Comprehensive approach to the zero-field splitting of ${}^{6}S$ -state ions: Mn^{2+} and Fe^{3+} in fluoroperovskit

Yu Wan-Lun

Center of Theoretical Physics, Chinese Center of Advanced Science and Technology (World Laboratory), and Department of Physics, Sichuan Normal University, Chengdu 610066, People's Republic of China

> Czeslaw Rudowicz* Department of Applied Science, City Polytechnic of Hong Kong, Hong Kong (Received 2 October 1991)

The zero-field splitting of ⁶S-state ions is studied in the intermediate-field coupling scheme by taking the crystal-field and the electrostatic interactions as the unperturbed Hamiltonian and the spin-orbit interaction as a perturbation. This perturbation process shows a very good convergence and provides a comprehensive approach to the derivation of both the rank-2 b_2^q and the rank-4 b_4^q zero-field splitting parameters, which are shown to come predominantly from the first nonzero perturbation terms. Cubic and tetragonal symmetries are considered and the zero-field splitting parameters D ($\sim b_2^0$), a ($\sim b_4^4$), and F $(-b_4^0)$ are investigated in detail as functions of the cubic Dq and the tetragonal crystal-field (CF) parameters B_{20} and B'_{40} . It is found that the tetragonal CF components B_{20} and B'_{40} contribute, to the cubic zero-field splitting parameter a, a value a_i , which is non-negligible. The ratio a_i /F is found to be insensitive to CF parameters and to lie in the range -0.2 to -0.5 . Both parameters a_i and F depend mainly on B_{20} , whereas D depends mainly on B_{40} . The results of earlier perturbation procedures are also calculated and compared with the present ones. The present theory deals with the zero-field splitting parameters b_k^g ($k = 2$ and 4) by regarding the crystal-field parameters B_{kq} ($k = 2$ and 4) as freely adjustable phenomenological parameters, thus avoiding problems arising from the application of a specific crystal-field model to the evaluation of B_{kq} . Following this idea, numerical calculations are carried out for the parameters a, D, and F for Mn²⁺ and Fe³⁺ ions in cubic and tetragonal fluoroperovskites. The results are in good agreement with experimental data. This work presents examples where the crystal-field theory allows a successful interpretation of the zero-field splitting of ${}^{6}S$ -state ions.

I. INTRODUCTION

The microscopic theory of the spin Hamiltonian (SH) of S-state ions has received a great amount of interest in recent years (see, e.g., Refs. ¹—3). Since the orbital angular momentum of the ground state is zero, it is necessary to take into account higher-lying multiplets, which involves tedious calculations. It has been established that the combined effect of the spin-orbit and crystal-field (CF) interactions accounts for the experimentally observed zero-field splitting (ZFS) of ⁶S-state ions in many ionic crystals.²⁻¹⁶ On the other hand, the role of other effects, in particular overlap¹⁷⁻²⁰ and relativistic CF (Refs. 21—23) effects, has been indicated. However, to date there has been no work in the literature that takes into account all of the mechanisms and that yields good agreement between calculated and experimental results.

The ZFS parameters for symmetries lower than cubic cannot be calculated by diagonalizing the full energy matrices within the whole d^5 configuration, including the CF and spin-orbit potentials, to give "accurate" values contributed by these two interactions, since there are three or more independent ZFS parameters, but only three Kramers energy levels in the ground ${}^{6}S$ state. Assumptions have to be made when deducing the ZFS parameters from the energy splittings of S state obtained

by diagonalization in order to produce an approximate result. A commonly used approximation is to omit in the spin Hamiltonian calculations rank-4 ZFS terms and to consider only the rank-2 axial term D (or b_2^0) for tetragonal (first kind; see Ref. 24) and trigonal symmetries. A plausible justification is that the former terms are much smaller in magnitude than the rank-2 terms for crystals smaller in magnitude than the rank-2 terms for crystal strongly distorted from cubic.^{$11-14$} It seems, however, that there are no similar assumptions and approximations allowing a calculation of the rank-4 ZFS parameters.

Perturbation calculations have been useful in the study of the ZFS of $6S$ -state ions. $2-10, 6-23, 25-27$ Three alternative perturbation procedures have been suggested for the calculation of the rank-2 ZFS parameters of ${}^{6}S$ -state ions (see, e.g., Ref. 3). In addition to the well-known procedure proposed by Blume and Orbach (BO) , 25,26 the one proposed by Watanabe²⁷ has been extended and extensively adopted recently.^{$3-7$} The perturbation procedur suggested by Macfarlane²⁸ and Zdansky²⁹ (MZ) for $A_2(d^3/d^7)$ and $A_2(d^2/d^8)$ ions has been also applied to the ${}^{6}S$ -state ions. 3,8,9 All the three procedures regard the spin-orbit coupling and low-symmetry CF component as a perturbation term. In addition, the perturbation Hamiltonian also includes the cubic CF part in the Watanabe procedure and off-diagonal part of the electrostatic interaction in the MZ procedure (see, e.g., Ref. 3).

 $\overline{45}$

Cubic, ^{8, 16} tetragonal, ^{3,4, 9, 13} trigonal, ^{3,7} orthorhombic, ^{3,} and even monoclinic⁵ symmetries have been dealt with. Most of these works mmetries have been dealt with
 $10-14, 17-21, 23$ however, are limit ed to the lowest orders of perturbation, and that casts doubt on the convergency of the perturbation procedure (see, e.g., Ref. 30). Checking the convergency of the proposed perturbation procedures requires extensive calculations.

Most of the earlier works were limited to rank-2 ZFS parameters such as D and E , since they are much easier to deal with than the rank-4 terms. Recently, the significance of including the rank-4 ZFS parameters in the study of the microscopic SH theory of $6S$ -state ions has been pointed out.⁹ The rank-4 ZFS parameters themselves, in particular the cubic parameter α , play an important role in $6S$ -state splitting and are interrelated with the rank-2 ZFS parameters. However, the calculation of the rank-4 ZFS parameters is much more complicated since they arise from fourth- and higher-order effects of spin-orbit and CF interactions. An analytical formula for the cubic ZFS parameter a and a subsequent semiempirical expression for α have been derived.⁸ This enables one to explain the observed static and stressed electron paramagnetic resonance (EPR) data for $Fe³⁺$ and Mn^{2+} ions in several octahedral crystals.⁸ A perturbation calculation recently has been carried out for tetragonal symmetry⁹ using the MZ technique.^{28,29} Separating the cubic ZFS term α into two parts, i.e., α_c arising from a cubic CF and α , (denoted as α' in Ref. 9) due to the tetragonal CF components, Yu^9 has found that a_t is related closely to the rank-4 axial term F by the ra- α_t is related closely to the rains-+ axial term Γ by the ratio $\alpha_t/\Gamma \cong -\frac{1}{2}$. The validity of this relationship needs further confirmation because the calculations 9 have been made only in the lowest-order perturbation.

Considering the combined effect of the CF and spinorbit interactions within the d^5 configuration as the origin of the ZFS of $6S$ -state ions, we obtain that each of the ZFS parameters b_k^q is related with all of the CF parameters B_{ka} . The experimental values of the latter parameters for $3d^5$ ions are rather scarce. In past works, in which only rank-2 ZFS terms were considered, one has resorted to various CF models which relate CF parameters B_{kq} and the crystallographic parameters to get an idea of the values of B_{ka} . Additional problems thus arise, namely, the intrinsic problems inherent in a given CF model itself (e.g., assumptions, approximations, etc.), as well as doubts as to the accuracy of the crystallographic data used, which reduce the reliability of the final ZFS results even further. Moreover, usually the changes in the local host structure due to dilute impurities doped in the crystal are neglected. We need to separate the microscopic SH theory from these problems in order to avoid the difhculties induced by the application of specific CF models. As matter of fact, there has been no CF model which could reasonably well explain the optical spectra of $3d^N$ ions. So it should not be expected that a CF model can produce reliable values of CF parameters B_{kq} , allowing calculation of the ZFS parameters b_k^g , which in turn are very sensitive to B_{ka} .

