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Based on a previous work [G. A. Maugin and H. Hadouaj, Phys. Rev. B 44, 1266 (1991)],it is shown

that a generalized Zakharov system (Zakharov's system of plasma physics with additional self-

nonlinearity of the cubic type in the Schrodinger component equation) governs the (envelope) solitary-

wave propagation of a primarily shear-horizontally (SH) polarized, and secondarily sagittally polarized,

surface wave at the top of an elastic structure made of a nonlinear substrate on which is perfectly bonded

an elastic film of a slower material. The proof relies on asymptotics. Also shown is the complication in-

troduced by additional dispersive effects in the Rayleigh subsystem.

I. INTRODUCTION

In recent works' the possible propagation of envelope
solitons having the nature of shear-horizontal (SH) elastic
surface waves was unequivocally proved mathematically
for an elastic structure likely to be experimentally tested.
This phenomenon may occur along a composite structure
made of a nonlinear elastic isotropic substrate coated
with a thin "slow" linear elastic film. Couples of materi-
als for which this in indeed realizable were also deter-
mined. However, a strong decoupling hypothesis lay dor-
mant in that approach. Namely, it was assumed that the
SH wave in question remains decoupled from the so-
called Rayleigh component, i.e., that vectorial elastic
component that is polarized parallel to the sagittal plane
(plane spanned by the direction of propagation X, and

the normal to the limiting surface N; see Fig. 1). This was
considered in order to simplify the analysis, but it does
not hold true rigorously. A simple way to realize this
fact is to recall what happens for bulk waves in nonlinear
isotropic (a fortiori anisotropic) elasticity (See Ref. 3, pp.
36—37). In that theory a longitudinal motion necessarily
accompanies a transverse motion; e.g. , one can write

the longitudinal component u and remaining transverse
component w Iso-called shear-vertical (SV) component] to
produce what is commonly referred to as a Rayleigh sur-
face wave in the linear approximation. But then, ac-
cording to (1.1), the SH component should couple with
the full Rayleigh one in nonlinear elasticity. This estab-
lishes the frame of mind in which the present paper de-
velops. From (1.1), however, we shall still keep the idea
that the SH component is primary, for instance, being
preferably entered in the system through a transducer
designed to that effect, while the Rayleigh component is

only secondary, being essentially generated by the former.
Furthermore, only the SH component a priori carries a
dispersion effect due to the built-in vertical layering; but a
straightforward generalization so as to include dispersion
due, e.g. , to discreteness, in the longitudinal component
can be proposed heuristically (see Sec. V).

In all, the main result of the present analysis, which is

essentially asymptotic in the manner of Whitham, Ben-
ney and Newell, and Newell, is that the complex ampli-
tude a of the slowly varying envelope of the SH com-
ponent and real amplitude gradients (in the propagation
direction) n

&

=u„and n2 =w„of the Rayleigh com-

2)Tv —0 )

2)Lu =yv v„

where 2)I and 2)L are linear "transverse" and "longitudi-
nal" (d'Alembertian) wave operators along x, v is the
transverse component, u is the longitudinal component, a
subscript x denotes partial dift'erentiation with respect to
x, and y is a third-order elasticity coefficient. In an

asymptotic analysis where U =O(e) as e goes to zero,
u =O(e ) =O(u ) makes the system (1.1) fully consistent.
In particular, there is no feedback of u in the v equation,
while the longitudinal component u is excited through
the second harmonic of v. If this is true for bulk waves,
then the situation should be worse for surface waves as
boundary conditions to be applied at the limiting
surface —although free of tractions —usually couple both

FIG. 1. Setting of the surface-wave problem: u3, shear-

horizontal elastic displacement; uR, Rayleigh component polar-

ized parallel to the sagittal plane Ps.
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ia, +a +2k~a~ a+( orn i+a rnid)a =0,
(n, )„—CL (iii ).„=—p, ( lo I')„„,
(n~)« —Cr(~~)..= —ur(~& ~')..

