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Ginzburg-Landau theory of the spin-charge-separated system
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The phenomenological Ginzburg-Landau theory is developed for the resonating-valence-bond state
where the spin and charge degrees of freedom are separated. We have the two order parameters corre-
sponding to the fermion pairing and the Bose condensation, respectively, which are coupled with the

gauge field. We find only one transition temperature which is the superconducting T, . Above T„a
crossover occurs from the spin-charge-separated phase to the Fermi liquid as the concentration of holes
is increased. Below T„ the penetration length A, is given by 1,'=A, ~r+ A,s~. The coherence 1ength g, on the
other hand, is complicated but is predicted to increase rapidly as the concentration approaches the over-

doped region. There are two types of the vortex structure with the flux quantization hc/2e and hc/e, re-

spectively. In the mean-field theory and the type-II limit, the former is stable in almost all the cases, but
the latter becomes stable near T, in the low-hole-concentration region.

Since the proposal of the resonating-valence-bond
(RVB) states and the spin-charge separation in these
states as a model of the high-T, superconductors, ' ex-
tensive studies have been done to clarify the nature of
this exotic state. Soon it was found that there are many
kinds of RVB states, and the statistic of the spinons and
holons depends on the specific RVB state. The scenario
of the normal state as well as the superconductivity is
quite different for each RVB state. This situation is best
described by the Ioffe-Larkin formula for the response
function II of the total system to the electromagnetic field
which is written as

II/(q, to) Iis(q,
II(q, co) =

IIy(q, co)+Iis(q, co)

where II+ and II~ are the response functions of the fer-
mion and boson systems to the gauge field, respectively.
This means that II~ or Hz whichever is smaller dom-
inates the response of the total system. In the extreme
case one of the systems is frozen to show the rigidity,
which results in the finite value of the corresponding stat-
ic transverse response function in the uniform limit
co=0,q~O (Meissner eFect). The response II is then
determined by that of the other system. Some of the
RVB theories assume that this is the case in the normal
state and ignore the system which is frozen and shows the
Meissner effect, while retaining only the other system.
When both IIF and Hz show Meissner effect the total
system is superconducting because the physical trans-
verse Il remains finite in the limit ca=0, q —+0 and shows
the Meissner effect. Recently, the present authors have
investigated the normal state properties of the uniform
RVB state. In this state the spinon is a fermion while
the holon is a boson, and it is assumed that neither spi-
nons nor holons are frozen in the normal phase. We ex-

pect many unusual properties because both the fermions
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FIG. 1. (a) The mean-field phase diagram. (b) Modified
phase diagram when inelastic lifetime effects are taken into ac-
count. The only true phase transition is across the heavy line
into the superconducting phase.

and bosons contribute to the physical processes. In the
mean-field approximation we have the two transition
temperatures Tz ' and T&z according to which we have
four distinct phases shown in Fig. 1(a). TD

' is the transi-
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tion temperature for the pairing of the spinons below
which IIF sho~s Meissner effec, and T~z is the Bose-
Einstein condensation temperature of the holons below
which II~ shows the Meissner effect. TD ' is a decreasing
function of the hole concentration 5 and becomes zero
when t5-J where t is the hopping energy of the electron
and J is the exchange interaction between spins. Tz&, on
the other hand, is an increasing function of 5. When

Tz ' & T and Tzz & T, neither of the orders is present and
the system is a "strange metal" which has been discussed
in Ref. 4. When TD ' & Tzz we have the Fermi liquid be-
tween these two temperatures and Tz ' is the supercon-
ducting transition temperature T,' '. When Tz& & T
& TD

' the spin gap opens due to the pairing of the fer-
mions ("spin gap state") and the response II of the total
system is II& between these two temperatures. It behaves
like a nondegenerate semiconductor instead of a metal,
and T~z becomes T,' '. When TD'& T and TBE & T the
system is a superconductor. In any case, we have the two
successive phase transitions when TD 'PTaE.

The inelastic scattering by the gauge field gives rise to
the pair breaking effect and hence reduces both transition
temperatures from TD ', TaE (dashed lines) to T~, TaE
(solid lines) as shown in Fig. 1(b). When one of II+ and

II& shows Meissner effect the gauge field is stifFened up
and the pair-breaking effect is reduced. Therefore, at
T, =max( T~, TaE ) both Ilz and Ila show Meissner effect
(superconductivity) as long as both TD and TaE are below
min(TD ', Tgz') [the thick line in Fig. 1(b)]. This discus-
sion modifies the mean-field picture shown in Fig. 1(a) in
that a single transition between "strange metal" and su-
perconductor now occurs over a finite range of doping
concentration 5. When 5 is further increased and TzE
exceeds TD

' however, we have two successive transitions
between which we have the Fermi liquid. For free Bose
gas in two dimensional (2D), TaE is just a crossover tem-
perature below which the correlation length grows ex-
ponentially. When repulsive interaction between bosons
is taken into account, we expect a finite mean-field transi-
tion temperature which one might naively expect to turn
into a Kosterlitz-Thouless transition when vortex exeita-
tions are taken into account. In addition, the interlayer
coupling can make the phase transition three dimension-
al.

