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Stochastic arguments are presented to provide a fundamental derivation of a switching function intro-
duced in a recent theory of microwave heating of ceramic materials. The phenomenon under study is
thermal runaway wherein the temperature of a ceramic material increases suddenly after being heated
under microwaves for a certain time. Observations in a wide variety of materials have been explained
successfully via a recently constructed theory of the pheonomenon, which suggests that the mobility of
absorbing entities, such as vacancies, bivacancies, or interstitials, has a temperature dependence that fol-

lows a switching behavior: The mobility, equivalently the absorption coeScient, starts at small values

for small temperatures but rises quickly to high values as the temperature is increased. Phase-space con-
siderations and static arguments have been given earlier to support the idea, and to calculate the detail,
of the switching function. Here we provide a basic justification to the static arguments through a con-
sideration of the dynamics. Although the evolution of the absorbing entities is governed by a nonlinear

Langevin equation, which cannot be solved exactly, natural approximations are shown to lead to a Smo-

luchowski equation for the probability distribution, which can be solved. General results and specific
calculational prescriptions are provided for a variety of potential shapes.

I. INTRODUCTION

Recent observations of beneficial effects of microwaves
on the sintering of some materials, as reported, e.g. , by
Sheppard, ' Bruce, and Katz et al. , have led to a revival
of interest in the general subject of the interaction of mi-
crowaves with ceramics. One of the relevant phenomena
under investigation consists of a sudden rise in the tem-
perature of a material undergoing microwave heating,
and is termed "thermal runaway. " A theory of this
phenomenon has been presented recently by Kenkre
et al. ' on the basis of a few simple concepts. The
theory has addressed, with considerable success, a variety
of time-temperature curve shapes in several different ma-
terials, such as strontium titanate, zinc oxide, iron oxide,
and alumina. The primary purpose of the present paper
is to provide a basic justification for a central conjecture
made in that theory. However, our procedure and results
turn out to have relevance also to the general problem of
the calculation of transport coefficients of classical parti-
cles subjected to nonlinear potentials.

Underlying the theory in Refs. 4 and S, which motivat-
ed this work, is the idea of the existence of absorbing en-
tities in the material, such as vacancies, bivacancies, or
interstitials, whose number available for absorption
switches from a small value at small temperatures to a
large value at higher temperatures, the resulting
temperature-time relation being

=[k„+klf(T)]P o,T—
dt

Here k~ and kM are related to the absorption coefficients
of two different species of absorbers, P is the incident mi-
crowave power, and o.

&
is proportional to the Stephan-

Boltzmann constant. The fraction of the absorbers of the

M kind available for absorption is denoted by f ( T). The
peculiar runaway nature of the heating arises generally
from the "switching" nature of f ( T), which, in its sim-
plest form, may be written as

—6/kT
(1.2)—b, /kT

5 being an energy barrier and k the Boltzmann constant.
The factor 2 shown explicitly in (1.2) represents a normal-
ization such that f ( T) changes from the value 0 to the
value 1 as the temperature increases from zero to infinity.

The argument provided in Refs. 4 and 5 to arrive at
(1.1) and (1.2) is as follows. If the M absorbers each have
mass m and electric charge q, their dynamics under an
applied microwave field of amplitude E and angular fre-
quency co are governed by '

m +my + =qE cos(cot)+8 (t), (1.3)
d x dx dU(x)
dt2 dt dx

where x is the coordinate of the particle and y the
effective damping constant. The important characteristic
of the evolution equation (1.3) is the presence of two
forces to which the absorber is subjected as a result of in-
teractions with the rest of the lattice: the systematic
force due to the nonlinear potential U(x) and the sto-
chastic force due to thermal fluctuations represented by
R(t). A typical form of U(x) is sinusoidal, the charac-
teristic feature being a periodic repetition of a region of
space in which the absorber is bound and a region in
which it is free, the amplitude of the potential being h.
Absorption is significantly higher in the free region rela-
tive to the bound region. As a result, the absorption
coefficient is proportional to the fraction of the absorbers
which have energy greater than h. Equation (1.2) for
f ( T) is then a consequence of the simple assumption that
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the regions accessible to the absorbers may be regarded
as just two states. Those in the higher-energy state are
free and contribute to the absorption, whereas the rest,
being in the bound state, do not, or do so negligibly. A
further assumption, that standard Boltzmann reasoning
regarding the relative population in the two states is appl-