(1.2)

ponents are in general governed by the following system
(in the absence of dispersion in the Rayleigh subsystem)
after normalization:

W= I—i +pIz+ aI3 +PI, Iz + y I3+gI i2

+gI &I& +vI &I3+5Ip

I, =trE, Iq =trE~, I3 =trE

au, au, - au. au.z„=— '+ '+» 2 aX,- ax, aX, ax,

(2.3)

(2.4)

(2.5)

where A, is the real coefficient of self-nonlinearity (of the
SH mode) and aL, az, p,L, and pr are real coupling
coefficients. For A. =a&-=pz-=0, this system is none oth-
er than Zakharov's ' system for Langmuir-ion acoustic
waves in plasmas, but with different physical interpreta-
tions. We coined the name "generalized Zakharov's sys-
tems" for systems such as (1.2) and their associates. Two
recent papers' '" are devoted to the analytical and nu-
merical study of one- and two-soliton solutions of system
(1.2). Thus the present work aims at providing the miss-
ing link between these works and the initial, simplified,
ones (Ref. 2 in particular). Because it involves three-
dimensional finite-strain elasticity, complicated boundary
conditions relating to the presence of the thin film, and,
in addition, two space dimensions to start with, the for-
mulation is somewhat cumbersome. Only the outline of
the deduction and most pertinent steps could be reported
in a text of reasonable length. We shall not repeat in de-
tail those steps that mimic the proof given in Ref. 2 for
the simpler system (pure SH case). Lengthy intermediate
expressions can be found in a thesis by one of the au-
thors' (available on request).

BS'
ik ~g,

(2.6)

W= I ) +pI~ I& =tlE I~ =trE (2.7)

The last quantity is the Lagrangian finite-strain tensor,
5; is Kronecker's symbol, and the Einstein summation
convention on repeated (dummy) indices applies; A, and p
are elasticity coefficients of the second order; a, P, and y
are elasticity coefficients of the third order; and g, g, v,
and 5 are elasticity coefficients of the fourth order. The
expression (2.3) follows Bland' and Kalyanasundaram. '

Similarly, Xk, k=1,3, are Cartesian material coordi-
nates in the two-dimensional plane corresponding to
X& =0, with X& and X& coinciding with X& and X3, re-
spectively; Po, u;, and T;& are the mass density (per unit
area), displacement vector, and first Piola-Kirchhoff
stress tensor pertaining to the thin film (Xz =0), a linear
elastic, isotropic, homogeneous material with constitutive
equation (here nonlinearities, whether physical or geome-
trical, are not needed)

II. SETTING OF THE PROBLEM
Bu Buk

Ek —— +, i, k =1,3,a, ax,
(2.8)

The starting equations are the three-dimensional equa-
tions of motion (for Xz )0) and boundary conditions (at
Xz =0) written as Eqs. (2.29) in Ref. 2:

8 u; BT.
po q

=, Xq&0, i j=123,
Bt J

(2.1a)

po&q

X~ =0, i,j=1,2, 3, k =1,3, (2.1b)

BW 5+auT- =
1J g~ lP

PJ P

(2.2)

and strain energy function (per unit volume) &such that
(tr = trace)

respectively. This uses the index notation of Cartesian
tensors (we refer to Ref. 2 for all notations of continuum
mechanics). Here X., j =1,2, 3, are Cartesian material
coordinates in three dimensions; po, u;, and T;. are the
mass density, displacement vector, and first Piola-
Kirchhoff stress tensor pertaining to the substrate
(Xz &0), a nonlinear elastic, isotropic, homogenous ma-
terial with constitutive equation

u,-=u, , i =1 2 3, at X~=0 . (2.9)

We shall consider a wave motion that takes place in the
X, direction and is of the surface wave type in the se-nse

that

tl'(Xi Xp + ~ X3 t )=0 (2.10)

There is no loss of generality in assuming that the prob-
lem in fact does not depend on X3 (but it does involve u3
and u 3) so that, symbolically,

~ ~ ~

where 8' is a strain energy per unit area, 1, and p being
the in-plane Lame elasticity coefficients.

