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We have used the quantum Monte Carlo formalism to calculate the volume, pressure, and energy at
three temperatures for a nearest-neighbor Lennard- Jones solid, with parameters appropriate to solid
neon. The purpose is to provide accurate test data for a system with substantial quantum effects.
The results are compared with the predictions of the effective potential and improved self-consistent
theories. The agreement of all three techniques is good. The effective-potential method results agree
better with the quantum Monte Carlo results at high temperatures, and those of the improved self-

consistent method agree better with the quantum Monte Carlo results at low temperatures. The
relationship between the three theories is discussed. We show that at zero degrees the effective-

potential method is equivalent to first-order self-consistent theory.

I. INTRODUCTION

The main purpose of this paper is to present accu-
rate quantum Monte Carlo (QMC) calculations of the
volume, pressure, and energy as functions of tempera-
ture, for a more-or-less realistic model of a solid showing
substantial quantum mechanical effects. Specifically, we

use a nearest-neighbor Lennard-Jones model of a face-
centered-cubic crystal, with the atomic mass and the po-
tential parameters chosen to reproduce the neon isotope
22. We have previously reported QMC results for a lin-

ear chain' as well as some preliminary three-dimensional
calculations for a more classical material, argon. 2 We use
our QMC results to test an alternative method of cal-
culation, the eA'ective-potential —Monte Carlo formalism
(EPMC). In this method, the path-integral version
of the partition function is approximated by means of
a trial, quadratic, action. When the parameters in the
trial action are chosen to minimize the expectation value
of the free energy, the partition function is obtained in

classical form but with an effective potential. We have
shown that the use of this eAective potential in a classi-
cal Monte Carlo calculation yields thermodynamic prop-
erties for the heavier inert-gas solids which agree closely
at high temperatures with classical Monte Carlo results,
at low temperatures with anharmonic perturbation the-
ory, and succeed in interpolating smoothly between the

two. For the lighter materials, neon and helium, the clas-
sical calculation is not relevant at any temperature (at
least at zero pressure), and the anharmonic perturba-
tion theory does not converge even at zero degrees. The
present QMC calculation was carried out to provide good
quality numbers to compare with the EPMC results. In
our earlier works we made a limited comparison of EPMC
results with one of the best of the lattice dynamical the-
ories, the improved self-consistent theory (ISC), and
this proved informative. We have, therefore, extended
the earlier ISC calculations and present those results here
also. In the next section we discuss the three techniques
and the relationship between them. To this end we have
made the notation used in the various methods as sim-
ilar as possible. The numerical results are presented in
Sec. III and discussed in Sec. IV.

II. FORMALISM

All three formalisms used here can be based in the
path-integral form of the partition function

p/

( )
—sir(r)]/a

where r(r)—:rq(r), r2(r), . . . , r~(r), P = I/knT, and N
is the number of atoms. The action S is
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p

S[r(r)] = ) —mr'; (r) + V[r(r)] dr,
rk;=i 2

where V(r) is the potential. The integration variable r
has the dimension of time. The path integral is over all
paths r(r) with the same end point and beginning point,
and then over all beginning points. We neglect any effects
arising from the indistinguishability of the particles.

In QMC the integration over r is approximated by a
summation over a discrete set of M values of r. We
shall refer to M as the Trotter number. The calculation
of thermodynamic averages such as the energy and the
pressure can then be set up in the form of a classical
Monte Carlo calculation but for a system of N x M par-
ticles, representing the positions of the N actual particles
at the M values of r. Provided the Trotter number can
be made large enough, the results should be exact within
the usual statistical uncertainties of a Monte Carlo sim-
ulation, and we seem to be able to achieve this. In prin-
ciple, it should be possible to calculate other thermody-
namic quantities including the heat capacity. However,
this is obtained as the fluctuation of the energy and even
in a classical calculation it is substantially more diKcult
to calculate accurately. We find that with the presently
available computer power we cannot obtain any mean-
ingful convergence for the heat capacity.

An alternative approach to finding the heat capacity
is to calculate the temperature derivative of the energy, ~

but the numerical differentiation itself introduces errors.
In a recent preprint, Cuccoli el al. )z have presented QMC
values for the specific heat of a Lennard-Jones model of
a face-centered cubic crystal, with atomic mass and po-
tential parameters chosen to represent Ar. For this case,
quantum effects are much smaller and yet QMC results
for C„could only be obtained by ignoring certain, so-
called, outlying values due to slow convergence of the
fluctuation formula. At the largest Trotter number and
the lowest temperature, their standard deviation is over
twice as large as the specific heat itself. This agrees with
our results. At higher temperatures and lower Trotter
numbers, their results are much more acceptable. They
have also applied a correction for the small Trotter num-
bers, based on a harmonic calculation, which seems ex-
tremely promising. Of course, Ne with its much larger
quantum effects represents a more stringent test of the
applicable theories. For these reasons we have not tried
to calculate the specific heat by the QMC method in this
work.

