ((2—d')/2)/8 ]' '

and

h =27r /[I ( —,')]
The desired physical quantities now follow from Eqs. (6)—(8):

(1 1a)

(13)
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(1/h, )[K,~t~(L/a) ]' ' "' (d'&2),

2 (1/h2) exp[4mK, ~t~(L/a) ] (d'=2),
(14a)

(14b)

(1/h)) [K ~t~(L/a) ] ' ' (d'&2),

8' (1/hz) exp[8nK, ~t~(L/a) ] (d'=2),y(T;L)=
(isa)

(15b)

and

[h /41T (2 d')]—[K, ~t~((L/a) ] ' ' ' ' (d'(2),
(s)( T.L) 3217 K

(hz/n. ) exp[ 8n.K—, ~t ~(L/a) ] (d'=2) .

(16a)

(16b)

Comparison with the previous results shows that the
various expressions pertaining to the region of the first-
order phase transition are formally the same, irrespective
of whether d is less than, ' equal to, or greater than 4. '

One notable improvement on our earlier results consists
in the explicit evaluation of the constant h2 appearing in
the case of the slab geometry (d'=2) which, in contrast
to other geometries, obeys an exponential, rather than
algebraic, law of approach towards the bulk behavior.

B. Case 2: (T=T„L~00)
At the bulk critical point ( T = T, },the value y, of the

parameter y is determined by the relationship, see Eq. (4),

R(1~4—d', y, )
—ln(L/2ay, )=—,

'
~C4~ . (17)

y =~'"
C

[I ((2—d')/2}/21n(L/a)]'~(4 ~ ' (d'&2)
(18a)

(18b)[ lnln(L/a)/2 in(L/a)]'~ (d'=2) .

The corresponding expressions for g, y, and c"turn out
to be

One readily sees that, unlike the case 2&d &4 where

y, =O(1), y, in the present case is much less than 1. We
may, therefore, continue to use expressions (9) for the
function%'(1 ~4

—d';y) and obtain asymptotically

c"(T,;L)= 32m K—, /(4 d')a l—n(L/a) (d' 2) .

(21)

We note that our result for g( T, ), with d' & 2, agrees with
the corresponding results obtained earlier by Brezin4 (for
n »1 and d'=0 or 1} and by Luck (for n~00 and
d'=1), viz. ,

constXL [ ln(L/a)]' (d'=0),
g(T, ;L)= '

L [ ln(L/a)/4n. 2](~ (d'=1), (22)

y(T, ;L)-L [ln(L/a) ]'~ (d'=0) . (23)

The only comparison we could make of our result for the
specific heat was the one with Rudnick, Guo, and
Jasnow, who had shown that for an Ising model (n =1)
with d'=0

c"(T„'L)-[ln(L/a)]' (d'=0) . (24)

Comparing (21) with (24), and keeping in mind certain
bulk results for this quantity, ' we feel emboldened to
conjecture that, for all O(n) models in geometry L X ~,

c"(T 'L) —[ ln(L/'a)]( n)l(n+8) (25)

while the one for y(T„'L) agrees with the corresponding
one obtained by Shapiro and Rudnick (for n =00 and
d' =0), viz. ,

[21n(L/a)/I ((2—d')/2)]' '

(d'(2),
(T„L}=

(4~})~2 [2 ln(L /a)/ ln ln(L /a)]'
(d'=2),

(19a)

(19b)

of which (21) and (24) may be regarded as special
cases —with n = 00 and n =1, respectively.

C. Case 3: ( T & T„L~ 00 )

y( T„'L)= L 2 [21n(L/a)/I {(2—d')/2)]
6

(d'&2),
8m.Ja

2 ln(L /a)/ln ln(L /a) (d'=2),
(20a)

(20b)

K, t=0{(a/L) ln(L/a)) [t =(T—T, )/T, ] . (26)

Exact results pertaining to this zone will have to be ob-
tained numerically; one may, nevertheless, note that here

In this region, first of all, there exists a buffer zone
where y is of order unity; in terms of T, this corresponds
to the condition, see (4),

and g-L, g-L, c"-[ln(L/a)+const] (27)
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As T increases, y eventually becomes much greater
than unity; in fact, y becomes 0 (L/a) when K, t =0(1).
The function %'(1~4—d';y) then becomes negligible, and
Eq. (4) gives ,' f—[e I()(x)] x dx . (37)

where I (a,x) denotes the incomplete I function. In the
first part, we may set /=0 and write it as

8m K, t
3'=

a ln(1/t) +const

1/2

(0&t«1) .

ln(1/t)+ consta

4n(2K, )'

ln( 1/t ) +const
2 464~ Ja Kt

and

This reproduces the standard bulk results, namely,
' 1/2

(28)

(29)

(30)

The foregoing expressions suffice to determine the leading
term(s) of the function Wd(((})—Wd(0) for all d.