I

icable, then leads to (1.2).
More elaborate forms of f (T) have also been provid-

ed. The application of phase-space considerations
without the simplifying assumption that the accessible
states are only two, leads to

(1.5)

f dxdpexpI —[p p/2m + U(x)]/kT]
f (T)= (1.4)f dx dp exp[ —[p p/2m + U(x)]/kT]

entire region

where p is the momentum variable, x is the position variable, and by "free region" we understand the portion of the
phase space corresponding to the total energy being greater than the maximum of the potential energy, viz. , A. The in-
tegrations over p can be carried out easily to write f ( T) in terms of x integrals involving complementary error func-
tions. Thus, for a one-dimensional system, (1.4) can be shown to reduce to'f, dx e '"' " erfcv'[ —U(x)/kT]

—U(x) IkT
en tIre reg I0n

~ ~

x e
entire region

The forms of the switching function f ( T), given in the
theory of Refs. 4 and 5, and shown above in (1.2), (1.4),
and (1.5), are surely reasonable. Given the physical argu-
ments ' which support them and also the success of the
theory in explaining observations on a wide variety of
materials, there is no doubt about the validity of their
qualitative T dependence. However, they must be re-
garded as the result of a conjecture with static considera-
tions as their support. In the following we present a
derivation of the switching function on the basis of the
dynamics of the absorbers by attempting a direct solution
of (1.3}. The rest of the paper is laid out as follows. In
Sec. II we set out the general framework of our approach
and obtain the Fokker-Planck equation relevant to (1.3),
as well as the Smoluchowski equation appropriate in the
large damping limit. In Sec. III we derive expressions for
the mobility and the switching function for constant
fields but arbitrary potentials, and study specific cases of
physical interest. An examination of some general ques-
tions constitutes Sec. IV, and conclusions form Sec. V.

II. STOCHASTIC CALCULATIONS:
FOKKER-PLANCK AND SNIOLUCHOWSKI EQUATIONS

I =2mykT . (2.3)

m(u2) kT
2 2

(2.4)

On rewriting the equation of motion (1.2) as a system
of two differential equations of the first order,

dx
dt

=V (2.5)

dv 1 dU qE+yv = —— + cos(cut)+ —R (t), (2.6)
1

dt m dx m m

it is straightforward to obtain the corresponding
Fokker-Planck equation for the time evolution of the
probability distribution P (x, v, t ) of the phase-space vari-
ables x and v:

aP aP dU, aP= —u + qE cos cot)—

Relation (2.3) follows from the fact that, in the absence of
any deterministic external force, such as the microwave
field force in (1.3), the system should come to rest in a
state of thermal equilibrium and fulfill the principle of
equipartition of energy, i.e.,

Following standard procedure, we assume that the ran-
dom force R (t) is a Gaussian, stationary stochastic pro-
cess with zero mean,

a $2p
+y (vP)+kT

Bv BV
(2.7)

(R (t})=0 (2.1)

and that its correlation function is given by

(R(t)R(t'))=rfi(t —t') . (2.2)

Angular brackets represent the average over the ensem-
ble of realizations of the stochastic process R(t) The.
above assumptions about the R (t) process are in accor-
dance with our understanding of the random force as re-
sulting from many independent and fast interactions with
the surroundings. The strength of the correlation I and
the damping constant y are connected via the
Auctuation-dissipation theorem

v(x, t)=— 1 dU(x) qE
(

1

my dx my my

The multidimensional partial differential equation (2.7)
is extremely hard to solve in the general case. Fortunate-
ly, the characteristics of the system under consideration
allow several natural simplifications. The first of these
characteristics is that the damping constant y in (1.3),
(2.6), and (2.7) is very large. Thus, the natural assump-
tion to make is to neglect the time derivative of v in com-
parison with the term yu in (2.6) and obtain
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When substituted in (2.5), the expression (2.8) yields a sin-

gle Langevin equation for the evolution of the variable x:

with

dx (t) 1 dU(x) qE cos cot = t
dt my dx my

(2.9)

(g(t)) =0, (g(t)g(t')) = 5(t t—') .
2kT
mp

(2.10)

The corresponding Fokker-Planck equation for the prob-
ability distribution P (x, t) of the position variable x reads

aP 1 a
Bt my Bx

dU
qE c—os(tot ) P +k T aP

(2.11)

and is known in the theory of Brownian motion as the
Smoluchowski equation. We take (2.11) as the point of
departure for the rest of the analysis in the present paper.