Since for given symmetry case the number of the CF

parameters B_{kq} is identical to that of the ZFS parameters b_k^q , the possibility arises of adjusting B_{kq} to fit b_k^q ($k = 2$ and 4) without application of a specific CF model. This paper presents an attempt to achieve this goal. The spin-orbit coupling is treated as the only perturbation term, whereas the electrostatic and CF interactions are taken as the unperturbed Hamiltonian. Our calculations are carried out in the intermediate CF coupling scheme and take into account all the 252 states within the d^5 configuration, as described in Sec. II. As the spin-orbit energy is considerably smaller than the energies of excited quartets and doublets, measured from the ground ${}^{6}S$ state, the convergency is excellent. Microscopic derivations are consequently carried out for rank-2 as well as rank-4 ZFS parameters in cubic and tetragonal symmetries, in Secs. III and IV, respectively. Calculations are performed up to the fifth order. We shall show that the rank-2 terms come predominantly from second- and third-order perturbations, while the rank-4 terms mainly from fourth- and fifth-order perturbations. The behavior of each ZFS parameter - D , a , and F - are investigated in detail as function of the CF parameters B_{kq} . Applications are presented in Sec. V, where we consider Mn^{2+} and $Fe³⁺$ ions located at the cubic and axial (static and vacancy) sites in fluoroperovskites. The results are in good agreement with the observed EPR data for D, a , and F . Conclusions are given in Sec. VI.

II. THEORY

Let us consider a spin Hamiltonian in tetragonal symmetry^{24,31} of the first kind (see Ref. 24), i.e., for the poin groups C_{4v} , D_{4} , D_{2d} , and D_{4h} ,

$$
\mathcal{H}_s = \frac{1}{3} b_2^0 O_2^0 + \frac{1}{60} (b_4^0 O_4^0 + b_4^4 O_4^4) , \qquad (1)
$$

where $O_k^g(S_x, S_y, S_z)$ are Stevens³² operators and the z axis is taken to be along the C_4 axis. The SH parameters b_k^q are related to the D, a, and F used conventionally in the literature by the relations^{24,31}

$$
b_2^0 = D ,
$$

\n
$$
b_4^0 = \frac{a}{2} + \frac{F}{3} ,
$$

\n
$$
b_4^4 = \frac{5}{2} a .
$$
 (2)

Solving the Hamiltonian (1) within the basis of states $|S = \frac{5}{2}, M_s$, we obtain the following formulas to be used in the derivation of the microscopic relations:

$$
b_2^0 = \frac{1}{28} \left[5W(\frac{5}{2}, \frac{5}{2}) - W(\frac{3}{2}, \frac{3}{2}) - 4W(\frac{1}{2}, \frac{1}{2}) \right],
$$

\n
$$
b_4^0 = \frac{1}{14} \left[W(\frac{5}{2}, \frac{5}{2}) + 2W(\frac{1}{2}, \frac{1}{2}) - 3W(\frac{3}{2}, \frac{3}{2}) \right],
$$

\n
$$
b_4^4 = \sqrt{5}W(\frac{5}{2}, -\frac{3}{2}) ,
$$
\n(3)

where $W(M_s, M'_s)$ denotes $\langle SM_s | \mathcal{H}_s | SM'_s \rangle$.

We follow the procedure described earlier in Ref. 3 and consider the Hamiltonian

$$
\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_{CF} + \mathcal{H}_{s.o.} \tag{4}
$$

where \mathcal{H}_0 denotes the free-ion Hamiltonian, \mathcal{H}_{CF} the CF

potential, and $H_{s.o.}$ the spin-orbit coupling. The Wybourne notation³³ for the CF potential is adopted:

$$
\mathcal{H}_{\rm CF} = B_{20} C_0^{(2)} + B_{40} C_0^{(4)} + B_{44} (C_4^{(4)} + C_{-4}^{(4)}) \tag{5}
$$

where $C_a^{(k)}$ are the normalized spherical harmonics. It is convenient to define³ the parameters $B'_{40} = B_{40} - (\frac{14}{5})^{1/2}B_{44}$ and $Dq = [B_{40} + (\frac{14}{5})^{1/2}B_{44}]/42$, which describe the departure from cubic symmetry. The parameters B'_{40} and B_{20} vanish identically in cubic symmetry, and thus they measure the tetragonal distortion.

Writing \mathcal{H}_{CF} as the sum of cubic V_c and lowsymmetric V_{LS} parts, Blume and Orbach²⁵ suggested taking $(V_{LS}+\mathcal{H}_{s.o.})$ as a perturbation to (\mathcal{H}_0+V_c) in calculating the rank-2 SH parameters of 6 S-state ions.²⁶ Watanabe²⁷ has considered the total CF potential, $H_{CF} = V_c + V_{LS}$, as a perturbation together with the spin-orbit coupling in the calculation of the cubic α and axial D parameters for the $6S$ -state ions. This Watanabe procedure was regarded by Sharma, Orbach, and Das²⁶ as an independent mechanism since Watanabe's incomplete calculation indicated the dependence $D \propto (B_{20})^2$, which did not appear in the lowest order of the BO procedure. In fact, Watanabe²⁷ and Sharma, Orbach, and $Das²⁶ dealt with exactly the same problem by using$ different perturbation procedures. Complete calculations using the Watanabe procedure have recently been carried out up to sixth order^{7,13} for cubic, ¹⁶ tetragonal, ^{3,4} and trigonal^{3,7} symmetries, whereas up to fourth order for orthorhombic, $3,6$ and triclinic symmetry⁵ cases. However, since V_c is usually comparable in magnitude with \mathcal{H}_0 , the convergency of this procedure has been seriously questioned.³⁰ This point has been clarified en seriously ques
 13,14 for the rank 2 SH parameters.

It is worth noting that in the calculation of the SH parameters of d^n ($n = 2, 3, 7, 8$) ions, Macfarlane²⁸ and Zdansky²⁹ (MZ) treated V_{LS} , $H_{s.o.}$, and the off-diagonal part of \mathcal{H}_0 altogether as a perturbation using the strongfield coupling scheme basis. This perturbation technique has been successfully developed to calculate D , α , and F for ${}^{6}S$ -state ions in cubic⁸ and tetragonal^{3,9} symmetrie The resulting analytical expressions are of relatively sim-

ple form, and it turns out that the numerical results agree well with the diagonalization calculations. $3,13$ The fact that the ground state $6S$ is not affected directly by the crystal field allows us to include here the total CF potential, $H_{CF} = V_c + V_{LS}$, in the unperturbed Hamiltonian together with H_0 . The perturbation Hamiltonian includes, therefore, the spin-orbit interaction $H_{s.o.}$ only. Since the spin-orbit energy is considerably less than the energies of excited spin quartets and doublets, measured from the ground state ${}^{6}S$, the convergency is excellent, as will be shown below.

The present calculations are carried out in the intermediate CF coupling scheme. $34,35$ The basis functions $|d^N\alpha SL\Gamma\gamma\rangle$ transforming as components γ of irreducible representations Γ of a double-valued group G' and constructed as the linear combinations of products of symmetry-adapted³⁴ orbital $\left|d^{N}\alpha L\Gamma_{l}\gamma_{l}\right\rangle$ and spin $|d^N \alpha S \Gamma_{\rm s} \gamma_{\rm s}$ functions are adopted:

$$
|d^N a SL \Gamma \gamma\rangle = \sum_{\gamma_l} \sum_{\gamma_s} C(\Gamma_l \gamma_l \Gamma_s \gamma_s; \Gamma \gamma) \times |d^N a L \Gamma_l \gamma_l\rangle |D^N a S \Gamma_s \gamma_s\rangle \ , \quad (6)
$$

where

$$
|d^{N}\alpha L\Gamma_{l}\gamma_{l}\rangle = \sum_{M_{L}} C(M_{L};\Gamma_{l}\gamma_{l})|d^{N}\alpha LM_{L}\rangle ,
$$

$$
|d^{N}\alpha S\Gamma_{s}\gamma_{s}\rangle = \sum_{M_{s}} C(M_{S};\Gamma_{s}\gamma_{s})|d^{N}\alpha SM_{S}\rangle .
$$
 (7)

