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Using a recently introduced two-site cluster approximation, we investigate a semi-infinite Ising cubic
lattice with three difFerent exchange parameters (J, couples surface spins, J, is the exchange interaction
between spins in the surface and second layer, and J is the interaction in the bulk). Phase diagrams for
surface ordering and temperature dependencies of surface and bulk magnetizations are studied for vari-
ous ratios J

&
/J and J, /J. Our results show that the existence of a dip in the temperature dependence of

the surface magnetization near the bulk critical temperature depends strongly on the number of the lay-
ers considered in the calculations. The magnetization as a function of the distance from the surface is
obtained as well.

I. INTRODUCTION

During recent years, surface magnetism has attracted
considerable interest both experimentally and theoretical-
ly. Experimentally, surface magnetism has been studied
mainly using crystalline systems such as Ni, Cr, and Gd.
On theoretical grounds surface magnetic order has been
treated within different frameworks: the mean-field ap-
proximation, ', effective-field theories, , series expan-
sion, ' Kikuchi-type theories, "' spin-fluctuation
theories, ' the random-phase approximation, '

renormalization-group methods, ' and Monte Carlo
techniques. ' A number of the studies is devoted to
the Mills model' with two exchange parameters (J, for
spins on a free surface and J for all others spins). Howev-
er, in our opinion a great influence on the surface mag-
netic order has the exchange interaction between surface
and second layer (denoted J, ). Therefore, in the present
work, we study an extended and more realistic model
with three exchange parameters J„J,, and J (see Fig. 1).
In our analysis we have used the so-called "two-site clus-
ter approximation, " which is based on the introduction
of differential operators into the exact identity for a clus-
ter of two neighboring spins. Unlike standard effective-
field treatments, the present method can explicitly and
systematically include correlation effect and has already
been applied to several situations such as site-random,
bond-random, and random-field Ising bulk problems.
Moreover, the method is able to discern between lattices
of the same coordination number but different structure
(e.g., plane triangular and simple cubic lattices). In the
present paper we apply this method to the semi-infinite
simple cubic ferromagnetic spin- —, Ising model. For sim-

plicity we restrict ourselves to the approximation where
thermal correlations are neglected.

The outline of the paper is as follows. In Sec. II we
briefly review the basic points of the two-site cluster ap-
proximation when it is applied to the Ising ferromagnetic
system with a free surface. In Sec. III we examine phase
diagrams and show that if the exchange parameter J, is

greater than J; ( J*, =6.1899J), then the surface magne-
tism exists always above the bulk critical temperature
(T, ), regardless of how weak the surface exchange pa-
rameter is. In Sec. IV the temperature dependence of the
surface magnetization (m, ) and some characteristic mag-
netization profiles as a function of distance are presented.
The surface magnetization is studied near T, in detail,
and the influence of increasing the number of layers on
the accuracy of numerical results is demonstrated. In
Sec. V a brief discussion of our results is presented.

II. GENERAL FORMALISM

,'(cr, +o, ) =— sinh(h;+h )

cosh(h;+h )+exp( —2(, )cosh(h; —h ) ) '

where t; =gJ,",P=(ke T) ', and

with the terms k =j and l =i excluded from the summa-
tions over k and l, respectively. The symbol ( . ) indi-
cates the usual thermal average.

It should be noted here that the exact equation (2) is a
two-spin cluster analog of the Callen single-site identity, '

which has been used as a basis for effective-field

The Hamiltonian for a three-dimensional spin- —, Ising
ferromagnetic system is given by

H= —g J;,cr;oj,
(i j )

where cr; =+1 is the usual Ising variable and (i,j ) runs
over all nearest-neighbor (NN) spins; J,, is the exchange
parameter, which has the value J, if both spins lie in the
free surface, the value J, between the surface and second
layer spins, and the bulk value J otherwise (see Fig. 1).