Equations (2.1) are essentially the simplified form of
the bulk and jurnp-boundary conditions of the theory of
elastic interfaces sandwiched between two half spaces. '

The fiat (in the Lagrangian description) interface
separates here a nonlinear elastic substrate (Xz )0) from
vacuum. There is no applied traction on the exterior face
of the interface. In the modeling the inhuence of a super-
imposed thin film has been accounted for through an
inertial term (containing p) and a surface elasticity (or
capillarity) term in the boundary condition for T, [Eq. "
(2.1b)]. Perfect bonding between the interface and sub-
strate occurs at Xz =0, i.e.,
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a =0. (2.11)

Accounting for the remark about system (1.1) in the In-
troduction, we consider that strains developed through
the displacements u 3 and u3 are of order e (where e is
infinitesimally small), while those occurring from u, and
u2 or u, will be of order e as e goes to zero. In spite of
the considered simplifying hypotheses, the equations re-
called in this section reAect the whole complexity of, and
perhaps, more, the mere size of algebraic manipulations
at hand in, the present problem.

III. REDUCED WAVE EQUATIONS

On substituting from (2.2) —(2.5) into (2.1a) and
(2.6)—(2.8) and (2.2) in (2.1b) and keeping in mind that
1113,il=O(e), whereas lu, ~l and lu2 .

l are O(e ), so that
we keep at most terms which are O(e2) in X, =X and
Xz= Y components and O(e ) for the SH (X3=Z) com-
ponent, after some lengthy algebra we obtain the follow-
ing equations.

In the substrate (Xz = Y) 0),

a u
po =(g+2p)ttxx+puyy+(A, +p)WXY+ A, uxuxx+ Af y xy+ As x yyat2

a N
Po =(A, +2P)wyy+pwxx+(A+V)u, xy+ A, uyvyy+ A fvxvxy gUyvxxat2

(3.1)

(3.2)

a v
Po q P vxx+ YY +P(vxxttx+ x1txx+ xx Y+vx xY+ YY11x+ Yttxy+ YY Y+UYNYY)at2

3y+ (2uxxux+2vxuxx+2vxyuy+ uyuxy+ vxywx+ uywxx+ vxu yy+ uyywx+ vywxy+4vyyw y)4

+A( vxttxx+ Uxwxy+ vy1txy+ UYwy„+P(uxuyy+ v„wxy+ vyuxy+ u Ywxx+2uxuxx+2uywyy)

+~"[[UX(UX+Uy )]X+[Uy(VX+ Uy)]y ] (3.3)

in which we have set

u) —u, u2 —N, u3 —v (3.4)

and

A, =A, +2p+P+ —3y, Af =p+A, +P+ —'y, A = —y+p, 5' =5+P+ —', y+p+— (3.5)

At the interface (X2 = Y=O),

po =(A+2P) ttx+xp( t+t Yw)x+p(1tt/ x+yLuxwy+Uxwy)+P(11 y+ wx)(Ax+ NY )
at

+
1 Y[ttx(11y+ wx )+wy(By+ wx )+ 1 Uxvy ]+A11y(QX+ wy )+P(uxu „+uxwx+2uywy) (3.6)

20=(k+2@)wy+Aux+ —[ux+wx+ux+u Y+w„'+u„'+2wy(ux+wy)]+3ct(ttx+wy)'
2

+P[1tx+ &(tty+wx) + &(Ux+ Uy)+wy+2wy(ux+ wy)]+p(u Y+3wy+vy+wx+u Ywx )

+3y[ —,'(tty+Wx) +Wy+ 4Vy] (3.7)

po p pvxx+)Ltvy+(k+P)vyttx+ A, uywy+ A (vxtty+uxwx)+5' vy(vx+vy)
at2

(3.8)

