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Ab initio calculation of density dependence of liquid-Na properties
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We have performed ab initio quantum-mechanical calculations of the Hellmann-Feynman forces in
liquid Na, which were used in a molecular-dynamics simulation without recourse to Car-Parrinello
methods. The diffusion coefficient (D) and pressure (P) were obtained as a function of the temperature
(T) and volume (V). Three simple formulas relating D to T, D to ¥, and P to V were found to be obeyed.

Qian, Weinert, Fernando, and Davenport’ (QWFD)
have performed a first-principles calculation of the ac-
tivation energy for diffusion in liquid Na, obtaining excel-
lent agreement with experiment. Their calculations were
performed at a density close to the experimental density
of liquid Na at its melting temperature, even though they
noted that the density they calculated for the solid is
43% greater than the experimental value at 5 K. If this
discrepancy extrapolates to the liquid, we estimate their
calculations were performed at negative pressures be-
tween — 30 and —20 kbar, depending on temperature.

Our calculation mimics QWFD in that we have 54
atoms per cubic supercell, expand the Kohn-Sham orbit-
als with a Fermi-Dirac occupancy at the I' point in the
Brillouin zone (BZ) in plane waves up to G>=12 Ry, and
use a fully nonlocal pseudopotential® with s nonlocality.
It differs in that we use the Wigner correlation functional
and in that our pseudopotential is one we recently
developed® based on Hartree-Fock exchange with the
core elections, resulting in a density (in the solid) 8%
smaller than the 5-K experimental value. Rather than
use the Car-Parrinello* method (CPM), we perform a
complete quantum-mechanical electronic-structure calcu-
lation (using an iterative technique’) after each
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FIG. 1. Pair-distribution function g (r) for the followmg tem-
peratures and atomic volumes: A4 (700 K, 29.8054 A ) B (700
K, 35.3096 A ) Y (700 K, 46.8597 A’ ), X (400 K, 46.8597 A3),
and Z (1400 K, 46.8597 A).

molecular-dynamics (MD) time step,® obtaining both
the Hellmann-Feynman forces and the pressure

=(Tro&+m{v?))/3V, where & is the stress tensor and
V the volume per atom. The starting potential for each
time step is calculated from the converged charge density
of the previous time step plus the difference between a su-
perposition of atomic charge densities at the current and
previous times. After 3 iterations, requiring 110 Cray
YMP seconds, the forces are within 2% of their con-
verged values’ and P within 0.1%. These errors are
smaller than those introduced by the one-point sample of
the BZ. It is the electrons and not the ions which control
the time step At in the CPM; thus QWFD took
At=1.2X10'® sec, 10 times shorter than our At
=50t, , ,° which is still quite a bit smaller than the
At=10"" sec used in classical MD simulations by Rah-
man.’ Thus our procedure is computationally more
efficient than the CPM. QWFD used a microcanonical
ensemble, obtaining the temperature from m {(v?) =3kT,
whereas we fixed T with the Nose!® thermostat.

The pair-distribution functions g (r)=V{3X;8(|r,—r,]
—r)/4wr?) shown in Fig. 1(a) for fixed ¥ and dlﬁ'erent T
are quite similar to QWFD’s. The g (r) in Fig. 1(b) with
fixed T have their peaks increase, and the whole curve
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FIG. 2. Pressure and its running average at each of 2250 time
steps for T=700 K and V =46.8597 A’. The small rapidly
varying kinetic contribution has been averaged.
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FIG. 3. {r?) and coefficient of self-diffus}ion at each of 1250
time steps for T=700 K and V' =46.8597 A".

compress with increasing P, as observed experimentally.!!

Figure 2 displays the pressure and its running average
calculated for T=700 K and V=46.8597 A’/atom.
Several hundred time steps during which the system was
approaching equilibrium have been discarded. Figure 3
displays {(7?) averaged over the 54 atoms in the supercell
and over 1000 different initial times (i.e., each of the first
1000 time steps in Fig. 2 were used to start Fig. 3), as well
as a running estimate of the diffusion constant, defined to
be

D(T)= lim [{r¥(T,t)) /6t] . M
t— o0
For smaller T or V, the number of time steps discarded
and the number of initial times needed in the r? average
was larger. In Table I we list D, P, and (E ), the energy
per atom, for six different combinations of 7" and V.
The Birch!? equation of state is

P=1.5B[(Vy/V)*—(V,/V)3]+P, , )

where B is the isothermal bulk modulus. Taking P, and
V, from the first row of Table I, we fitted the other two
(P, V) at 700 K in Fig. 4, almost exactly with B(700 K) =
41200 bars, which compares well with the experimental
value!® of B(700 K) = 38616 bars. The mean free path
for an ideal gas is well known to be A= V/4mV 2r§,, where
ro is the scattering radius. We subtract an excluded

TABLE I. Pressure, average energy per atom, and coefficient
of self-diffusion calculated at six different temperatures and
volumes.