The basis functions in (7) are constructed using the projection operator technique, while the Clebsch-Gordan coefficients in (6) are obtained from the tables.³⁶ Within the basis functions (6), the CF matrix elements are diagonal with respect to S, Γ_s , and γ_s , and the resulting CF matrices are actually the same as in the irreducible representations Γ_l of the normal (single-valued) group G. Thus the matrices are block diagonal in the representation Γ of G', whereas the spin-orbit interaction couples the blocks. The basic formulas are obtained as follows: for a CF Hamiltonian (see, e.g., Ref. 34),

$$
= \delta_{M_{S}M_{S}'}\delta_{SS'} \sum_{k,q} B_{kq} \langle d||C^{(k)}||d \rangle (-1)^{L-M_{L}} \left[\begin{array}{ccc} L & k & L' \\ -M_{L} & q & M'_{L} \end{array} \right] \langle d^{N} \alpha SL||U^{(k)}||d^{N} \alpha'S'L' \rangle , \quad (8)
$$

and for the spin-orbit coupling,

 $\langle d^N a S L M_S M_I | H_{CF} | d^N a' S' L' M_S' M_I' \rangle$

$$
\langle d^N a S L M_S M_L | \mathcal{H}_{s.o.} | d^N a' S' L' M'_S M'_L \rangle
$$

=\langle d ||l⁽¹⁾||d\rangle $\zeta \sum_{q=-1}^1 (-1)^{q+S+L-M_S-M_L}$

$$
\times \begin{bmatrix} S & 1 & S' \\ -M_S & -q & M'_S \end{bmatrix} \begin{bmatrix} L & 1 & L' \\ -M_L & q & M'_L \end{bmatrix} \langle d^N a S L || V^{(11)} || d^N a' S' L' \rangle , \qquad (9)
$$

where (\cdots) is the 3*j* symbol and ζ is the spin-orbit coupling constant. The values of reduced matrix elements

$$
\langle d^N\alpha SL||U^{(k)}||d^N\alpha'S'L'\rangle
$$

and

$$
\langle d^N\!\alpha SL||V^{(11)}||d^N\!\alpha'S'L'\rangle
$$

have been listed in Ref. 37. The intermediate CF coupling scheme is very suitable for $3d^N$ ions for which the CF potential is stronger than the spin-orbit interaction, since the nonzero CF matrix elements are grouped in a block-diagonal form.¹⁴ Our present calculations take into account all states of the d^5 configuration, i.e., total number of 252 states.

It is easy to show that when the spin-orbit coupling is regarded as the only perturbation term, the second- and higher-order perturbations have nonzero contributions to the rank-2 ZFS parameters b_2^q , while fourth and higher orders affect the rank-4 terms b_4 . The second-order perturbation contribution $b_2^{q(2)}$ to the rank-2 ZFS parame ters b_2^q is proportional to ζ^2 . The proportionality factor $F_0(2,q)$ is defined by $b_2^{(2)} = F_0(2,q)\zeta^2$. In a similar way we obtain the third-order contribution as $b_2^{q(3)} = F_1(2,q)\xi^3$. The same idea is suitable for the rank-4 ZFS parameters b_4^q . We obtain the fourth-order contribution as $b_4^q = F_0(4,q)\zeta^4$ and the fifth-order contribution as $b_4^q = F_1(4,q)\zeta^5$. In this way, in fact, we obtain two expansion series of ζ for b_2^q and b_4^q . We write them one after the other:

$$
b_k^g = b_k^{g(k)} + b_k^{g(k+1)} + \cdots
$$

= $F_0(k, q) \zeta^k + F_1(k, q) \zeta^{k+1} + \cdots$ (10)

This perturbation series are expected to have a good convergence because the matrix elements of $H_{s.o.}$ are two orders of magnitude smaller than the energy separations between the ground and excited states. In the following sections we shall show that the first two terms in (10) contribute most to b_k^g ; i.e., we can approximate

$$
b_k^g \cong b_k^{g(k)} + b_k^{g(k+1)} \ . \tag{11}
$$

The d^5 configuration can be regarded either as five d electrons or five d holes. $8,9,27,38,39$ This makes the diagonal matrix elements of the CF and spin-orbit interactions zero. It leads to the fact that any physical quantity for a $d³$ ion remains unchanged when the signs of both the spin-orbit coupling constant ζ and CF parameters B_{kq} are inversed: $8,9,39$

$$
b_k^g(B, C, B_{kq}, \zeta) = b_k^g(B, C, -B_{kq}, -\zeta) \tag{12}
$$

This requires that F_0, F_2, \ldots, F_{2n} in (10) be even functions of B_{kq} and that $F_1, F_3, \ldots, F_{2n+1}$ be odd function of B_{kq} .^{8,9} This feature is very useful in deriving analyti cal expressions for the SH parameters of d^5 ions.

The spin quartet ${}^4T_1(P)$ is the only excited state that couples via $H_{s.o.}$ with the ground ⁶S state.³⁷ Because of this, the ${}^{4}T_{1}(P)$ state plays the most important role in affecting the ZFS of $6S$ -state ions among various excited

states. Considering the spin doublets, we find that they contribute to the ZFS parameters at fourth and higher orders. Therefore the spin doublets must play a negligible role for the rank-2 ZFS parameters b_3 , which results mainly from the second- and third-order perturbations [see Eq. (11)]. In other words, the parameters $b\hat{i}$ arise predominantly from the second- and third-order effects of the spin-orbit interaction within the ground δS state and excited spin quartets. This conclusion enables one to omit the spin doublets in the diagonalization calculation omit the spin doublets in the diagonalization calculation of b_2^q . ^{13, 14} However, the spin doublets are non-negligible in the calculation of rank-4 ZFS terms, $8,9,15,16,39-42$ although they have energies generally higher than the spin quartets.²⁷

Therefore a successful comprehensive approach to the ZFS parameters b_k^g ($k = 2$ and 4) should include all the 252 states within d^5 configuration and be carried out up to the fifth or higher orders. This is achieved in a numerical way in a FORTRAN program developed by us for tetragonal symmetry. Using the functions (6), the program computes the CF Hamiltonian and spin-orbit coupling matrices of Γ_6 (62 × 62) and Γ_7 (64 × 64) representa tions using (8) and (9). The input parameters are B , C , α (the Trees correction), B_{20} , B'_{40} , Dq , and ζ . The program outputs the respective contributions to the parameters b_2^0 , b_4^0 , and b_4^4 , as well as the corresponding ones to the conventional parameters D , F , and α arising from second- up to fifth-order perturbations. The program is applicable to cubic symmetry by assuming $B_{20}=B'_{40}=0$. It takes about 3 min of CPU time for one set of computations. A copy of the program can be obtained from one of the authors (Yu) upon request.

III. ZERO-FIELD SPLITTING IN CUBIC SYMMETRY

In cubic symmetry there is only one ZFS parameter a , which relates to the separation between the Γ_8 and Γ_7 energy levels of the ground ⁶S state by $3a = E(\Gamma_8)$ $-E(\Gamma_7)$. ³¹ Thus it can be evaluated by means of diagonalization, as has also been done in Refs. 8, 15, 40, and 42. Perturbation calculations have also been performed, using the Watanabe²⁷ and MZ (Refs. 28 and 29) procedures, and analytical expressions have been available. '¹⁶ It should be mentioned that Powell, Gabriel and Johnston³⁹ performed a perturbation calculation up to sixth order in a way similar to the one adopted in this paper. (Note that Dq in Table I of Ref. 39 should be replaced by $-Dq$. ⁵) Powell, Gabriel, and Johnsto found that the spin-spin coupling contributes a negligible value to α in comparison with the contribution resulting from the spin-orbit coupling. The spin-orbit and CF interactions within the ground ⁶S and excited 4T_1 , 2T_2 , and E^2E states are found to be the major source of the cubic $ZFS.⁸$

In previous work⁸ we have made diagonalization calculations, which produce "accurate" values arising from the CF and spin-orbit interactions within the whole d^5 configuration for a given set of parameters. It has been concluded that $\alpha^{(4)}=F_0\xi^4$ is an even function, whereas

Dq (cm ⁻¹)	$a^{(4)}$	$a^{(5)}$	α (total)	α (dia.) ^a	$a \ (MZ)^b$
1600	130.1	24.8	154.9	155	118.0
1400	63.0	11.4	74.4	74.3	62.3
1200	32.9	6.1	39.0	39.0	34.7
1000	17.6	3.6	21.2	21.2	19.5
800	9.3	2.2	11.5	11.5	10.8
600	4.5	1.4	5.9	5.9	5.5
400	1.8	0.8	2.6	2.6	2.4
200	0.43	0.37	0.8	0.8	0.6
$\mathbf 0$	0	$\mathbf 0$	0	$\mathbf{0}$	$\mathbf 0$
-200	0.43	-0.37	0.06	0.06	0.3
-400	1.8	-0.8	1.0	1.0	1.7
-600	4.5	-1.4	3.1	3.1	4.4
-800	9.3	-2.2	7.1	7.1	9.0
-1000	17.6	-3.6	14.0	14.0	16.7
-1200	32.9	-6.1	26.8	26.8	29.7
-1400	63.0	-11.4	51.6	51.7	53.3
-1600	130.1	-24.8	105.3	105.3	99.7

TABLE I. Cubic zero-field splitting parameter α (in 10^{-4} cm⁻¹) vs Dq for Fe³⁺ ions, calculated assuming $B = 900$, $C = 3300$, and $\zeta = 400$ (in cm⁻¹).