(i) For d & 4, the dominant contribution, as P becomes
very small, comes from (36)—with the incomplete I
function replaced by the standard I function. An in-
tegration over P then gives

w„(P)= — ~l ((2—d)/2)ly" "" (d &4) .
(4 )d/2

(38)

32m K
C(s)

a [ ln(1/t)+const)

If the influence of the functions R(v~4 —d';y) is included,
one obtains exponentially small finite-size corrections
which are of the same general nature as the ones reported
earlier for the cases 2 & d (4 and d & 4.

(31)

III. APPROACHING cE =4 FROM THE HYPERSCALING
REGIME OR FROM THE MEAN-FIELD REGIME

It is instructive to see how, in the "core" region
(T=T, ), factors involving ln(L/a) arise as one ap-
proaches dimensionality 4 either from the hyperscaling
regiine (where d &4) or from the mean-field regime
(where d )4). In either case, the value y, of the parame-
ter y is determined by the equation

(4 )d/2y (d —2)/2 (y)+~—((d 2)/2~d*. y )
—()

(32)

Substituting (38) into (32), we obtain

R((d —2)/2~d";y, )=—,
' ~I ((2—d)/2)

~
(d &4)

(d &4) .
1

(39)

(40)

Notice that y, in this regime is ordinarily 0(1) but be-
comes much less than 1 as d —+4—.

(ii) For d =4, we require both (36) and (37). The in-

complete I function now becomes the exponential in-

tegral, '

I (0, —,
) PA ) =E, ( —,

)
PA ) = —ln( —,

'
()) A ) —y, (41)

where y is the Euler constant, while (37) takes the form'

—
—,
' f [e "I,(x)]'x dx

1
[ ln( —,'A)+ ~cg~

—1+y], (42)
16~

C4 being the same constant as in Eqs. (1) and (2}. Col-
lecting the various terms and integrating over ((}, we now
obtain

where wd(p ) represents the leading term(s) in the expan-
sion of the function

Wd(P) —Wd(0) =
—,
' f (e " '~' —l)[e "I()(x)] dx

(33)

wq(P)= —(P/16ir )[ ln(1/P)+ ~C4~] .

Substituting into (32), we get

R( 1 ~d*;y, ) =—,
' [ ln(1/P, )+

~ C„~],

(43)

(44)

for p «1; here, Wd(p) is the familiar Watson integral'
that appears in the theory of the bulk system, while Io(x)
is another modified Bessel function. Differentiating (33)
with respect to P, we obtain

Wd(P) = ——' e " '~"[e "I()(x)] x dx (34)
4

+ e
—(1/2)+x[e xI (x) ]dx dx—

4 0
0

where A, for convenience, will be chosen to be much
greater than unity. In the second integral, we may ap-
proximate Io(x) by e"/(2@x)' and obtain for that part
of Wd(p } the expression

wd(P) = —wP,

where

w= —,
' e I0 x "xdx d )4

Equation (32}now becomes

(45)

(46)

A((d —2)/2~d*;y, )=—,'(4m. )" wP, ( '/ (d )4)

(47)

= 1/(d —4) (d )4) . (48)

exactly as in (17).
(iii) For d )4, we may set / =0 in (34} itself and obtain

on integration

I ((4—d)/2, —'((}A),
(4 )d/2

(36) Comparing (40), (44), and (48), and remembering that

P, in a finite-sized system is essentially O(a /L ), we
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infer that the various physical quantities pertaining to the
system at T =T, and in the hyperscaling regime (d & 4)
acquire a rather "critical" dependence on the parameter
(4—d) as d ~4—,while for the system in the mean-field
regime (d )4) they acquire a similar dependence on the
parameter (d —4) as d ~4+; as we see it, this depen-
dence is literally transformed into one on the parameter
[1n(L/a)+const] when the system happens to be in the
borderline dimensionality 4. The results reported in Sec.
II are a clear testimony to this observation. We suspect
that this pattern of behavior is not peculiar to the spheri-
cal model alone; it may well hold for all n ~ 2.

with the result that

L 2(d —d') /(2 —d')

( A, ftf)c"(T I.)-—
A3

XL
—2(d —d') /(2 —d')

and

g(T;L)-
1/(2 —d')

L (d —d') /(2 —d')

A3

A2 A))t
y( T;L)—

A3T A3

A)(t~
—(4—d') /(2 —d')

(57)

2

(59)