In order to calculate the switching function from
(2.11), we make the following observations. The average
power absorbed from the microwave field is proportional
to the factor kMf (T)P appearing in (1.1). The calcula-
tion of the switching function is thus equivalent to the
calculation of the average power absorbed. The latter is
proportional to the field amplitude and to the average of
the velocity of the absorber over the stochastic process.
Calculating this average, multiplying it by the field ampli-
tude, obtaining the time average over the microwave
period, and dividing the result by the square of the elec-
tric field, yields the switching function unambiguously.
The average of the velocity, viz. , ( u (t) ), is given in terms
of P(x, t}as

(u(t)) =f dx uP(x, t), (2.12)

where the velocity U in the integrand is expressed through
its dependence on x given in (2.8). Equations (2.11) and
(2.12) give (u(t)) as depending parametrically on the
magnitude of the electric field:

(.(t))=(.(t;E)) . (2.13)

The program to be followed is thus to solve (2.11), ob-
tain the velocity from (2.13), specifically as

(u(t)) =— 1 dU(x) qE+ cos(cot )
mf dx m

dx P(x, t)
1 dU(x) qE+ cos(cut),

my dx m

(2.14)

and to calculate the switching function from the result in
the manner described. The solution of the time-
dependent Smoluchowski equation (2.11) requires non-
trivial labor which we postpone to a forthcoming paper.
Here, we will make use of another simplification natural
to the system under analysis. The applied field lies in a
frequency range which is low enough to justify the
neglect of its time dependence in our calculation. We
shall, therefore, consider the simpler problem of a dc
field, i.e., assume that the field period 2m/~ is larger then
all other characteristic times involved in the evolution

(1.3). We can then obtain the switching function from
the steady-state solution of the co=0 counterparts of
(2.12):

Bt my Bx
—qE P+kT

dx Bx
(2.15)

We thus have to find the solution of an ordinary
differential equation, which we do in a straightforward
manner. Similar analyses can be found in the literature
in connection with studies of voltage-current characteris-
tics of Josephson junctions and conductance of superionic
crystals. ' Equation (2.15) leads to

P(x)=A exp
U(x) qEx—

kT

U(x) qEx—+B exp —
kT

X exp
0

U(z) qEz—
kT

(2.16)

P(x +a) =P(x), (2.18)

the periodicity of P(x) being an obvious consequence of
the periodicity of the potential U(x). The substitution of
(2.17) and (2.18) in (2.16}leads to two simultaneous equa-
tions for the unknowns A and 8 appearing in (2.16):

a, A+b)B =1, a2A +b2B =0,
where the quantities a „b„a2,and b2 are given by

(2.19)

a/2 1
a&= x exp — U x —qEX—a/2 kT

(2.20)

b, =f dx exp — [U(x) qEx]——a/2 kT

X f "dy exp [U(y) —qEy], (2.21)
0 kT

1
a2 =exp qEa —1 . (2.22)

a 1b2= f dx exp [U(x) qE(x —a)]—
0 kT

(2.23)

The steady-state version of (2.14) yields, for the mean ve-
locity (u),

akT akT ~2

my my a(b2 —a2b)
(2.24)

The integration constants A and B are determined from
the normalization condition

f P(x)dx =1 (2.17)—a/2

and from a boundary condition on P(x). We shall now
restrict our analysis explicitly to potentials which are
periodic in space with period a. This results in
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Equation (2.24) describes the full nonlinear dependence
of the steady-state velocity on the electric field when the
moving particle is under the simultaneous action of a dc
field of arbitrary magnitude (which appears in the quanti-
ties a, , b&, a2, and b2), a nonlinear periodic potential of
otherwise arbitrary spatial dependence, and normal sto-
chastic interactions characterized by (2.1) and (2.2). In
the following analysis we will use (2.24) to obtain expres-
sions for the particle mobility and the switching function.