'Calculated by direct diagonalization (Ref. 8).

Calculated using the Macfarlane-Zdansky perturbation procedure (Ref. 9).

 $a^{(5)}=F_1\zeta^5$ is an odd function of Dq and that $a \approx a^{(4)} + a^{(5)}$. Here we present a direct confirmation of these findings. The results of the calculations carried out up to fifth order are displayed in Table I. It is indicated that $a^{(4)}(Dq) = a^{(4)}(-Dq) > a^{(5)}(Dq) > 0$ for $Dq > 0$ while $a^{(5)}(Dq) = -a^{(5)}(-Dq)$. We also note that the value of $a^{(4)} + a^{(5)}$ is very close to a evaluated by mean of diagonalization within the accuracy $(10^{-5} \text{ cm}^{-1})$ of computation. The calculated results are also compared with those obtained previously δ using the MZ procedure. It is seen that the present procedure works well for a wide range of values of Dq.

IV. ZERO-FIELD SPLITTING IN TETRAGONAL SYMMETRY

It has been found that the contribution arising from the tetragonal CF components B_{20} and B'_{40} to the cubic ZFS parameters α is non-negligible.⁹ This contribution is denoted with a_i , so that⁹

$$
a = a_c + a_t \t{13}
$$

where a_c refers to the contribution arising purely from the cubic CF part. When the symmetry is increased from tetragonal to cubic, a_t vanishes and a equals to a_c . Since

			Present work					
Dq (cm ⁻¹)	$D^{(2)}$	$D^{(3)}$	$D^{(4)}$	D	D (BO) ^a	D (Watanabe) ^b	D (MZ) ^c	D (dia.) ^d
400	-70	13	-0.0	-57	-69	-58	-66	-83
500	-89	13	-0.0	-76	-88	-79	-78	-103
600	-109	13	-0.0	-95	-109	-100	-105	-124
700	-131	14	-0.1	-117	-131	-123	-126	-147
800	-155	15	-0.1	-140	-156	-148	-150	-172
900	-182	15	-0.1	-167	-184	-175	-176	-200
1000	-212	16	-0.1	-196	-215	-206	-206	-232
1100	-246	17	-0.1	-230	-250	-239	-240	-268
1200	-287	17	-0.2	-270	-291	-276	-280	-309
1300	-334	18	-0.3	-316	-340	-316	-327	-359
1400	-391	20	-0.4	-372	-397	-360	-383	-418
1500	-458	21	-0.7	-437	-467	-408	-451	-489

TABLE II. Zero-field splitting parameter $b_2^0 = D$ (in 10⁻⁴ cm⁻¹) vs Dq for Mn²⁺ ions in tetragona symmetry, calculated assuming $B = 911$, $C = 3273$, $\alpha = 65$, $\zeta = 337$, $B_{20} = -1000$, and $B'_{40} = 1000$ (in cm^{-1}).

'Lowest-order calculation of the Blume-Orbach procedure (see Refs. 3, 26, and 13).

Two lowest-order (fourth and sixth) calculations of the Watanabe-procedure (see Refs. 3 and 13).

'Lowest-order (third) calculation of the Macfarlane-Zdansky procedure (Refs. 3 and 13).

Calculated by direct diagonalization (omitting the spin doublets) (Ref. 13).

 a_c has been in Sec. III, we shall deal with a_t in this section together with the axial parameters D and F .

A. Rank-2 ZFS parameter D

The axial ZFS term D has been extensively studied during the past decades because of its significance in the EPR spectra (see Refs. $1-3$). The fact that the axial CF component B_{20} does not appear in the lowest (third) nonzero order of the BO procedure²⁵ indicates the importance of B_{40}' in affecting D in tetragonal symmetry.² Figure 1 shows D as functions of B_{20} , B'_{40} , and Dq. It is seen from Fig. 1(a) that D depends quadratically on B_{20} . This

FIG. 1. Axial spin Hamiltonian parameter D for $Fe³⁺$ ions $(B=900, C=3300, \text{ and } \zeta=400 \text{ in cm}^{-1})$ in tetragonal symmetry, as a function of (a) B_{20} ($Dq = 1000$ cm⁻¹ and $B_{40}' = 0$), (b) $B_{40} (B_{20} = 0$ and $Dq = 1000$ cm⁻¹), and (c) $Dq (B_{20} = B_{40}' = 7000$ $cm⁻¹$). The results calculated using the Watanabe (dot-dashed lines) and Blume-Orbach (dashed lines) procedures are shown for comparison.

dependence arises partially from the fourth-order processes involving B_{20} in the Watanabe²⁷ procedure as follows from the relation derived earlier:^{5,}

$$
D(B_{20}) = -\frac{3\zeta^2[(B_{20})^2 + 21\zeta B_{20}]}{70(7B + 7C)^2(17B + 5C)}.
$$
 (14)

It is shown by the dot-dashed line in Fig l(a). The term $D \propto (B_{20})^2$ in (14) was first given by Watanabe²⁷ and was referred to as the "Watanabe mechanism" in the earlier literature.²⁶ Figure 1(b) indicates a nearly linear B'_{40} dependence of D, as expected either from the BO or from the Watanabe procedure.^{3,26} Figure 1(c) shows that the Watanabe perturbation procedure does not work so well Watanabe perturbation procedure does not work so wel
as the BO one for $|Dq| > 1200$ cm⁻¹ and that D is more sensitive to B'_{40} than to B_{20} .

In Table II we display the distinct contributions of the first three (second, third, and fourth) orders of perturbation, together with a comparison with values calculated by BO, MZ, and Watanabe perturbation procedures. We note the approximation given by (14), i.e., note the approximation given by (14), i.e., $D \cong D^{(2)} + D^{(3)}$. The conclusion that the rank-2 ZFS parameters $b\bar{z}$ arise predominantly from the combined CF and spin-orbit interactions among the ground ${}^{6}S$ and spin quartets is plausible from perturbation processes such as the ones given by Eqs. (10) and (11). It is also clear that the spin doublets cannot contribute to D in the second and third orders, which produce the major part of D. Table II indicates a consistency among the perturbation procedures considered.

A great deal of effort has been afforded to evaluate D (or b_2^0) by diagonalization of the full energy matrices.^{3,11-14,35,43,44} However, such calculations can only produce approximate results. In tetragonal symmetry the three ZFS parameters b_2^0 , b_4^0 , and b_4^4 cannot be uniquel deduced from the three energy levels $[E(M_s = \pm \frac{5}{2}),$ $E(M_s = \pm \frac{3}{2})$, and $E(M_s = \pm \frac{1}{2})$ in the ground ⁶S state. A commonly used approximation is to omit b_4^4 (or α) in the spin Hamiltonian (1), which becomes then diagonal with respect to the basis $|^{6}S, M_{s}\rangle$. This approximation is reasonable in the case of strong distortion, where $a \ll |D|$. Thus two relations involving b_2^0 can be derived in this case:

$$
b_2^0 = \frac{1}{4} [E(\pm \frac{5}{2}) - E(\mp \frac{3}{2})] \approx b_2^0 + b_4^0 ,
$$

\n
$$
b_2^{0'} = \frac{1}{2} [E(\pm \frac{3}{2}) - E(\mp \frac{1}{2})] \approx b_2^0 - \frac{5}{2} b_4^0 .
$$
\n(15)

Relationships (15) are correct for trigonal symmetry as well. Further neglecting b_4^0 in (15), previous
works^{3,11–14,35,43–45} adopted either b_2^0 , or $b_2^{0'}$, or $(b_2^{0'} + b_2^{0''})/2$ to approximate b_2^0 . The resultant errors are then in the order of b_4^q/b_2^0 , which would reach 15%, as can be seen from Table II.