For the sake of comparison, had we discarded the coupling of the u and w components with v in Eqs. (3.3) and (3.8), we
would have reached the system

2

Po q P(vxx+UYY)+& [I vx(vx+vy)]x+[vy("x+vy)]Y]at2
(3.9a)

po p puxx+O'UY+8 UY(vx+UY)
at2

(3.9b)

which is the couple of equations considered in previous works (Refs. 1 and 2). Note that this decoupling hypothesis
makes that the first nonlinearities to manifest themselves in the simplified system (3.9) be of the third order —i.e., the
right-hand sides in Eqs. (3.9) would generate the third harmonic of an initially monochromatic signal —while the full
coupled system (3.1)—(3.3) and (3.6) —(3.8) includes second-order nonlinearities yielding, apparently (see below) second
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harmonic generation in Eqs. (3.1)—(3.8). It is easy to recognize in the linear version of Eqs. (3.9) the system of Mur-
doch' for SH motion, and in the linear version of Eqs. (3.1)—(3.2) and (3.6)—(3.7) the celebrated system of Rayleigh'
for sagitally polarized waves.

The above-obtained system is now made nondimensional in the following manner. Let k, and w, be typical wave
number and frequency. Then new nondimensional independent and dependent variables (r,x,y) and (U, V, W) and
( U, P') are introduced by

=co. t, x =kX, y =k Y, U=ku, V=kv, W=k W, O=ku, P='kv,

together with

k, =plP, Cs=P/po=rv, /k„C r=plpo, C=CTICs, P =1/C

CLI =(~+2P) IPO 1. 1 (~+20)IPO Cr. = CL1 ICs L CslL1

and the nondimensional material coefficients

c =(P+Ty)/p, c&=A, /p, cr =Ply, c„=(A+p+P)lp, cs=Aflp, c„=Ag/p, c„=3y/4p,

so that

c&=c„+c, c =c„+1, c&=c +c„—1.
On account of these, some simple rearrangement allows one to deduce the following nondimensional equation.

In the bulk ( Y)0),

(3.10)

(3.1 1)

(3.12)

(3.13)

g(CL U„—U„, )=(g—1)W„»+U»»+c&V» V,„+csV» V,»+c„V„V»»,

g(CL W„—W„»)= W„„+(c„—c )U„+c&V V +c&V„V, +c,V V„„,

P V„—(V„„+V»»)=c (U„V„„+V W»)+c&(V„U„„+V»W )+cr(V„„W +U„V»)+c&V U„»

+ c„V„W„»+c„(V„U»»+ V» W„„)+c„(2U» V„»+ W» V,» + V»» W, + V» W„» )

+13 b [ [ V„(V„+V» )]„+[ V» ( V„+V» ) ] ] .

At the interface (y =0),

0„C",0—,„=U, + W„+c,V„V, ,

0=$W»+(c„—c» —1)U„+—,'(c„—1)V„+—,'c&V»,

P'„—f'„„=(c„—1)V U„+c&V W +c„(U V„+V„W )+ V»[1+P 6( V„+V )],

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

in which we have set

yes'I
g

IJ Cz IC2A, +2
p

(3.20)

(U, V, W)(x,y, r) =(0(x,r), 1 (x, r'), W(x, r))exp( —yy },
(4.1)

and have purged Eqs. (3.6) and (3.7) of some terms of or-
der four which still spoiled them. The coefficients P and
6 are dispersion and nonlinearity parameters for the pure
SH problem.