III. MOBILITY AND THE SWITCHING FUNCTION

While it is certainly possible to evaluate the fu11 expres-
sion (2.24) obtained above, microwave field amplitudes

I

applied lie within breakdown limits and are therefore
small enough to justify invoking Ohm's law. One may,
therefore, expand (2.24) as a function of E and keep only
linear terms:

(~(E))=(U(0))+ d(U(E)) E+ . =0+pE .
dE E —0

(3.1)

The constant term obviously vanishes in equilibrium and
the coefficient of the linear term is the mobility p, an ex-
pression for which can be derived immediately from
(2.24):

gg a/2p= dx expIP —a/2

1 a 1U(x) f dx exp U(x)
0 kT

(3.2)

On comparing the result we have derived for the mobility, viz. , (3.2), to

q

my
(3.3)

which is the well-known Drude result, we observe that, in the presence of stochastic interactions, the simple Drude re-
sult merely gets multiplied by a dimensionless temperature-dependent factor. Equation (3.3) is recovered in the limit of
infinite temperature or when there is no potential.

Equation (3.2) can now be used to calculate the power absorbed from the microwave field. In the linear approxima-
tion, which, as we have stated above, is amply valid in systems of interset to us, the instantaneous power absorbed in
one period is given by ( U (t) )qE cos(cot). The time average over one period of the microwave field is

2E2a 2 a
R = q f dx exp

2P7l P —a/2

1 a 1
U(x) f dx exp U(x)

kT 0
(3.4)

Except for proportionality constants such as the specific heat, this average power absorbed is identical to the heating
rate, i.e., to the rate of temperature increase arising from the field. A comparison of (3.4) to (1.1) shows then that the
temperature-dependent factor appearing in (3.2) and (3.4) is nothing other than the switching function f (T), which is

the object of this paper:

f (T)=a f dx exp — U(x) f dx exp U(x)—a/2 kT 0
(3.5)

Equation (3.5) is the central result of this paper. It gives a prescription to calculate the switching function of the
theory of thermal runaway ' from dynamic considerations rather than static phase space arguments. Explicit quan-
tities entering the prescription are the temperature, the shape of the potential, and its period. Most situations involve

symmetric potentials U(x) = U( —x). For these, the limits of integration in (3.5) can be readjusted:

f(T)=a 4f dx exp
0

1 a/2 1

kT
U(x) f dx exp U(x)

0 kT
(3.6)

If the diA'erence between the maximum and minimum values the potential attains is 6, one may reexpress the potential
as

U(x) = —b, V(2x /a), (3.7)

where V(y), which we call the reduced potential, is a periodic function which varies between the values 0 and 1 as its
argument y runs over its period [

—1, 1]. The switching function can then be written in the compact form

1 1f ( T) = f dy exp — V(y) f dy exp V(y)
0 kT 0 kT

(3.8)
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We end this section by considering three physically
motivated examples of the potential U(x), and presenting
the corresponding forms of the switching function ob-
tained by applying (3.8).

(a) Sinusoidal potential T.he potential is given by

U(x) = ——1+cos
2

(3.9)

and corresponds, via (3.7), to the reduced potential

V(y) =
—,
' [1+cos(ny ) ] . (3.10)

Substitution of (3.10) in (3.8) shows that the switching
function is the reciprocal of the square of the modified
Bessel function of order 0, and of argument 5/2kT:

1T)= I (6/2kT)
(3.11)

1f(T)=
cosh (b, /2kT)

(c) Triangular potential The pot.ential is given by

U(x}= b 1——2(x/
a

(3.13)

for 0 ~x~ ~a/2, U(x+a)=U(x) . (3.14)

The integrations in (3.8) yield the switching function to
be

(b, /2kT)
sinh ( b, /2k T)

(3.15}

(b) Square potential The po. tential is given by

0 for a /2 ~ )x (

~ a /4
U(x)= '

i & /4, U(x+a)=U(x) .for 0~ ~x~ ~a/4 '

(3.12}

Equation (3.8) shows, in this case, that the switching
function is the reciprocal of the square of the hyperbolic
cosine of 5/kT:

The potentials in the above three cases and the corre-
sponding switching functions are shown in Fig. 1. In all
three cases the switching character is clearly visible: all
three functions interpolate between the values 0 and 1 for
small and large temperatures, respectively. This behavior
off ( T) is crucial in the explanation of the thermal runa-
way phenomenon. ' We also see that, while the f (T)'s
obtained through our prescription (3.8) are seen to have
the general behavior displayed by the two-state expres-
sion of (1.2), shown in Fig. 1 for comparison, they all rise
faster than the latter. The source of this behavior wi11 be
clear in Sec. IV below.