B. Rank-4 ZFS parameters a and F

There have appeared but a few papers dealing with the rank-4 ZFS parameters of $6S$ -state ions, possibly because of the considerably tedious calculations. Sato, Rispin, and $Kon⁴⁵ considered the contribution of only two excit$ ed states. More recently, a fifth-order perturbation calcu-

FIG. 2. Cubic parameter a vs Dq. The value of B, C, and ζ in Fig. 1. Solid line, $B_{20} = B'_{40} = 0$; cm⁻¹; dot-dashed line, $B_{20} = B'_{40} = 7000$ cm

FIG. 3. Contribution a_t vs (a) B_{20} [Dq = 1000 cm⁻¹ and ine), $Dq = 1000 \text{ cm}^{-1}$ and B'_{4} (dashed line), and $Dq = 1000 \text{ cm}^{-1}$ and $B'_{40} = 5000$]; (b) B'_{40} [$Dq = 1000$ cm⁻¹ and $B_{20} = 0$ (solid cm⁻¹ and $B_{20} = -5000$ cm⁻¹ (dashed line), Dq [$B_{20} = B'_{40} = 4000$ cm⁻¹ (dashed line), $B_{20} = B'_{40} = 70$ cm⁻¹ and B_{20} =5000 cm⁻¹ (dot-dashed line)]; and (c) B_4 ¹ B_{20} B_{40} B_{20} = B_{40}' = 10 000 cm⁻¹ (solid line)].

lation has been carried out and analytical have been derived by taking into account all excited states in the MZ procedure.⁹ The effect of the t CF components on the cubic ZFS parameter a_t , has been found to be non-negligible, and an approximate relation $a_t/F \cong -\frac{1}{2}$ has been derived.⁹ We shall show in this subsection that this relation is only approximate, whereas ived analytical formulas do not work so well as one would expect.

Figure 2 shows α versus Dq and indicates a sensitiv dependence. The a_t and F parameters are plotted in dependence. The a_t and r parameters are plotted in Figs. 3 and 4, respectively. It is seen from the Fig. 2 that a Dq dependence similar to that of a_c . In literature the powe g., Refs. $46-48$). It has been realized that the exponent k is a function of $Dq:$ ⁸

FIG. 4. Axial parameter F vs (a) B_{20} , (b) B'_{40} , and (c) Dq . The meaning of the solid, dashed, and dot-dashed lines is the same as in Fig. 3.

$$
k \approx \Delta [2/(10B + 6C + 12\alpha - \Delta) + 2/(15B + 10C + 22\alpha - 2\Delta) + 1/(\Delta - C/3)],
$$
\n(16)

where α is the Trees correction and $\Delta = |10Dq|$. For Mn^{2+} ions the values of k are around 2 in weak and intermediate CF and may reach 4 or even greater in strong CF.⁸ The values of k are usually greater for $Fe³⁺$ than for Mn^{2+} ions because of the greater CF strength in Fe³⁺ cases. The value of m , however, can then be calculated using the equation⁸ $m = kn$, where *n* is defined by $Dq \propto R^{-n}$, R being the interatomic distance of a given crystal. As the consequence of the fact that k is a function of Dq , m depends on the interatomic distance R of the crystal.

It is seen from Figs. 3(a) and 4(a) that a_t and F are both sensitive in a nearly linear way to the rank-2 axial

FIG. 5. Ratio α_1/F vs (a) B_{20} , (b) B'_{40} , and (c) Dq . The meaning of the lines used is the same as in Fig. 3.

CF parameter B_{20} . On the other hand, we note from Figs. 3(b) and 4(b) that a_t and F are insensitive to the rank-4 axial CF parameter B'_{40} . Figures 3(c) and 4(c) illustrate that both a_t and F change sign with the change in sign of Dq . In particular, F seems to be an odd function of Dq, although not exactly, as indicated in the Table III. Figure 5 shows the behavior of the ratio a_t /F. As has been found previously, ⁹ the ratio a_t/F is insensitive to all CF parameters B_{20} , B'_{40} , and Dq and range from -0.2 to -0.5 . Table III displays the distinct contributions of the fourth and fifth order to a_i , and F as well as provides a comparison with the previous theory.⁹ A very good convergency is obtained in the case of both a_t and F. The MZ procedure does not work so well as we expected, as can be seen from the comparison between the columns a_t and α , (MZ) and between F and F(MZ). In the lowest-(fifth-} order calculation, the previous work predicted $a_t(Dq) = -a_t(-Dq)$ and $F(Dq) = -F(-Dq)$, implying $a_t(Dq=0)=0$ and $F(Dq=0)=0.9$ These relations hold
indeed quite well in the case of F, i.e., quite well in the case of F , i.e., $F(Dq) \cong -F(-Dq)$, but not so well in the case of a_1 . This feature can be observed in Figs. 3(c) and 4(c) as well.

V. APPLICATIONS

Numerical calculations in earlier works^{2-23,25-27,38-45} concerned either the rank-2 (D) or rank-4 (the cubic α) ZFS parameters. The theory presented in this paper enables calculation of both the rank-2 and rank-4 parameters comprehensively. This is of significance since the parameters which are used in the calculation of the rank-2 ZFS parameters must also account for the rank-4 terms as well, and thus a better correlation can be obtained.

Considering the ZFS of $6S$ -state ions as a consequence of the combined effect of the spin-orbit and CF interactions within the whole d^5 configuration, we obtain that each ZFS parameter is related to the spin-orbit coupling constant ζ and CF parameters B_{kq} , as well as the electrostatic parameters B and C . Thus the ZFS parameters are intercorrelated. The weak CF effect on the excited states makes it rather difficult to gain information about the CF parameters except that on Dq . When the rank-2 or -4 ZFS parameters are studied separately, one has to use a specific CF model since the number of unknown CF parameters is more than that of the ZFS parameters. The theory presented here allows us to calculate all the ZFS parameters b_k^g ($k = 2$ and 4) by regarding all the CF parameters B_{ka} ($k = 2$ and 4) as adjustable phenomenological parameters, providing the values of the electrostatic and spin-orbit parameters are available. This constitutes the essential idea for the numerical calculations presented below.

A. Mn^{2+} and Fe^{3+} ions in cubic fluoroperovskites

The Mn^{2+} and Fe³⁺ ions in cubic fluoroperovskites, which are typical regular octahedral lattices, provide good examples for the examination of the microscopic SH theory of ${}^{6}S$ -state ions. In cubic symmetry there is only one CF (Dq) and one ZFS (a) parameter.

Dq (cm ⁻¹)	$\alpha_t^{(4)}$	$\alpha_t^{(5)}$	a_{t}	a_i (MZ) ^a	$F^{(4)}$	$F^{(5)}$	\boldsymbol{F}	F (MZ) ^a
-1600	58.4	-1.0	57.4	33.5	-158.6	5.3	-153.3	-86.1
-1400	36.1	-0.9	35.2	16.9	-96.3	3.6	-92.7	-43.5
-1200	24.1	-0.8	23.3	9.7	-63.1	2.7	-60.4	-24.8
-1000	16.8	-0.7	16.1	5.9	-43.0	2.1	-40.9	-15.2
-800	12.0	-0.6	11.4	3.8	-29.7	1.8	-27.9	-9.7
-600	8.6	-0.5	8.1	2.4	-20.3	1.6	-18.7	-6.1
-400	5.9	-0.5	5.4	1.4	-13.0	1.4	-11.6	-3.6
-200	3.7	-0.4	3.3	0.7	-7.0	1.4	-5.6	-1.7
$\mathbf 0$	1.7	-0.4	1.3	$\mathbf 0$	-1.5	1.3	-0.2	0
200	-0.2	-0.5	-0.7	-0.7	4.1	1.4	5.5	1.7
400	-2.3	-0.4	-2.7	-1.4	10.2	1.5	11.7	3.6
600	-4.7	-0.5	-5.2	-2.4	17.7	1.7	19.4	6.1
800	-7.6	-0.4	-8.0	-3.8	27.6	1.9	29.5	9.7
1000	-11.6	-0.3	-11.6	-5.9	41.8	2.4	44.2	15.2
1200	-16.2	0.1	-16.1	-9.7	64.1	3.1	67.2	24.8
1400	-21.8	1.5	-20.3	-16.9	102.9	4.4	107.3	43.5
1600	-24.4	6.8	-17.6	-33.5	180.1	7.0	187.1	86.1

TABLE III. Zero-field splitting parameters a_t and F (in 10⁻⁴ cm⁻¹) vs Dq for Fe³⁺ ions (B=900) cm⁻¹, $C = 3300$ cm⁻¹, and $\zeta = 400$ cm⁻¹).