The starting point for the statistics of our spin system
is the exact equation for a pair of neighboring spins:
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where mk = ( crk ) is the magnetization per site in the kth
layer (m, —=m, ) and Pk represent polynomial functions of
mk „mk, and mk+, . The coefficients of these polyno-
mial functions are complicated hyperbolic functions,
which depend on J„J&,J, and T. As an example, we
show the equation for the first layer:

JE JL

FIG. 1. Part of a two-dimensional cross section through a
semi-infinite Ising system. J, denotes the exchange parameter
between surface spins, J& is the exchange parameter between
surface and second-layer spins, and J is the exchange parameter
between all other spins.

m, = 2m, [3X&+m, (Xz+9X5 )+3m, X& ]

+2m&[ X3+3m, (X4+4X6+X9)

+3m, (X7+3X]~+X]])+m sX, ]

+2m, m 2[3X)3+m, (X)4+X,5)+3m,4X,6],
(9)

theories, recently applied to the semi-infinite simple
cubic ferromagnetic spin- —,

' Ising model. If the average of
the right-hand side in (2) is taken as the arguments of hy-
perbolic functions, we obtain the usual Oguchi approxi-
mation. For obtaining a better result, the following
identity will be used:

exp(yD„+5D )f(x,y) =f (x+y,y+5), (3)

where D„=BIB xand D =8IBy are the difFerential
operators.

Now, by using Eq. (3) and the fact that

exp(ao k )=cosh(a)+o. ksinh(a), crj, =+1,
Eq. (2) can be rewritten as

—,'(a, +a, )

( A g +w p Bg ) tt ( F~~ +a ~ Gy )jf (x,y )„—0
k I

(4)

where

and

A(k =cosh[t(„(D„+Dy )],
8,„=sinh[t; (kD +D.

» )],
F,I =cosh[t, i(D„D)], —

6,I
=sinh[tji (D„D)], —

f (x,y)= sinh(x)
cosh(x ) +exp( 2t; )cosh(y )—.

(6)

Let us assume the statistical independence of all multi-
spin correlations and apply Eq. (5) to the simple cubic
structure (z =6) with a (100) free surface. We obtain a
set of mutually coupled equations, which have the gen-
eral form

where X,. =X;(J„J&,J, T) (i = 1, . . .,46) are the above-
mentioned hyperbolic functions.

Our aim in the next sections is to obtain from Eq. (8)
the various phase diagrams which our model may exhibit
and to study the temperature dependence of the surface
magnetization. For this purpose it is necessary to solve
an infinite set of equations given by (8). Obviously, this is
impossible; therefore, for obtaining, for obtaining a finite
set of equations, we can put mk =mk+, for a certain
value of k, because the difference between mk and mk+,
is very small if k is sufficiently large. It is clear from the
physical point of view that the assumption mk =mj, +, is
equivalent to the assumption mk =mb (mb is the bulk
magnetization obtained by using the same technique for
the present model without a free surface). However,
from the mathematical point of view, for mk =mk+, and
mk=mb we obtain two different systems of equations,
i.e., two different types of approximation. These two sys-
tems of equations differ only in the last equation, but
their solutions can differ both quantitatively and qualita-
tively if we take into account only a small number of lay-
ers. On the other hand, it is clear that the difference be-
tween these solutions must decrease if k increases.
Theoretically, if we take into account an infinite number
of layers (i.e., k ~ ()0 ), then we obtain the same solutions.
For this reason we analyzed Eqs. (8) numerically under
the assumptions mj, =mk+, and mk =mb for k=3, 5, 10,
15, and 20. We found that in the case k=3 there is a
quantitative difference of about 3%—4% between numer-
ical solutions of Eqs. (8) for m3=m4 and m3=mb.
Moreover, for m3 =m& the surface magnetization curve
has near T, an evident dip (in the case m3 =m4, there is
only a very small dip). If k increases, the quantitative
difference between these solutions decreases and the
above-mentioned dip disappears. For k=20 we obtain
practically the same solutions for the cases mzo=m2,
and m20=mb. Therefore, in the next numerical calcula-
tions, we shall consider 20 layers. Let us note here that
our previous considerations will be illustrated at the end
of Sec. IV.
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III. PHASE DIAGRAMS
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FIG. 9. Layer magnetization ml, vs the number of atomic
layers, k, when A&=0 and 6, =1. In the case of curve a,
T =4.7J/k~, and in the case of curve b, T =5.8J/k&.
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FIG. 10. Layer magnetization mk vs the number of atomic
layers, k, when 6, =0 and 6, = —1. In the case of curve a,
T =4.5Jlk~, and in the case of curve b, T = 5J/k&.

magnetization obtained by solving Eq. (8) under the as-
sumption m 20

=m 2&.