IV. GENERAL COMMENTS
ON THE SWITCHING FUNCTION

U ——x + U(x) =const .a
2

(4.1)

Loosely stated, this means that the shape of the potential
in the inner region of each confining well is the same as in
the outer region. Equation (3.7) translates (4.1) into the
simpler condition

The expressions derived for the switching function for
the three cases discussed in Sec. III show a peculiar
resemblance to expressions for the partition function
describing the equilibrium behavior of three magnetic
systems, which we will denote by (a), (b}, and (c). Each of
the magnetic systems is a collection of a large number of
noninteracting spins. In case (a) any spin can exist in one
of two states, in case (b) it is free to rotate continuously in
a plane, and in case (c) it may rotate freely in three di-
mensions. As is well known from texts on statistical
mechanics, ' the squares of the partition functions of sys-
tems (a), (b), and (c) are identical to the reciprocals of the
right hand sides of (3.11), (3.13), and (3.15), respectively.
Thus, they correspond exactly to the respective potentials
(a), (b), and (c) discussed in Sec. III. Given that the cal-
culations in Sec. III are not aimed at the equilibrium be-
havior of any magnetic system, this apparent coincidence
is intriguing. What is the source of this storage connec-
tion? It is easy to answer this question when we realize
that, in all the three cases considered, the potential U(x)
obeys the condition

V(1 —y)+ V(y) =const (4.2)

O.6—Q

t

M

0.4—

0 a
uare

1f(T)= I dx exp — V(x)
0 kT

(4.3)

for the reduced potential, and allows us, through (3.8), to
write at once that

kT/&

FIG. 1. Exact temperature dependence of the switching func-
tion or mobility for the sinusoidal, square, and triangular poten-
tials, along with the two-state approximation (1.2). Here and in
Figs. 2—4 below, the insets depict the potentials.

Equation (4.3) shows that the switching function is
indeed the reciprocal of the square of a partition function
of a system possessing no kinetic energy and the potential
U(x). Comparing the physics underlying the magnetic
s stems with that behind our moving particle in the non-y
linear potential, we see that it is trivial to appreciate the
connection between the two-state spin and our system
with a (two-state) square-well potential. It is also not
difficult to see the correspondence between the rotation of
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1

(d) Multistep potential Wi. th M, N
'

gM N as integers, and
M =0 1 . . . , X —1, the potential is given by7

2'

a spin in a pane an ep
'

1 d the motion of our system under the
as theof a sinusoidal potential as soon as e

i enic'd t fi ation of the angular varia e in e
in the latter. It isd ith the translational variable inma ewi

see that the three-erha s a bit more surprising to see
nds to the triangular potentialdimensional spin correspon s o

in our system.
with the calcula-1' ht of this curious connection wit

mi ht be interest-f t tbook partition functions, it migtion o ex
nother oten-evaluate the switching function for ano p

tial arising through an analogy wit ye ano
system, viz. , a spin wi'th quantum number greater t an

0.6—0

0.4—
PJ

kT/&

two-state approximation

(triangular)

I-a O a
mu}tistep

MU(x)= b, 1—
M M+1(a/2) (x ((a/2)X

U(x+a)=U(x) .

The switching function f ( T) takes the form

(4.4)

otential: exact temperatureFIG. 2. Case of the multistep po en
'

de endence oft e mo i i yd h b'1't or switching function along wit t ed p
'

n. The extreme limits N ~ ~ and

spectively, are shown along wit an in
Th t hing function for the mult' p piste otentia is re a e

with uantum numberthe partition function of a spin system wi q
1greater than —,.