IV. THE FINITE-SIZE SCALING HYPOTHESIS AT d =4

In our study of O(n) models in higher dimensions, we
showed that the singular part of the free-energy density
of the system in geometry L" X 00" and over a consid-
erable range of temperatures (which includes the region
T= T, ) conformed to the scaling hypothesis'

r

f"(T,H;L)=
d v2 Y (49)Ld Pl

'
Pq

V3 V3

where u„u2, and u3 are the scaled variables appropriate
tod &4,

%'e note that these results are precisely the same as the
ones for 2 & d & 4, provided that the ratios A ) /A 3 and
A 2/A 3 are identified, respectively, with the parameters
C& and C2 introduced previously. ' Clearly, the param-
eter A 3 does not play any independent role in the region
of the first-order phase transition, with the result that the
pattern of behavior followed by the system in this region
is formally the same —irrespective of whether d is less
than or greater than 4. There is no reason why d =4
would be an exception to this rule, which is precisely
what we found in Case 1 of Sec. II; cf. the actual results
(14a), (15a), and (16a) with the scaling predictions
(57)—(59), remembering that for the spherical model

u, =A, L t, u2=A2L H/T, u3=A3L (50)
A /A =E /a A /A' =I/(I('a + )' (60)

d' — — 2—2

4—d' ' Pi 3P2 4—d'

Accordingly, in zero field, one may write

(51)

A „A2, and A 3 are the nonuniversal scale factors, t is an
appropriate temperature parameter (such that, for
T=T„ t =t), a)'(=d —4) is the so-called "anomalous"
dimension of the system, while

and that d =4 here.
Case 2. For T= T, and L ~ 00, our results depend cru-

cially on whether d is less than, equal to, or greater than
4; this arises from the fact that in this region, and for
d 4, the scale factor A3 plays a role independently of
the combinations that govern the region T & T, . Focus-
ing our attention on the bulk critical point (t=0), the
scaling formulas (52)—(55) now give (by letting u ~0)

A2
g(T;L)= Yr(v)

A, A3T t
(52) ~(T .L) ( A 2/T )A

—(6 d')/(4 d')L2—(d —d')—/(4 d')—
(61)

.()(T;L)=—
2

T (A, gati) Y (,)(v),
1 8

3

c"(T 'L)- —A /A

while

(62)

where

yU 2/(4 —d') tL 2(d —d')/(4 —d')
U —U) U3

In keeping with these results, one may also write

g(T;L)=, , Yt(v) .
1

(A, t~))/2

{54)

(55)

g( T .L ) A
—) /(4 —d')L (d —d')/(4 —d')
3 (63)

Here, A; denote the limiting values of the scale factors
A; as T~T, ; for the spherical model,

A, =K, /a w, A2=1/(K, a w)', A3=a /w,

(64)

Case 1. For T & T, and L~ ~, the scaling functions
Fz, F (,), and F&, for d'&2, possess the asymptotic be-
havior

where w is the number defined in (46). We note right
away that the foregoing results for d )4 are significantly
difFerent from the corresponding ones for 2 & d & 4, name-

16

Y (u) ~vi(4
—d')/(2 —d')

Y (,)(u)-~u~ ' ' ' ' as u~ —~

Y ( ) i
i(4 —d')/2(2 —d')I

(56a)

(56b)

(56c)

y(T„.L)—Lr ", c"(T„.L)-L, g(T, ;L)-L' . {65)

To examine the situation as one approaches the border-
line dimensionality 4 from above, we confine our atten-
tion to the spherical model for which we know that the
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parameter w, in this limit, is effectively replaced by the
quantity (1/Ssr )[ln(L/a)+const]; cf. Eqs. (44) and (47).
The corresponding scaling hypothesis may then be writ-
ten in the same form as in (49), except that now

E, 1

a ~ ln(L /a) [Ka ln(L /a) ]
1

A
ln(L /a)

(66)

and

y(T;L) — [ ln(L /a)]
L
Ja

c"(T„L)- K, /a —ln(L/a),

(67)

(68)

It will be noted that the logarithmic factors appearing
here leave the combinations A, /A3 and Az/A3 un-

changed, see (60), so that the behavior of the system in
the region of the first-order phase transition is formally
the same for d =4 as for d other than 4. In the region of
the second-order phase transition, however, significant
modifications result; for instance, Eqs. (61)—(63) now give

((T,;L)-L[ ln(L/a)]' ' (69)

in perfect agreement with the actual results, (19a), (20a),
and (21), for d =4 and d'(2. The case of the slab
geometry (d'=2) is somewhat problematic but it can also
be handled in the manner shown in Ref. 13. In closing,
we would like to mention that the scaling formulation for
the spherical model in the block geometry L X Oo has
already been given by Shapiro and Rudnick; their for-
mulation is in complete agreement with the special case
d'=0 of ours, except that the quantity to(L) of their
treatment should be -(lnL +const)', rather than
(lnL +const)
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