IV. TOWARD THE GENERALIZED ZAKHAROV SYSTEM

A. Transformation of the equations
for the Rayleigh component

The surface-wave solutions that we shall consider will
vanish sufficiently rapidly in depth in the substrate, say,
exponentially, and the material particles that belong to
the superimposed film are not distinguishable from those
of the substrate that they match at this interface [Eq.
(2.9)]. Then, if practical (this is approximately true after
the study of the pure SH case in Ref. 2), we set

=[(g—1)W„+U ] o

y

+[c„V V»] o, (4.2)

where we used the last of (3.13}. Now subtract side by
side Eq. (3.17}from this to get

where y is a positive real number; we can use this proper-
ty to bring the whole above-obtained system to the inter-
face, at least here for the Rayleigh component. This
naive way of getting rid of the behavior in depth (along y)
goes as follows. For instance, integrate (3.14) from

y =+ ~ to the interface y =0. Accounting for the van-
ishing condition at infinity, we obtain thus

I g( Ci U„—U„„)dy
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f g(CL U„—U,„)dy —( U„—C~ U )
+ oo

=(&/p)[ W, ]

+ I [cpV V,„+(c„—1)V V ]dy . (4.3)

For solutions which can be approximated by (4. 1), this
last result can also be rewritten as

we can approximate PNL and PNL by

PN„=c N, V„„+c N, V +c,N2(V, + V ),
PNL =(c„—1)Ni V +c Ni V„.

(4. 1 1)

(4.12)

gCL W„—W„=—y[U + —,'(1+c,)V„+—,'c, VV ] .

(4.5)

B. Equation governing the SH component at the interface

We now have to deal with Eqs. (3.16) and (3.19). These
can be rewritten in the suggestive form

2)~ V phTNL —P—NL =0, y )0,
&s V—

Vy pATNL —
PNL =0, y =0,

where we have set

(4.6}

(4.7)

2 ~
2)ii =p

Bx By Br

a2
(4.8)

Bx

g(CL U„—U, )+y(U„C'I —U„„)
2= —(gA, /p) W„+—,'c& V, V„+ (c„—1)VV„. (4.4)

2

Proceeding in a like manner for Eq. (3.15) and associated
boundary condition (3.18), we are led to a relation valid
at the interface:

To get some idea of the inAuence of those terms, we may
momentarily consider a V solution in the form

V= A exp( —yy}cos(9, (4.13)

with O=kx —co~, as in the search for harmonic genera-
tion (see Ref. 2, Sec. IV A). In that case the contributions
(4.12) will produce predominant nonlinearities in the
forin (terms in factor of coso)

(
—k c N, +y c~N, +g c,Ni)A exp( —yy),

for y)0 in Eq. (4.6), and

yN, (c„——1)3,
at y =0 in Eq. (4.7). At the interface we have

N, (y =0)=n, = U„, Ni(y =0)=ni= W„.

(4.14a)

(4.14b)

(4.15)

Following the guideline provided by Appendix B in Ref.
2, we then know that the correction due to n

&
and n 2 in

the nonlinear Schrodinger equation governing the com-
plex amplitude a = A exp(i8) at y =0 is simply obtained
by combining (4.14a) for y =0 with 2y times the surface
contribution (4.14b), i.e., the contribution

and
CXL ]n] 3 +AT]n2 3 (4.16)

TNL
= [ V„(V„+V ) ]„+[ Vy ( V„+Vy ) ]y,

TNL= Vy(V, + V ) .
(4.9)

w..l«w, l, Iw„l«lw. .l, Iw, «lw. l,
(4.10)

Here PNL and PNL are given by the remainders in Eqs.
(3.16) and (3.19). These last two terms are made of linear
combinations of contributions which always are products
of a spatial derivative of V and a spatial derivative of ei-
ther U or W. Equations (4.6) and (4.7) would be identical
to Eqs. (3.9) if it were not for these additional terins. We
can, therefore, proceed as in Ref. 2. All we need to do is
to evaluate the inhuence of these additional contributions
while referring the reader to Ref. 2 for the detail of the
deduction of the other terms. To that effect, we recall
that the V component shall be a spatially (along x) slowly
modulated carrier wave (whose frequency coo and wave
number kp practically satisfy the linear dispersion rela-
tion of Murdoch's surface waves [Eq. (3.4) in Ref. 2]).
We expect then that the U and 8'components which are
driven by the V one will also vary slowly, so that we can
write the inequalities

with

al, = —k c +y cr+Zy (c„—1),
2

O.'T) =g C~

(4.17)