(e) Rectangular potential The p. otential is given by

0 fo
~ ~

(a/2 g
for ~x~ ~(a/2)g '

N sinh (g/2(N —1)kT)
sinh ( N 6/2(N —1 )k T)

(4.5)

and is once again the reciprocal o q1 f the s uare of the parti-
tion function o ef the corresponding magnetic system.

'
n ularhe results (3.13 an) d (3.15) for the square and triangu

vered from the multistep result (4.5)potentials can be reco
by the respective limits N ~2 and N ~ ~. is is s
in Fig. 2.

does not obey (4.1)When the otential in our problem doe
e

' '
oes not equal the re-(42) the switching function does q

nction. Two casesci rocal of the square of a partition func
'

of such potentials, the genera re
t d below.the general piecewise linear pootential, are treate e ow.

f ( T) = }+4/(1 —g)sinh
2kT

(4.7)

f ~= —' i.e., when the free and theIn the special case of =
—,, i.e., w

hbound regions are of equa1 extent, (4.7) reduces to t e
(3.13). This limit as well as othersquare potential result . . ' ' '

her
s of E s. (4.6) and (4.7) are depicted in Fig.

iec '
e otential is given by(f) Piecewise linear potentia . e p

(4.6)

is the fraction of the configuration space inwhere is e
which the particle is not free, i.e., is e
length over w ic xh' h U(x) equals —5 to the total period a
of U(x). The switching function is given by

]

U(~)= '

I 1—
a

2x1—
a

for O~x ~a(/2

for a (/2 ~ x ~ a /2
U( —x)= U(x) = U(x +a) (4.8)

ration s ace in which the particle is in the energetical-and thus consis ssts of two linear pieces. e
}I ddt' 1 t 0d fi dd b &~, in correspondence with case (

oint where the two linearf h d thofth ot ti 1 tth(1 —g) denotes the ratio o t e ep
e th. The switching function is given by

resent case is such t at
~ ~

pieces meet to its total depth. e swi c

(b, /2kT )'g(1 —g)
1 — )b, /2kT]+(g/g)(( —g)sinh (gb /2kT)sinh 6/2kT)+(} —g/} —g)(g —g)sinh [(}—g)b, j (4.9)
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A. Proof of the switching behavior

1 1=f dx f dy exp [V(x)—V(y)]
0 0 kT

(4.10)

which, upon renaming the variables, can also be written
as

= f dx f dy exp [V(y) —V(x)]T 0 0 kT
(4.11)

On combining (4.10) and (4.11), one obtains

The explanation of the source of the switching behav-
ior becomes transparent if we rewrite f ( T) given by (3.8)
in the form of a double integral

1 = f dx exp f dxexp
kT

reasonable approximations for f ( T) when one knows only
some global characteristics of the potential rather than its
complete detai1, we present the following analysis. Equa-
tion (4.12) may be recast in the form

1 1=f dx f dy 1+2 sinh [ V(x) —V(y)]T 0 0 2kT

(4.16)

From the definition (3.7) of V(x), we know that
[ V(x) —V(y)] is of the order of unity. The following ap-
proximation is, therefore, justified:

sinh [ V(x) —V(y)]2kT

= [ V(x) —V(y)] sinh . (4.17)
2kT

1 1f dx f dy exp [V(x)—V(y)]

+f dx f dy exp [V(y) —V(x)]
0 0 kT

=f dx f dy cosh [V(x)—V(y)]
1 1

0 0 kT
(4.12)

where (4.13)

C= f dx f dy [V(x)—V(y)] &0
0 0

provided V(x) is not identically a constant function [in
which case, f ( T) is a temperature-independent constant].
The switching behavior is now completely clear from
(4.13). The first of the switching characteristics, viz. ,

Since cosh(z) ) 1+z /2 for z )0, we have the inequality

(T)( 1

1+C(b /kT)

We now substitute (4.17) in (4.16), define a single global
quantity u which characterizes the potential through

1 2 1 2u'=4 f dx V'(x) — f dx V(x), (4.18)
0 0

and obtain a simple new expression for the switching
function for any potential:

f(T)=
1+u sinh (b/2kT)

(4.19)