'Lowest-order (fifth) calculation of the MZ procedure (Ref. 9).

Let us first consider Mn^{2+} :KZnF₃. It has been reported that $Dq = 822$ cm⁻¹, $B = 830$ cm⁻¹, $C = 3122$ cm⁻¹. and $\alpha=76$ cm⁻¹ from a least-squares fitting to the optical-absorption peaks⁴⁹ and that $\alpha = (6.3\pm 1)\times 10^{-4}$ $cm⁻¹$ from EPR experiments.⁵⁰ Only the values of the spin-orbit coupling constant ζ was unknown for Mn²⁺ ions in this compound, and we treat it as an adjustable parameter fitting the observed ZFS value. We obtain ζ =324 cm⁻¹, which compares well with the calculated⁵¹ free-ion value of 333 cm^{-1}.

In order to evaluate the ZFS of Mn^{2+} ions in other fiuoroperovskites, for which optical measurements are not available, we assume that they have values of B , C , α , and ζ identical to those of Mn^{2+} :KZnF₃. Later, we wil assume that all the cubic and tetragonal fluoroperovskites under investigation have the same that values of B, C, α , and ζ when they are doped with Mn²⁺. This assumption seems to be quite reasonable in our case, because of similar crystalline structure⁴⁹ in all fluoroperovskites under consideration. For example, it has been reported that $B = 825$ cm⁻¹ and $C = 3136$ cm⁻¹ for Mn²⁺:RbCdF₃, as compared with $B = 830$ cm⁻¹ and $C = 3122$ cm⁻¹ found for Mn^{2+} :KZnF₃.⁴⁹ The slight difference in the values of

these parameters for the lattices under consideration will make the calculated results somewhat different, but will not cause a change in the final conclusions. We then adjust Dq to fit the observed ZFS parameter a . The calculated and observed^{50,52,53} results are listed in Table IV. The deduced value of $Dq = 730$ cm⁻¹ is in good agree ment with $Dq = 715$ cm⁻¹ obtained from optical data Thus we expect that other Dq values deduced in this way will also be reasonable.

The case of Fe^{3+} ions is somewhat complicated because of a lack of detailed optical data. Since a predominant amount of Fe ions in $Fe:KZnF₃$ crystals appears to be the 2+ state when Fe ions replace Zn^{2+} ions in this crystal, it is difficult to observe optical lines due to Fe^{3+} . Fortunately, in the large-Fe-concentration samples of $KZn_xFe_{1-x}F_3$, five sharp absorption lines around 25 800 cm^{-1} have been found and attributed to the transition from $^6A_{1g}$ to the degenerate states $^4A_{1g} (^4G)$ and $^4E_g(^4G)$. Another band centered around 29000° cm⁻¹ has been attributed to the transitions from ${}^6A_{1g}$ to ${}^4T_{2g}({}^4D).{}^{54}$ This feature is very similar to that seen in $Li_3Na_3Fe_2F_{12}$ crystals, where for the Fe³⁺ ions the values $B = 877.5 \text{ cm}^{-1}$ $C = 3146$ cm⁻¹, and $\alpha = 64.5$ cm⁻¹ have been obtained

TABLE IV. Zero-field splitting parameter a for Mn²⁺ ions in cubic sites of fluoroperovskites; $B = 830$, $C = 3122$, $\alpha = 76$, and ζ = 324 (in cm⁻¹) for all the compounds as well as the Dq values listed in the first row are assumed.

	Mn^{2+} :RbCaF ₃			$Mn^{2+}:\text{TlCdF}_3$ $Mn^{2+}:\text{KCdF}_3$ $Mn^{2+}:\text{RbCdF}_3$	Mn^{2+} : $KMgF_3$	Mn^{2+} :KZnF
Dq (cm ⁻¹)	693	723	743	730.	833	822
$a^{(4)}$ (10 ⁻⁴ cm ⁻¹)	3.4	3.8	4.0	3.9	5.5	5.3
$a^{(5)}$ (10 ⁻⁴ cm ⁻¹)	0.7	0.8	0.9	0.8	1.0	1.0
a (total) $(10^{-4} \text{ cm}^{-1})$	4.1	4.6	4.9	4.7	6.5	6.3
α (expt.) $(10^{-4} \text{ cm}^{-1})$	4.1(2)	4.6(2)	4.9(3)	4.7(2)	6.5(5)	6.3(1)
Ref. for α (expt.)	53	53	53	53	52	50

	$Fe3+:TICdF3$	$Fe3+:RbCdF3$	$Fe3+:KCdF3$	$Fe3+:KZnF3$	$Fe3+:KMgF$	$Fe3+:RbCaF3$
Dq (cm ⁻¹)	1295	1297	1350	1348	1340	1254
$a^{(4)}$ (10 ⁻⁴ cm ⁻¹)	37.6	37.9	45.2	44.8	43.6	32.9
$a^{(5)}$ (10 ⁻⁴ cm ⁻¹)	6.6	6.6	7.8	7.8	7.6	5.8
α (total) $(10^{-4} \text{ cm}^{-1})$	44.2	44.5	53.0	52.6	51.2	38.7
α (expt.) $(10^{-4} \text{ cm}^{-1})$	44.1(2)	44.5(2)	53(2)	52.7(2)	51.2(5)	38.7(3)
Ref. for α (expt.)	56	56	52	50	52	46

TABLE V. Zero-field splitting parameters for Fe³⁺ ions in cubic sites of fluoroperovskites; $B = 877.5$, $C = 3146.5$, $\alpha = 64.5$, and ζ = 371 (in cm⁻¹) for all the compounds as well as the Dq values listed in the first row are assumed.

We assume that Fe^{3+} ions in KZnF₃ as well as in all fluoroperovskites have values of B, C, or ζ close to those for $Li_3Na_3Fe_2F_{12}$ crystals.

Recently, photoluminescence lines have been observed for Fe^{3+} ions in $KMgF_3$ crystals at 14 309, 14 288, 14 260, and 14 239 (in cm⁻¹), due to ${}^{4}T_{1g}(g) \rightarrow {}^{6}A_{1g}$ transitions.⁵⁵ We thus obtain $Dq = 1340 \text{ cm}^{-1}$ for Fe^{3+} :KMgF₃. The calculated results are as follows 14 270 cm⁻¹ for ⁴ T_{1g} , 19 890 cm⁻¹ for ⁴ T_{2g} , 25 800 cm for ${}^4A_{1g}$ and 4E_g , and 28 560 cm⁻¹ for ${}^4T_{2g}^{8}$, as measure from $\delta_{A_{1g}}^s$. We thus obtain $B = 877.5$, $C = 3146.5$, α =64.5, and Dq =1340 (in cm⁻¹) for Fe³⁺:KMgF₃. Adjusting ζ to fit the observed⁵² value of a, we obtain $\xi = 371$ cm⁻¹, which is much less than the calculated⁵¹ free-ion value of 486 cm⁻¹. Assuming that $Fe³⁺$ ions in all fluoroperovskites have the same value of B , C , ζ , and

 α , we are able to calculate the ZFS parameter α by regarding Dq as an adjustable parameter to fit the observed values^{46,50,52,56} as we did in the Mn²⁺ case. The result are shown in Table V. It is noted that a strong Jahn-Teller effect occurs within the ${}^{4}T_{1g}$ multiplet of Fe^{3+} :KMgF₃.⁵⁵ The spin-orbit energies of ${}^{4}T_{1g}(P)$ have been calculated by us as 13971 , 14133 , 14267 , and 14337 (in cm^{-1}). The spacing of the splitting is 365 cm⁻¹. However, the four energy levels of ${}^4T_{1}$ _v (P) have been found⁵⁵ experimentally to be 14 239, 14 260 , 14 288, and 14 309 (in cm^{-1}) with a splitting spacing of 70 cm⁻¹.

B. Mn^{2+} and Fe^{3+} ions at tetragonal centers in fluoroperovskites

In tetragonal symmetry there are three CF parameters B_{20} , B'_{40} , and Dq and three ZFS parameters D, a, and F.