In the self-consistent phonon and effective potential

The final subscript 0 indicates that the average is
weighted by the trial action. If the trial action differs
from the true action only in the potential energy, this
reduces to the more familiar inequality

F ( Fp + (V —Vp)p. (2)

To obtain the first-order self-consistent phonon approxi-
mation (SC1) we use a trial action

Phl N

Sp[r(r)] =
~ ) —mr", (r)

p

1+- ) ) (tt p(ij)u (i, r)up(j, r) ~dr,''2 -P

where u (i, r) is the o component of the displacement of
the ith atom from its equilibrium position at time r. The
force constants P p(ij) are independent of r and show
the periodicity of the lat;tice. In consequence, the trial
action can be diagonalized by a standard transformation
to phonon coordinates, and the right-hand side of Eq. (2)
evaluated as

Fsc) =F.+(V- Vp)sc)
1= —) ln 2 sinh(f~ ) + (V) scq

1 ) f~ coth(f~),

where

f~ = 2hp~~

and the sum over qj is over the normal modes. When
the force constants are chosen to minimize this expression
they turn out to be the second derivatives of the true po-
tential, averaged, or smeared, over the pair distribution
calculated from the trial force constants. In many cases
the potential can be written as a sum of pair contribu-
tions. The average of any function A(r;i) which depends
on the separation of a pair of atoms can be put in the
form

methods the action is approximated by a trial form. The
parameters of the trial action are determined by a varia-
tional method based on the inequality

1F & F. + (s-s—.).

1
(d(rt))set = [(eu )det+13 ( f d(Rt d-u)exp ——$ u [D ] pup d u,

2 )

where

h
D p = ) e (qj)ep(qj)(1 —cosq Ri) coth(f~)/co~.mN
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R;j is the equilibrium separation of atoms i and j, and
the sum over qj is over the normal modes with wave
vectors q, angular frequencies ~(qj), and polarization
vectors e(qj). The averages of both the potential energy
and the force constants can be put in the form of Eq. (4).

The SC1 scheme is very simple to program and gives a
vivid picture of the physics. Unfortunately, it is not re-
liable in practice. Too much is left out. Samathiyakanit
and Glyde have shown how the procedure can be ex-
tended to higher accuracy within the path-integral for-
malism. However, in practice useful extensions to the
theory have been made within the framework of pertur-
bation theory. The SCl theory corresponds to a sum-
mation of all first-order free-energy diagrams and all
ring diagrams with first-order inserts, iterated to self-
consistency. The lowest order diagram which is omitted
is of second order, with two cubic vertices. This diagram

I

is often comparable with the largest of the diagrams in-

cluded. The ISC scheme includes this diagram in a non-
self-consistent way. This procedure has been successful
in many applications, but it is difficult to estimate its
reliability for Ne, where there are no perturbation theory
results guide us.

The effective potential formalism also introduces a
quadratic trial action. However, attention is focused on
the average point of a particle in its path:

1

Ph

The displacements u (i, 7 ) are now measured from the
average point on the path, and the trial action also con-
tains a term looking like a potential evaluated at the
average point:

So[r(r)] = ) -mr, (r)+ W(r) + —) ) P p(ij, r)u (i, r)up(j, 7) dr
ij=1 aP

The path integral is now regarded as an integral over all
paths with a given average value, followed by an integra-
tion over the average values. It has been shown that;
when the integral over all paths with a given average has
been performed, the value of W(r) which minimizes the
right-hand side of Eq. (2) also has the effect of making

(S —So)0 disappear. The partition function Zo then has
the appearance of a classical partition function with the
potential repl'aced by an effective potential

N
—v, gg (r) g3-

It is convenient to add and subtract the true potential so
that the effective potential can be written

where

1
AV(r) = I&(r) —V(r) ——) (f, coth f, —1)

(5)

The sums are over the 3N normal modes of the trial ac-
tion, labeled by an index s. Ii (r) is a smeared potential.
However, the smearing represents only the blurring of
the particle paths due to quantum mechanical fluctua-
tions and disappears in the classical limit. There is some
similarity between the expression for AV and the SC1
free energy given by Eq. (3). In fact, the terms in Eq.
(5) correspond to the differences between the quantum
mechanical and classical values of the terms in Eq. (3),
with the proviso that the nature of the smearing is differ-
ent in the SC1 and effective potential cases. Finally, the
force constants are found, from the variational principle,
to be the smeared values of the second derivatives of the
actual potential.