T LV P (E) D
(K) (A"/ atom) (bars) (eV) (10~ °cm?/sec)
700 46.8597 246 —6.08013 13.82
700 35.3096 20864 —6.07224 7.668
700 29.8054 46343 —5.99423 4.954
400 46.8597 —3407 —6.17019 3.238
1400 46.8597 6305 —5.91433 32.60
1400 29.8054 55183 —5.80623 16.20
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FIG. 4. Pressure at three volumes at 7=700 K fitted with
Eq. (2).

volume 4773 /3 from V, note that the square of the dis-
tance a particle diffuses per second is A times the number
of A’s per sec, {v ) /A, and obtain

D=(kT/mm VXV —4mri/3)/6r . 3)

Equation (3) with a single parameter r,=1.69 A fits
D (V) at 700 K almost perfectly, as seen in Fig. 5. At
1400 K, r,=1.3138 A (1.3465 A) is required to satisfy (3)
at ¥ =46.8597 A’ (29.8054 A"). These radii may be com-
pared with our pseudopotential cutoff radius of 0.8996 A,
the standard ionic radius of 0.97 A, and the Wigner-Seitz
radii at the three densities at which we have calculated,
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FIG. 5. Diffusion coefficient D at three volumes at T =700 K
fitted with Eq. (3).
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2.2365, 2.0352, and 1.9234 A. There are no hard cores in
these calculations; the interactions between the ions are
strictly a Coulomb repulsion screened by the electron gas.
We think it is quite remarkable that the scattering of
these ions can be described by the simplest kinetic theory,
assuming a soft core with a single effective radius for
both the excluded volume and scattering cross section.
The effective radius is some measure of the distance of
closest approach of the ions and therefore decreases with
increasing temperature, but over a large range of
Wigner-Seitz radii varies by no more than the uncertain-
ties in the calculated diffusion constants. In Fig. 6 the
self-diffusivity is least-squares fit to the Arrhenius form at
two densities:

D(T)=Dyexp(—E, /kT) , @

with D, =84.6X10"°cm?/sec and E,=0.112 eV at
“normal” density; QWFD obtained D,=84X10"°
cm?/sec and E, =0.099 eV. At high density we expect
the averaging to be interminable at 400 K; hence D was
calculated only at 700 and 1400 K, resulting in
D,=52.8X10"° cm? /sec and E, =0.143 eV. Using the
same two points at normal density gives D, =76.9X10~°
cm?/sec and E,=0.104 eV. Thus we conclude that D,
and E, are strongly dependent on ¥V and hence P, but if
one has a pseudopotential which cannot give P(V)
correctly, one should calculate D as a function of ¥ rath-
er than P.

We attempted to calculate C,=({E?)—(E)?)/kT?,
but the Nose thermostat, which was said!® to give all
thermodynamic averages correctly, fails for the square of
the kinetic energy K. Although the numerical average of
K=3(N—1)kT/2N to five significant figures (N =54),
K (t) oscillates about its average with a period and ampli-
tude which depends on the thermostat mass parameter.
It should be obvious that in the limit that this parameter
approaches zero the coupling between the kinetic energy
of the system, the thermostat becomes infinitely tight,
and the kinetic energy has no fluctuations. Thus the
Nose thermostat with a reasonable mass parameter ap-
pears to be adequate for most averages, but not for fluc-
tuations. In the very-large-mass-parameter limit, we as-
sume it would also give fluctuations correctly, but would
require an inordinately long integration time to achieve
ergodicity. We therefore fit { E(T)) at normal density to
obtain Cj,=(8.526-2.920X1073T) cal/(mol K). This
gives, with experimental values'® in parentheses, at 400
K, C,,=7.358(7.030); at 700 K, C},=6.482(5.739); and
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FIG. 6. 193D fit with Eq. (4) at three temperatures for
V =46.8597 A" and at two temperatures for ¥'=29.8054 A".

at 1400 K, C;,=4.438(4.851). The comparison between
the calculated Cp and experiment should not be taken
too seriously. The experimental values are at atmospher-
ic pressure, whereas the calculated ones are at fixed den-
sity. Also, a three-point fit to the internal energy is not
adequate for determining C), over a 1000° range. We also
fitted P(T) to obtain (dP/3T),=(16.051-7.042
X 1073T) bar/K. The volume coefficient of thermal ex-
pansion a=(0P /3T), /B. Using our calculated value of
B at 700 K, a;00=2.574X10"% K™, in excellent agree-
ment with the experimental'? a,y, =2.666X107*% K.
Finally, we note that Cp, —C,, = VTa?B =1.288 cal/mol
at 700 K. This compares to Cp, —C);,=1.24 cal/mol ob-
tained from the tabulated values.!> As far as we know,
quantum-mechanical molecular-dynamics calculations of
Cp—Cy or a have not previously been performed for any
liquid.'*
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