		Rb_2CdF_4	K_2CdF_4		$Rb_2MgF_4 Rb_2ZnF_4$	K_2MgF_4	K_2ZnF_4
B_{20} (cm ⁻¹)		-1500	6000	2000	2450	7500	1400
B'_{40} (cm ⁻¹)		-280	-1280	50	150	-2000	-360
Dq (cm ⁻¹)		730	743	833	822	833	822
$D(10^{-4} \text{ cm}^{-1})$:	second	36.5	114.7	-19.3	-41.9	227.3	58.7
	third	24.3	-92.1	-33.4	-40.7	-119.3	-22.7
	fourth	-2.3	0.6	0.3	0.4	0.9	0.2
	fifth	0.1	-0.3	-0.1	-0.1	-0.5	-0.1
	total	60.6	22.9	-52.5	-82.3	108.4	36.1
	expt.	60.2(7)		$21.2(10) - 53.2(5)$	$-81.4(8)$	107.0(2)	36.0(2)
$F(10^{-4}$ cm ⁻¹):	fourth	-1.9	7.1	3.0	3.6	10.8	2.1
	fifth	0.0	-0.1	0.0	0.0	-0.2	-0.0
	total	-1.9	7.0	3.0	3.6	10.6	2.1
	expt.	$-0.7(20)$	6.5(18)	1.8(15)	3.5(30)	11.0(2)	1.9(6)
$a (10^{-4} cm^{-1})$:	fourth	4.6	1.0	4.3	3.9	0.7	4.5
	fifth	0.8	0.9	1.1	1.0	1.1	1.0
	total	5.4	1.9	5.4	4.9	1.8	5.5
	expt.	6.1(9)	1.6(8)	5.3(5)	3.2(15)	2.0(1)	5.6(2)
α (10 ⁻⁴ cm ⁻¹)		$+0.7$	-3.0	-1.1	-1.4	-4.7	-0.8
Ref. for D, F, a (expt.)		57	57	57	57	19	18

TABLE VI. Zero-field splitting parameters for Mn^{2+} ions in tetragonal centers of fluoroperovskite $B = 830$, $C = 3122$, $\alpha = 76$, and $\zeta = 324$ (in cm⁻¹) for all the compounds as well as values of the CF parameters listed in the first three rows are assumed.

It is easy to make a comprehensive calculation of all the ZFS parameters by regarding the CF parameters as adjustable parameters under the assumption that the Mn^{2+} or $Fe³⁺$ ions in all the fluoroperovskites have the same value for the electrostatic as well as the spin-orbit coupling parameter for either ion.

We consider at first the Mn^{2+} ions in the tetragonal (D_{4h}) fluoroperovskites K_2MgF_4 , K_2ZnF_4 , Rb_2CdF_4 , K_2CdF_4 , Rb_2MgF_4 , and Rb_2ZnF_4 for which the electronnuclear double-resonance (ENDOR) and EPR experimental data are available.^{18,19,57} The ZFS of Mn^{2+} ions in K_2MgF_4 and K_2ZnF_4 crystals has recently been calculated by Yu^9 using the MZ perturbation procedure, which does not work very well for F and a_t , as has been pointed out in Sec. III. In deriving the CF parameters used in these calculations, the superposition model⁵⁸ of crystal fields has been applied and crystallographic data derived from the experimental data⁵⁹ of superhyperfi constants were adopted. The agreement obtained between the calculated and observed results is reasonable, but also not quite satisfactory.

In our present calculation we assume that Rb_2CdF_4 and RbCdF₃ ($Dq = 730$ cm⁻¹), K₂CdF₄, and KCdF₃ $(Dq = 743 \text{ cm}^{-1}), \text{ Rb}_2\text{MgF}_4, \text{K}_2\text{MgF}_4, \text{and} \text{KMgF}_3$ $(Dq = 833 \text{ cm}^{-1})$, and Rb_2ZnF_4 , K_2ZnF_4 , and $KZnF_3$ $(Dq = 822 \text{ cm}^{-1})$ have the same Dq values (given in the parentheses above) as deduced in the Table IV. The electrostatic parameters and spin-orbit coupling constant are

assumed to be the same as those for Mn^{2+} :KZnF₃, i.e., $B = 830$, $C = 3122$, $\alpha = 76$, and $\zeta = 324$ (in cm⁻¹) (Ref. 49) and Sec. V A). Thus we have two CF parameters B_{20} and B'_{40} left as adjustable parameters. The fittings were worked out noting that D is sensitive to B'_{40} , while α_t and F are also sensitive to B_{20} . However, the extensive FOR-TRAN program used in the calculation does not allow efficient least-squares fitting. Table VI presents a set of B_{20} and B'_{40} , which produces D, F, and a, agreeing well with the observed data.

A similar procedure was performed for $Fe³⁺$ ions at the vacancy centers of $RbCdF_3$, ⁶⁰ CsCdF₃, ⁶⁰ and $KZnF_3$ (Ref. 61) and the substitutional tetragonal center of Rb_2CdF_4 .⁶² We have assumed that the vacancy centers have the same value of Dq as the cubic centers. The results are shown in Table VII. The experimental errors are small, and the agreement between the calculated and observed results is very good.

It follows from the Tables VI and VII that the contributions to D from fourth- and fifth-order perturbations are negligible. The third-order perturbation plays a very important role, especially in the case of Mn^{2+} ions, where it contributes to D between 50% and 250% of the contribution resulting from the second-order perturbation. The fifth-order contribution to F is always negligible in the present cases. Tables VI and VII list also the calculated values of a_t . Its significance is obvious—the effect of the tetragonal field components on the cubic ZFS is non-

TABLE VII. Zero-field splitting parameters for $Fe³⁺$ ions in tetragonal centers of fluoroperovskites; $B = 877.5$, $C = 3146.5$, $\alpha = 64.5$, and $\zeta = 371$ (in cm⁻¹) for all the compounds as well as values of the CF parameters listed in the first three rows are assumed.

		$KZnF_3$				Rb_2CdF_4 CsCdF ₃ -Li ⁺ CsCdF ₃ -V _{Cd} RbCdF ₃ -Li ⁺ RbCdF ₃ -V _{Cd}	
B_{20} (cm ⁻¹)		4100	2700	5000	2850	4100	2600
B'_{40} (cm ⁻¹)		1020	530	1060	850	800	640
Dq (cm ⁻¹)		1348	1297	1297	1297	1297	1297
$D(10^{-4} \text{ cm}^{-1})$	third	second -615.8 -286.6 -155.7	-95.9	-628.2 -176.5	-442.2 -103.5	-462.9 -144.6	-335.9 -93.4
	fourth	5.4	2.9	5.5	3.3	4.5	2.9
	fifth	-1.1	-0.6	-1.2	-0.7	-1.0	-0.6
	total	-767.2	-380.2	-800.4	-543.1	-604.0	-427.0
	expt.		$-759.0(5) -369.3(2)$	$-800.9(1)$	$-547.7(1)$	$-603.6(1)$	$-421.7(1)$
$F(10^{-4}$ cm ⁻¹)	fourth	31.5	18.4	33.5	19.2	27.7	17.6
	fifth	0.4	0.2	0.3	0.2	0.2	0.2
	total	31.9	18.6	33.8	19.4	27.9	17.8
	expt.	31.0(5)	20.9(3)	35.3(2)	19.5(2)	30.0(2)	18.0(2)
$a (10^{-4} \text{ cm}^{-1})$	fourth	33.4	31.0	25.6	30.9	27.6	31.5
	fifth	7.8	6.6	6.6	6.6	6.6	6.6
	total	41.2	37.6	32.2	37.5	34.2	37.9
	expt.	39.0(5)	40.5(3)	34.3(2)	37.0(2)	36.0(2)	38.2(2)
a_t (10 ⁻⁴ cm ⁻¹)		-11.4	-6.9	-12.3	-7.0	-10.3	-6.6
Ref. for D, F, a (expt.)		61	62	60	60	60	60

negligible. In particular, for Mn^{2+} : K_2CdF_4 and Mn^{2+1} :K₂MgF₄ crystals, the values of a_t are even greater in magnitude than the observed cubic ZFS parameter a .

VI. CONCLUSIONS

We have studied in detail the rank-2 and -4 zero-field splitting parameters of ${}^{6}S$ -state ions in cubic and tetragonal symmetries. The crystal field and electrostatic interactions have been taken as the unperturbed Hamiltonian, whereas the spin-orbit coupling has been taken as a perturbation. Since the derivation of analytical formulas in high orders of perturbation is too tedious, a FORTRAN program has been developed to calculate numerically the zero-field splitting parameters D , α , and F up to the fifth order within the whole d^5 configuration (252 states). Using this program, we have studied the cubic parameter α as well as the tetragonal parameters D , α , and F in a wide range of values of the crystal-field parameter Dq. The perturbation process shows a very good convergency as follows from comparison with the diagonalization results. The zero-field splitting parameters have also been studied as a function of the tetragonal crystal-field parameters B_{20} and B'_{40} . It has been found that the parameters B_{20} and B'_{40} contribute to the zero-field splitting parameter a, a value of a_t , which is non-negligible for the cases under

'Author to whom the correspondence should be addressed.