This formalism is still too complicated to be applied
exactly. In particular, at a general value of r, the force
constants do not have the periodicity of the lattice, and
a 3N x 3N matrix would need to be diagonalized to give
the frequencies ~ Since the correction term disappears
in the high-temperature limit while at low temperatures
the atoms remain close to their equilibrium positions, we

make the approximation of evaluating the force constants
and frequencies at the equilibrium positions. For a pair
potential the averages, of the potential and of the force
constants, then take a form identical with Eq. (4), except
that the quantities D p are given by

h
D p = ) e (qj)ep(qj)(1 —cos q . R,z)[coth(f~) —I/f~]/u~

In addition, in all applications of the method so far, the
smeared quantities have been evaluated by series expan-
sion in powers of a quantum renormalization parameter,
essentially in powers of the elements of D. The details
have been given elsewhere. In a first-order EPMC
theory the expansion is truncated at the first term. In

I

this case, the bare quasiharmonic frequencies are used in

the calculation of the effective potential. In a second- or
higher-order theory, the frequencies must be calculated
self-consistently, since the renormalization factor itself
depends on the frequencies. We can carry out a com-

pletely self-consistent second-order theory. The equa-
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tions clearly simplify drastically at zero degrees. At this
temperature we can obtain an approximate third-order
theory.

As the temperature goes to zero, the free energy in the
effective potential method is given entirely by the value
of the effective potential itself. Furthermore, the values
of the functions D~p are equal to the SC1 values, and
the effective potential is equal to the SC1 free energy.
Also, note that the effective potential V,g is expressed
in terms of the actual potential V(r) plus a correction,
and the trial action is involved only in the calculation of
this correction. As the temperature increases the whole
of the correction term in Eq. (5) goes to zero and we are
left with an exact classical expression for the partition
function.
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III. CALCULATIONS
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FIG. 1. Nearest-neighbor distance in Ne, expressed in
units of the hard sphere radius o. Circles are QMC results,
dashed line is ISC, and solid line is second-order EPMC. The
square at 0 K is the third-order effective potential result

In all of our calculations we have used the same
nearest-neighbor Lennard-Jones potential on which our
earlier work was based, i.e. , we used m = 21.9914,
e = 72.09x 10 ~s ergs, o = 2.7012 A. We believe that the
use of this model potential with parameters determined
by properties of the solid at T = 0 K is preferable to
the use of a two-body potential with parameters based
on gas properties, since it contains some compensation
for the omitted many-body forces. In the figures and
tables the calculated thermodynamic properties are ex-
pressed in terms of the Lennard-Jones parameters, e.g. ,

the nearest-neighbor distance is expressed in terms of o.
For the effective potential and ISC formalisms we have

found the zero-pressure atomic spacing as a function of
temperature, and have calculated the internal energy and
heat capacity at that spacing. In the effective potential
calculations we did not use the most general form for the

—44-
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FIG. 2. Internal energy per atom in Ne, in units of the
well-depth e. Circles are QMC results, dashed line is ISC, and
solid line is second-order EPMC.

force constants but made the assumption

p p(ij, T) = D(ij, r)b p.

Cuccoli et al. have used a more general form, ~z but the
advantage of the simpler version used here is that we can
solve the self-consistent equations to higher order more
easily. The effective potential calculations are done with
108 atoms and 4.2 million configurations in the Monte
Carlo simulations. The main reason for repeating the
earlier IS(", calculations was to obtain values for the in-
ternal energy. The results are shown in Figs. 1 and 2.
Since the QMC calculation is much more time consum-
ing we did not try to zero the pressure in that case, but
instead used the spacings calculated by the second-order
effective potential method. We expected that the pres-
sures would then be small, and that turned out to be the
case, though except at the highest temperature they are
statistically not zero. We performed QMC runs for 32
and 108 atom samples, at three temperatures, 7, 13, and
22 K. In the reduced units ejk~ these are 0.134, 0.249,
and 0.421, respectively. We used a variety of Trotter
numbers, ranging from 10 to 40, and in each case used
a large enough value that the results were converged to
within the statistical uncertainties. The number of single
particle moves attempted in a run varied from 13 to 40
million. Table I gives a summary of our QMC results.

The best QMC results, i.e. , those for 108 atoms and
with the highest Trotter numbers, for the three tempera-
tures, are plotted in the figures and are also compared in
Table II with effective potential and ISC values. The ISC
numbers in the table were calculated around the same
atomic spacings used in the other calculations, as op-
posed to the results shown in the figures, which are at the
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TABLE I. Summary of QMC results.

Temperature Spacing N umber Trot ter Millions
of atoms number of configs.