(4.18)

at y =0, where g=x —coo~, coo and coo are the slope and
curvature of Murdoch's dispersion relation at (cop kp),
and we have set

3P cook, (P coo —2ko)
q(coo, ko, b ) =

8[p +2(coo —ko ) ]
(4. 19)

where, we emphasize, k and y have to belong to the
linear dispersion relation of Murdoch so that they should
be noted ko and yo, with yo given by Eq. (4.24b) of Ref. 2

in terms of kp and cop. Proceeding then as in Ref. 2, on

account of the additional terms (4.16) we shall find that
the complex amplitude a is governed by the nonlinear
Schrodinger (NS) equation

tt

ia + '
a&&+q(~„k,;a)Ia I'a+(a, n, +a,n, }a=0,

as the y variation is even more slow. On account of these
and setting

—koc +go(c +2c„—2}

2coo[p +2(coo —ko ) ]
(4.20a)
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Oca
2

2coD[P +2(to0 —ko)]
(4.20b)

According to Ref. 2 [Eqs. (4.24b), (4.41a), and (4.41b)],

(4.21a)

where

1
R (coo, ko) = kacp,

2C„

Cs, =C /C„, Cs2 =CL /g =Cr .
(4.29)

k0[1+2(co0 —k0 ) ]

to0[p +2(co0—ka )]

(coo —k0)[2(p to0 —k0) —p (co0—ka)]
~3[P&+2(~& k&))3

so that we know all about Eq. (4.18).

C. Generalized Xakharov system

(4.21b)

(4.21c)

The system formed by Eqs. (4.18) and (4.28) indeed is of
the form of system (1.2), with pr =0. Note that many of
the coefficients in these equations still depend on the
working regime (coa, k0) of the carrier wave, the point
(tea, k0) having to belong to Murdoch's linear dispersion
relation. However, an appropriate scaling does the trick
to recover the universal form (1.2). Thus our surface-
wave problem is governed by a so-called generalized Za-
kharou system at the thin film (interface).

V. ZAKHAROV SYSTEM AND BEYOND

It remains to transform Eqs. (4.4) and (4.5) when the
SH component is governed by Eq. (4.18). On the one
hand, the solution should vary slowly in x space, so that
we can write

(4.22)

for a typical amplitude. On the other hand, we assume
that pa=pa ' »A, D (wavelength) or ya ((ko, with, in our
framework, B/By= —y0, B /By =y0. On account of
these, (4.4) and (4.5) can be approximated by

g(CL 0„—U„)+pa( U„—C'L 0„„)= ,'cd f „—V„„(4.23)

and

(4.24)

In this approximation the k component is no longer
driven by P: We still have to evaluate the Pcontrib'u-
tion in the right-hand side of Eq. (4.23). We write

=a exp'(i8)+a'exp( i8) . — (4.25)

In the analysis yielding the NS equation in Ref. 2, we had
Ia I

=0(e ). Then, according to the remark of Sec. I, we
should take 0=0(e ). On computing P'„and 1 „, from
(4.25), evaluating their product, and rescaling by r'=ex
and x'=ex, we find that the first term to be conserved in
the source contribution of Eq. (4.23) shall be of order e .
Discarding secular terms that may arise in the expression
of O', 0'„„and proceeding as in Newell (Ref. 7, p. 39), we
find that Eq. (4.23) takes on the form (order e )

C„U„—C 0 „=—,'cpk0(aa')„

wherein

(4.26)

C„(co0,k0):—(g/CL )+go,
C =g+CL .

(4.27)

Taking finally the x derivative of (4.26) and (4.24) and ac-
counting for (4.15), we obtain the equations governing U
and 8'aty =0 as

A. One-soliton solution

There is no loss of generality in the nature of the prob-
lem in setting ctr =pr =0 in system (1.2), so that we ex-
tract the system with two degrees of freedom (n, =n and
a slightly changed but obvious notation):

ia, +a„„+2k,IaI a+2na =0,
n„Cn„—„=—p(Ia I ) „.