- V. K. Jain and G. Lehmann, Phys. Status Solidi B 159, 495 (1990).
- ${}^{2}R$. R. Sharma, in Advances in Mössbauer Spectroscopy, edited by P. V. Thosar and P. K. Lyengar (Elsevier, Amsterdam, 1983), p. 707.
- W. L. Yu and M. G. Zhao, Phys. Rev. B 37, 9254 (1988).
- 4W. L. Yu and M. G. Zhao, J. Phys. C 17, L525 (1984).
- 5W. L. Yu and M. G. Zhao, Phys. Status Solidi B 140, 203 (1987).
- W. L. Yu and M. G. Zhao, J. Phys. C 18, L1087 (1985).
- 7W. L. Yu, M. G. Zhao, and Z. Q. Lin, J. Phys. C 18, 1857 (1985).
- ⁸W. L. Yu, Phys. Rev. B 39, 622 (1989).
- ⁹W. L. Yu, Phys. Rev. B 41, 9415 (1990).
- ¹⁰G. G. Siu, J. Phys. C **21**, 3927 (1988).
- ¹¹S. Febbraro, J. Phys. C **20**, 5367 (1987).
- ¹²S. Febbraro, J. Phys. C 21, 2577 (1988).
- ¹³K. Y. Wang and W. L. Yu, J. Phys. Condens. Matter 3, 2529 (1991).
- ¹⁴J. Z. Wang, W. L. Yu, and K. Fang, Phys. Rev. B 43, 2575 (1991).
- i5X. Y. Kuang and Z. H. Chen, Phys. Rev. B36, 797 (1987).
- M. L. Du and M. G. Zhao, J. Phys. C 18, 3241 (1985).
- ¹⁷R. R. Sharma, R. Orbach, and T. P. Das, Phys. Rev. 155, 338 $(1967).$
- ¹⁸V. J. Folen, Phys. Rev. B 6, 1670 (1972).
- ¹⁹P. A. Narayana, Phys. Rev. B 10, 2676 (1974).
- ²⁰P. Novak and I. Veltrusky, Phys. Status Solidi B 73, 575 (1976).
- ²¹A. Van Heuvelen, J. Chem. Phys. **46**, 4903 (1967).
- ²²B. G. Wybourne, J. Chem. Phys. **43**, 4506 (1965).
- 23 J. A. Tuszynski and R. Chatterjee, Phys. Lett. 104, A267 (1984).
- ²⁴C. Rudowicz, Magn. Res. Rev. 13, 1 (1987).

consideration. The parameters a_t and F are sensitive to the crystal-field parameter B_{20} , whereas D is sensitive to B'_{40} . The present theory has been applied to calculate the B_{40} . The present theory has been applied to call $z = 2$ and Mn^2 ions at the cubic (a) and tetragonal $(a, F,$ and D) symmetries in fluoroperovskites. Since for the tetragonal symmetry the number of zero-field splitting parameters equals that of the crystal-field parameters, we have been able to regard the crystal-field parameters as adjustable phenomenological parameters. In this way we have avoided problems arising from application of a specific crystal-field model. The present results are in good agreement with the experimental EPR and ENDOR data. Our present study reveals that crystal-field theory provides a reasonable interpretation of the microscopic origin of the zero-field splitting of ⁶S-state ions.

ACKNOWLEDGMENTS

This work was supported by the National Scientific Fund of China (Grant No. 28970142) and by the Committee of Science and Technology of Sichuan Province. A part of this work has been carried out during the first author's (Yu) stay at City Polytechnic of Hong Kong. We thank UPGC and the City Polytechnic Strategic Research Fund for financial support.

- ²⁵M. Blume and R. Orbach, Phys. Rev. **127**, 1587 (1962).
- ²⁶R. R. Sharma, R. Orbach, and T. P. Das, Phys. Rev. 149, 257 (1965).
- ²⁷H. Watanabe, Prog. Theor. Phys. **18**, 405 (1957).
- ²⁸R. M. Macfarlane, J. Chem. Phys. 47, 2066 (1967); Phys. Rev. B 1, 989 (1970).
- ²⁹K. Zdansky, Phys. Rev. 159, 201 (1967).
- W. H. Baur and R. R. Sharma, J. Phys. C 19, L229 (1986).
- 31 A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970).
- $32K$. W. H. Stevens, Proc. Phys. Soc. London 65, 209 (1952).
- ³³B. G. Wybourne, Spectroscopic Properties of Rare Earths (Interscience, New York, 1965).
- 34M. R. Kibler, in Recent Advances in Group Theory and Their Application to Spectroscopy, edited by John C. Donini (Plenum, New York, 1979), p. 1.
- ³⁵E. König and R. Schnakig, Phys. Status Solidi B 77, 657 (1976).
- ³⁶G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Satz, Properties of the Thirty-Two Point Groups (MIT Press, Cambridge, MA, 1963).
- 37C. W. Neilson and G. F. Koster, Spectroscopic Coefficients for the p^n , d^n , and f^n Configurations (MIT Press, Cambridge, MA, 1963).
- 38H. Watanabe, Phys. Rev. Lett. 4, 410 (1960).
- ³⁹M. J. D. Powell, J. R. Gabriel, and D. F. Johnston, Phys. Rev. Lett. 5, 145 (1960).
- ⁴⁰J. R. Gabriel, D. F. Johnston, and M. J. D. Powell, Proc. R. Soc. London 264, 503 (1961).
- W. Low and G. Rosengarten, in Paramagnetic Resonance, edited by W. Low (Academic, New York, 1963), p. 314.
- 42G. Rosengarten and W. Low, J. Mol. Spectrosc. 12, 319 (1964).
- ⁴³E. König and R. Schnakig, Phys. Status Solidi B 78, 543 (1976).
- ⁴⁴E. König and R. Schnakig, Chem. Phys. Lett. 32, 553 (1975).
- ⁴⁵M. Sato, A. S. Rispin, and H. Kon, Chem. Phys. 18, 211 (1976).
- ⁴⁶J. Rubio O., H. Murrieta S., and G. Aguilar S., J. Chem. Phys. 71, 4112 (1979).
- ⁴⁷K. A. Müller, Phys. Rev. B 13, 3209 (1976).
- 48K. A. Müller and W. Berlinger, Phys. Rev. B 34, 6130 (1986).
- 49F. Rodriguez and M. Moreno, J. Chem. Phys. 84, 692 (1986}.
- 5oR. K.Jeck and J.J. Krebs, Phys. Rev. 8 5, 1677 (1972).
- 5IM. Blume and R. E. Watson, Proc. Phys. Soc. London A 271, 565 (1963).
- 52T. P. P. Hall, W. Hayes, R. W. H. Stevens, and J. Wilkens, J. Chem. Phys. 38, 1977 {1963).
- 53J. J. Rousseau, A. Leble, and J. C. Fayet, J. Phys. (Paris) 39, 1215 (1978).
- 54J. Ferguson, E. R. Krausz, and H. J. Guggenheim, Mol. Phys. 29, 1785 (1975).
- 55A. Poirier and D. Walsh, J. Phys. C 16, 2619 (1983).
- ⁵⁶J. J. Rousseau, M. Rousseau, and J. C. Fayet, Phys. Status Solidi B 73, 625 (1976).
- 57A. H. M. Schrama, Physica 68, 279 (1973).
- 58D. J. Newman, Adv. Phys. 20, 197 (1970).
- 59M. T. Barriuso and M. Moreno, Phys. Rev. B 29, 3623 (1984).
- 60H. Takeuchi, M. Arakawa, and H. Ebisu, J. Phys. Soc. Jpn. 56, 3677 (1987).
- M. Binois, A. Leble, J.J. Rousseau, and J. C. Fayet, J. Phys. {Paris) Colloq. 34, C9-285 (1973).
- H. Takeuchi, H. Ebisu, and M. Arakawa, J. Phys. Soc. Jpn. 60, 304 (1991).