Equatton (4.19) is another important result in our
analysis. While not exact, the expression provided for
the switching function in (4.19) involves an excellent ap-
proximation. The high degree of accuracy with which
(4.19) approximates exact expressions may be appreciated
from Fig. 6. The prescription in (4.19) is, furthermore,

lim f (T)=0,
T~O

(4.14) ear
995

follows from (4.13), while the second characteristic is ob-
vious directly from (3.8):

lim f (T)=f dx f dy= 1 . (4.15)
T~ 00 0 0

Thus, we have given a general proof of the fact that, for
any nonconstant potential, f (T) switches between the
values 0 and 1 as the temperature changes from 0 to
infinity.

o 0.6-g
a

4H

0.4—3

0.0—
I

0.0
I

0.5
I

10
I

1.5
I

2.0

n (4. 19)

I

2.5

B. Source of steepness and an approximate prescription

The degree of severity of the thermal runaway
phenomenon, i.e., the extent to which the temperature
rise is sudden, will obviously depend on the degree of
steepness of the switching function, which, in turn, will
depend on the shape of the potential. It is of interest to
know that features of the potential determine the steep-
ness. To answer this question, as well as to develop

FIT&. 6. The approximate prescription (4.19) (dashed lines)
compared to the exact mobility or switching function (solid
lines) for various potentials: the sinusoidal potential, the tri-
angular potential, the multistep potential with N =3 and the
piecewise linear potential with )=0.001 and (=0.995. The ap-
proximate prescription has the following respective values of u:

3 3
and 0.0017. The prescription is seen to provide an ex-

cellent approximation in every case. The case of the rectangular
potential is not shown as it would be redundant: the prescrip-
tion (4.19) is identical to the exact result in that case.
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simple, easily usable, and extremely convenient for actual
computations from potentials. The simplicity and ease of
use are evident from the expression itself. The conveni-
ence stems from the fact that methods to obtain poten-
tials in realistic cases, which involve ab initio computa-
tional procedures" or direct deduction from observations
such as those in diffusion experiments, can provide global
characteristics of the potential with reasonable
confidence but not the detail.

What feature of the potential controls the steepness of
the switching function is now clear. Equation (4.19)
shows that the dispersion of the potential, viz. , the quanti-

ty u, decides the steepness of f ( T). It is this dispersion
that remains the same as one goes from case (i) to case (ii)
of the potentials depicted in Fig. 5, although the potential
shapes change. The lower the value of u, the more pre-
cipitous the switch off (T) from 0 to l.

C. Inequality relating the exact
and the two-state forms off ( T)

The reduced potential V(y), defined by (3.7), is bound-
ed by the values 0 and 1. It is clear then that

'y V'y 'y Vy (4.20)
0 0

Since the square of ( f odyV(y) —
—,') cannot be smaller

than 0, we can write

I dy V(y)~ I dy V(y) +—,
' . (4.21)

On combining (4.21) and (4.20), and recalling the
definition (4.18) of u, we obtain the result that the
dispersion can never exceed 1:

u ~1. (4.22)

f(T) ~
1+u sinh (6/2kT)

(4.24)

The combination of (4.26)—(4.28) yields the inequality

f(T)~
1+u sinh (5/2kT)

1

cosh (b, /2kT)
—6!kT

~2
1+e

(4.25)

which states that the exact switching function, the ap-
proximate prescription we have given in terms of the
dispersion of the potential, the square potential case
which contains no potential parameters other than 6,

Comparison of the right-hand sides of (1.2) and (3.13)
along with a straightforward expansion shows that the
square potential switching function (3.13) is always larger
than the two-state expression (1.2):

—b IkT
(4.23)

cosh (6/2kT) I+e
Also, since sinh (cz) ~z sinh c whenever z ~1, the

passage from (4.16) to (4.19) makes it clear that the exact
f (T) is always larger than the approximate expression
(4.19):

and the two-state approximation given in Refs. 4 and 5
all lie in a strict order of decreasing magnitude.

V. CONCLUSIONS

V=Vd(T» (5.1)

where the mobility in the absence of stochastic interac-
tions, viz. , po, is given by the Drude result (3.3), and the
switching function f (T) is given generally by (3.5). The
switching function expression takes the form presented in
(3.6) or (3.8) for symmetric potentials. We have explored
a variety of potentials represented by (3.9), (3.12), (3.14),
(4.4), (4.6), (4.8), and obtained the corresponding expres-
sions for the switching function in (3.11), (3.13), (3.15),
(4.5), (4.7), and (4.9), respectively.