Pressure Energy

0.134
0.134
0.134
0.249
0.249
0.249
0.421
0.421
0.421

1.168 16
1.168 16
1.168 16
1.170 75
1.170 75
1.170 75
1.1834
1.1834
1.1834

32
32
108
32
32
108
32
32
108

30
40
30
15
30
20
10
20
10

12
30
13
17
23
26
20
25
14

—0.10+ 0.01
—0.10 + 0.01
—0.08 + 0.01
—0.06 + 0.02
—0.06 + 0.02
—0.02 + 0.01
—0.08 + 0.02
—0.09 + 0.03

0.01 + 0.02

—4.434 + 0.008
—4.435 + 0.006
—4.426 + 0.005
—4.340 + 0.005
—4.340 + 0.009
—4.329 + 0.005
—4.012 + 0.007
—4.016 + 0.01
—3.984 + 0.006

ISC equilibrium spacings. The diA'erence is quite small
and does not show in the figures. In order to plot nearest-
neighbor distances for QMC in Fig. 1 we have assumed
ISC values for the compressibility in order to convert the
QMC pressures into changes of spacings. Again, this is
a small correction and should be accurate.

IV. DISCUSSION

The three numerical techniques we have used all yield
remarkably similar results. This overall agreement gives
us confidence that the statistical uncertainties which we
estimate for QMC by the usual type of method are in
fact a good indication of the reliability of those results.
We can then gauge the other techniques by their agree-
ment with QMC theory. Our results are presented in
Tables I and II and in Fig. 1 for the nearest-neighbor
distances and Fig. 2 for the energies. We draw atten-
tion to the highly expanded scale of both figures. At the
lowest temperature, the ISC results lie within the statis-
tical uncertainties of QMC. The energy remains accurate
at all temperatures, but at the highest temperature the
ISC pressure becomes inaccurate. This is all very plausi-
ble. ISC improves on the first-order self-consistent theory
(SC1) in an ad hoc fashion. It is gratifying that it agrees
as well as it does, and not disturbing that deviations ap-
pear at higher temperatures.

The EPMC method is designed to pass smoothly into
an exact classical calculation at high temperatures, and
the agreement with QMC is best at 22 K, and worst at

7 K, Note that at 22 K neon is still a long way from be-
ing classical. We believe that at zero degrees the physical
content of the eA'ective potential method is identical with
SCI, any differences in numerical results arising from the
diA'erent treatment of the smearing, i.e. , truncated series
expansion as opposed to numerical integration. The rise
in the lattice spacing at low temperatures is certainly an
artifact of the expansion procedure. As we have previ-
ously noted, the rise is less in the second-order theory
than in the first-order theory, and the third-order point
we can calculate at T = 0 K shows almost no rise. We
have plotted this single third-order point in Fig. 1. At
finite temperatures, the use of the eA'ective potential in a
Monte Carlo simulation transcends SC1, and, as we have
said, it becomes exact both at the classical limit, and
in the first correction term in the Wigner expansion.
Already at 7 K the eff'ective potential value of the heat
capacity is much better than the SC1 value.

The relative cost of the calculations is pertinent infor-
mation when the choice of method is being made. The
QMC calculations described here required approximately
40 h of time on a Cray-YMP computer, the EPMC cal-
culations at the same three temperatures used about 30
min, and the ISC calculations were done on a Hewlett-
Packard minicomputer but would have occupied the Cray
for a few seconds. The EPMC and ISC calculations yield
values for the heat capacity, which we were not able to
get from QMC calculations, and ISC theory also gave the
entropy and compressibility.

To summarize, it is clear that for a quantum solid
like Ne, thermal and elastic properties can be obtained

TABLE II. Calcula. ted values of the pressure (units of o/r ) and energy (units of r)

t=0.134

t=0.249

t=0.421

Pressure
Energy

Pressure
Energy

Pressure
Energy

QMC
—0.08 + 0.01

—4.426 + 0.005
—0.02 + 0.01

—4.329 + 0.005
0.01 + 0.02

—3.984 + 0.01

Second-order eff. pot.
—0.002 + 0.002
—4.381 + 0.0004

0.000 + 0.003
—4.294 + 0.001
0.009 + 0.005

—3.961 + 0.001

ISC
—0.0854
—4.4188
—0.0548
—4.3297
—0.0454
—3.9882
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cheaply and accurately using ISC theory, with some small
inaccuracies near melting. The EPMC theory is at the
limit of its usefulness here. For even more pronounced
quantum solids, such as He, a different evaluation of the
effective potential, not using a series expansion, is re-
quired and this seems feasible. The QMC approach is
very accurate but correspondingly expensive in computer
time. The currently available computer codes will require
substantial improvement to bring reliable calculation of
fluctuation terms within reach. Several of us are planning
to address this problem presently.
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