(5.1a)

(5.1b)

Note that the present coefficients A, and p bear no rela-
tionship whatever to elasticity moduli introduced in pre-
vious sections. Just like the pure NS equation (with
A, &0), the system (5.1) possesses one-soliton solutions.
This is simply seen by noting that for such types of solu-
tions a and n functions of g=x —Vt, the second of (5.1)
yields

n+(V —C )= —p(a )+ . (5.2)

Upon integration, for conditions of nonreson ance
( VWC), n is substituted from (5.2) into (5.1), providing
thus the new (pure) NS equation

i a+ „„a+2k,, I
aI'a=ao,

wherein

(5.3)

A.,e=A, +p(C —V ) (5.4)

n„~(x, t)=4pg A,,ft'(C —V ) 'sech (2gx) . (5.6)

With A, & 0 (the existence condition for solitons of the
pure NS equation), the solution (5.5) and (5.6) exists only
for A,,&)0; thus either in the subsonic range,

p2 (C2 (5.7)

And this admits (envelope) soliton solutions of the form

a„&(x,t) =2i rt sech[2g(x —Vt) ]

Xexp[(i/2) Vx+i(4g V /4)t J, —(5.5)

so that (5.2) yields

si ("i )~~=

(n2 )„—Cs2 (n 2 )&&=0,
(4.28) or in the supersonic range (also called the transsonic

range),
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V )C +(p/A. ) . (5.8)

(p/i t(, i ) & V' & C (5.9)

But on account of (5.4), soliton solutions can also exist
for A. (0 on the condition that

This is but a system known in plasma physics' with the
additional self-nonlinearity in the NS equation. In the
absence of this nonlinearity (A, =O), system (5.10) was
shown by several authors to possess one-soliton solu-
tions '. ' Typically (remember that A, =O),

provided that )Lt/~A,
~

& C at all. If p/~A. ~
)C, then this

solution exists for the whole subsonic range. For tmo-

soliton solutions of the system (5.1), we refer the reader to
Ref. 11.

B. Inhuence of dispersion eft'ects in the Rayleigh subsystem

2no
a„&(x,t) = — —(sech/)(tanhg)

3

X exp[(i/3) Vx+(i/12)not],

n„,(x, t)= —nosech g,
with

(5.11)

According to the physical interpretation which
motivated this paper, system (5.1) couples the slowly
varying envelope of the dispersiUe SH component of the
surface-wave problem at y =0 to the nondispersive, longi-
tudinal component of the Rayleigh mode. According to
this model, then, both dispersion and self-nonlinearity are
built in the SH component, dispersion arising from the
presence of the superimposed thin film, i.e., a vertical
stratification. As refiected in the typical solution (5.5)
and (5.6), n is of second order with respect to a. This was
introduced initially as one of the working hypotheses.
The above theory breaks down if a =0(n ). In that case
terms involving biquadratic nonlinearity and dispersive
effects in the Rayleigh component become of the same or-
der as the term retained in the right-hand side of Eq.
(5.1b). These additional effects occur in the propagation
space (x) and, therefore, will transform (5.1b) essentially
in a Boussinesq equation coupled to the NS equation
(5.1a) (for Boussinesq's model applied to the modeling of
surface acoustic waves, see Bataille and Lund' ). In these
conditions, (5.1) should be replaced by the more involved
system (with a new but trivial change in scaling)

no

18

1/2

(x —Vt), V= 1 Sn—o/9, (5.12)
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the more general system (5.10), with X finite and positive
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a defective transducer exciting simultaneously both SH
and Rayleigh components), our main concern remains
the essentially SH-polarized solitons of systems such as
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2ia, +3a „+2k,~a~ a —na =0,
n„—C n„, = (

~
~a+ n +n„„)„„.

(5.10)
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