We have noted the curious fact that the switching
function for some of the potentials considered equals the
square of the reciprocal of the partition functions of cer-
tain well-known magnetic systems, and have explained
the source of the relation to be an additional symmetry
condition, viz. , (4.1), which those potentials possess.

In addition to the exact expressions discussed above,
we have also presented a prescription to evaluate the
switching function from a single global characteristic
(rather than the detail) of the potential, viz. , the quantity
u defined in (4.18). This prescription is (4. 19) and it is
exact for arbitrary rectangular potentials. While not ex-
act, in general, it involves an excellent approximation as
Fig. 6 shows, and it provides one with a measure of the
steepness of the switching function as related to the
features of the potential. We have also shown that, at all
temperatures, the exact switching function (or mobility)
for an arbitrary potential is always larger than that given
by the approximation (4. 19), that the latter is always
larger than the square potential result (3.13), which, in
turn, always exceeds the two-state result (1.2). In Table I,

The aim of the analysis presented in this paper has
been to provide support to the form and detail of a con-
jecture made in a recent theory ' of microwave heating
of ceramic materials. Because the procedure we use in-
volves the calculation of the mobility of a particle sub-
jected simultaneously to a nonlinear periodic potential,
an applied electric field, and stochastic interactions with
its environment, our analysis is of interest not only to the
microwave heating problem which motivated it, but also
in the general context of transport calculations for non-
linear potentials. Our goal is the justification of the
switching function (1.2) used in the temperature-time
evolution given in (1.1). Our point of departure is the
nonlinear Langevin equation (1.3) presented in Refs. 4
and 5. Our method consists of the conversion of (1.3)
into the Fokker-Planck equation (2.7), the reduction of
these two equations to (2.9) and (2.11), respectively, in the
limit of large damping, the calculation of the steady-state
mean velocity in the case of a time-independent electric
field to give (2.24), and the simplification, in the linear
field regime, to the mobility expression (3.2). The final
step is the calculation of the switching function (3.5).

The central result of this paper is the mobility expres-
sion
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TABLE I. Steepness measure 1/u of the mobility or of the switching function.

Kind of
potential

Square
Sinusoidal
Triangular
Multistep
Rectangular
Piecewise linear

Equations in text for
potential and f (T)

(3.12) and (3.13)
(3.9) and (3.11)
(3.14) and (3.15)
(4.4) and (4.5)
(4.6) and (4.7)
(4.8) and (4.9)

Measure 1/u of the
steepness of f ( T)

1

2
3
3(N —1)/(N + 1)
1/[4g( 1 —g) ]
3/[4g'(1 —g)+(1 —

g
—g)']

we provide the potentials studied in this paper along with
the measure 1/u of the steepness of the resulting switch-
ing function.

The approximations that have gone into our analysis
are (i) the limit of large damping that has allowed us to
reduce the exact Fokker-Planck equation (2.7) to the
Smoluchowski equation (2.11), (ii) the assumption of a dc
field that has allowed us to solve (2.11) in the steady state,
and (iii) the neglect of terms of order higher than linear in
the electric field represented by (3.1). The justification of
the three approximations is as follows. The ceramic sys-
tems which motivated our analysis are indeed believed to
involve very large damping, compatible with Debye relax-
ation. ' The period of the microwaves employed is large
enough (relative to other time constants in the problem)
to represent the electric field as independent of time, in
the first approximation, and Ohm's law is certainly ex-
pected to be obeyed in the systems as the field magnitudes
are limited by breakdown. Because our analysis could
find easy application to systems other than ceramic ma-
terials, it is of interest to study the problem in cases
wherein all these three assumptions must be dropped.

We are in the process of carrying out such an investiga-
tion.

We have used the results of this paper to analyze
several problems of direct interest to experimental obser-
vations in ceramic materials. One of these concerns the
question of the disparity between values of the energy
barrier, 6 in our analysis above, obtained from diffusion
experiments on the one hand and from thermal runaway
observations on the other. Another involves the effect of
grain boundaries and confinement phenomena on mi-
crowave absorption in materials. These are being report-
ed elsewhere. '
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