In Fig. 4 are plotted the temperature dependences of
the surface magnetization for h&=9 and 5, =1, 0, and
—1. Because in this case 6, & 6&, the critical tempera-
ture in the surface layer, T, ( b,, ) is consequently greater
than the bulk critical temperature for arbitrary values of

Curve c in this figure illustrates the fact that if
6, & 6', and 6,~—1, then for low temperatures m, & m&

and near T, we find m, & m&.
Now we shall study our system for 5& &6&, namely,

for b, , =o (Mills model), b, ,
= —0.9 and for the same

values 6, as in the previous case. As can be seen from
Fig. 5 for the Mills model, the present method qualita-
tively reproduces well-known results. ' ' ' Namely, for
5, )A„we obtain m, & mb and the surface critical tem-
perature T, (A, ) is greater than T, On the oth. er hand,
for 5, & A„we have m, & m& and the surface magnetiza-

tion disappears at T, .
In Fig. 6 is illustrated that for 6,~—1 the surface lay-

er behaves like a two-dimensional Ising system in which
the exchange parameter is J, .

In Figs. 7—10 the layered magnetizations are presented
as functions of the layer number k (i.e., as functions of
distance from the surface) for some typical values of b,
and 5, . The most interesting results are obtained for
b, , =9 and b,, = —I (Fig. 8). In this case we find two
different types of the magnetization profiles for T & T,"
and T) T, . For the Mills model we obtain the layered
magnetizations that exponentially decrease (b,, )6„)or
increase (6, ( b,„)into the bulk, as shown in Figs. 9 and
10.

Finally, we shall study the behavior of m, for Mills
model near the bulk critical temperature in detail, and we
shall show the influence of increasing the number of lay-
ers k on the accuracy of results. In Fig. 11 are presented
the temperature dependences of m, obtained by the
present technique for different approximations. From
this figure we can see that for m20 =m2, and m20 =mt,
we obtain the same results (curve a), and there is no evi-
dence for a discontinuous slope at T,". On the other
hand, the difference between the results for m 3

=m 4

(curve b) and for m =m& (curve c) is apparent. More-
bover, in the case m3 =m& we find a clear dip near T, ,

similarly as in Ref. 5. If we verify this fact for other
values of 5, and h„we obtain similar results, i.e., the ex-
istence of a dip for m 3

=m& and nonexistence for
m =m& or m 20

=m 2&. Let us note here that the con-20 b 20 21
btinous dependence of the surface magnetization near T,

has been recently obtained by using the different methods
of Refs. 24 and 34.

V. CONCLUSION

In the present treatment we have studied the semi-
infinite Ising model with three different exchange param-
eters (J„J,, and J) by using a two-site cluster approxi-
mation. Applying the formalism to the simple cubic lat-
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tice has shown that the exchange parameter J& between
the surface and second layers has a fundamental influence
on surface magnetic order.

We have found that for J, )6. 1899J the surface mag-
netization exists always above T„regardless of how weak

J, is. Consequently, as has been discussed in Sec. III, the
special transition cannot exist for J& )6. 1899J. On the
other hand, for J, &6.1899J we have found that for J,
greater than a certain critical value J„ the system may
order on the surface before it orders in the bulk, and for
J, &J„ the system becomes ordered at the bulk critical

temperature.
The temperature dependences of the surface magneti-

zation and magnetization profiles have been calculated as
well and the most interesting results shown in Sec. IV.
Moreover, at the end of Sec. IV, it has been illustrated
that numerical results depend on the number of layers
considered in calculations. On the basis of our analysis,
we can conclude that the existence of a dip near T, for
surface magnetization can be only a consequence of the
small number of atomic layers considered in numerical
calculations.
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