In this paper we give a more concrete description of
the above scenario. We investigate the possibility of
these two successive transitions by using a Ginzburg-
Landau theory taking into account the interlayer cou-
pling. We also study the supereondueting phase of the
spin-charge-separated system. In addition, the value of
the Aux quantization is a nontrivial problem because both
the boson condensation and the pairing of the fermions
are involved. The structure of the vortex is clarified and
the lower and upper critical fields are obtained. For both
of these two problems, the gauge field plays an essential
role without which we obtain unphysical results.

We start with the following Ginzburg-Landau (GL)
functional for the free energy F:

F=gF, +gF, , +)+F,

The free energy F; for each layer i is

F, =Fz[f;,a, , A)+Fa[g, ,a, ]+F,„,[a, , A],
where

H
F~[ga A]= f d r 2g. V i—2a i— A

8m c

2

(2)

+2sgn( T —Tg"')
I
yl'+ I pl'

(3a)

H = H
2~2m. /pe, p

' &2rrf ~ A,a

where the difference in the factor of 2 comes from the
fact that the pairs of the spinons condense while the
holons themselves condense. Above the transition tem-
peratures gz and A,z, gz and A,z are symmetrically
defined and are proportional l

T —TDO'l '~2 and
lT —TaEl ', respectively. The transition temperatures
TD ' and Tzz are assumed to be different in general. We
now give a rough estimate of these quantities for the uni-
form RVB state at zero temperature. The kinetic energy
of the fermions and bosons are assumed to be of the order
of the exchange interaction J. We take the lattice con-
stant as the unit of the length. Then H,a(0) /gm- J5,
g~(0)-5 '~, and A~(0)-$0(J5) '~ for the boson sys-
tem, and H,z(0) /Sm -b /J, gz(0)- J/b, and
&~(0)-$0[J(1—5)] ' for the fermion system where b,

is the gap in the spinon spectrum due to the pairing. It
can be seen that the gs(0) is extremely short while g~(0)
depends on the ratio 6/J.

The free energy Fg,„, is obtained by integrating out
the fermionic and bosonic degrees of freedom with high
l ql and co components and is given by

2

Fs,„s,[a;, A]= f y~ VX a+ —A
c

+y~(V X a) d2r, '

where yz and yz are the diamagnetic susceptibilities of
the fermions and bosons in the normal phase. These do

is the GL free energy for the spinon pairing and

H
Fa[g, a)= ' f d r[2$al(V'—ia)Pl

+2sgn(T —T~z')lgl2+ lPl ] (3b)

is that for the holon condensation. A is the vector po-
tential for the electromagnetic field, c is the velocity of
light, and A' is put to be 1. In the above expressions all
the quantities are scaled appropriately. In particular
below the transition temperatures gz and ga, H,z and

H,z have the usual meaning of the coherence length and
the thermodynamic critical Geld. By using the penetra-
tion depth A,z or A,z, K,z and H,~ are written as
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not include the contribution from the fluctuation of the
spinon pairing or holon condensation which are de-
scribed by the GL theory. yF and y~ are of the order of
J. By taking the functional derivative of the free energy
with respect to a, the sum of the currents JF+J~ is ob-
tained. 5(F~+Fz )/5a is the supercurrents Jg +Jpf while
6F,„,/5a is the normal currents, the sum of which van-
ishes.

As has been pointed out by Wheatley, Hsu, and Ander-
son' it is the physical electron and not the individual spi-
non or holon which can hop between the layers. When
the temperature T is larger than the hopping t, perpen-
dicular to the layer, to which we restrict ourselves in this
paper, we can treat t, as a perturbation to obtain the in-
terlayer Josephson coupling as

—Jiggf d rC, (r)C; (r)C;+i (r)C, +i (r)

terms of the renormalization-group method. " In the
present 2D case however, topological excitations, i.e.,
vortices can be thermally activated even when H=O,
which alters the situation completely as is discussed
below. If there is no gauge field the excitation energy of a
single vortex is logarithmically divergent and there is a
Kosterlitz-Thouless transition at TK~. Below TK~ the
system shows Meissner effect while the true long-range
ordering is still absent. If we take into account the gauge
field, however, the logarithmic interaction between the
vortices is screened to be short ranged. Therefore, the
correlation length g remains always finite of the order of
the intervortex distance. The excitation energy E„(T)of
the vortex for Eq. (8}is given roughly by

2

E (T)— -J5(1—T/T ) —C(T' —T),
A,ii( T) BE BE

+H.c. ,

where J& -t, /T. When T is lower than t, we have to
consider the coherent motion of the electron between the
la~ers. Using the slave boson expression of
C; (r), C, (r) we translate Eq. (5) into the GL theory to
obtain the interlayer coupling F;,+, as

F, , +&= —Ji f d r P, (r)g;+ (ri)[P, (r)] [P,". +i(r)] +c.c.

The last term F, in Eq. (1) is the energy for the magnet-
ic field and is given by

F, =f (VXA}d r,
which completes the description of our free energy.

First we assume that the spinons remain normal and
the order parameter g is fluctuating around /=0 [the
"Fermi-liquid" region in Fig. 1(a)]. Integrating over the
P field, we obtain the following effective Lagrangian for
the bose system.

+f~(h +H) +yah

where gF is the Landau s diamagnetic susceptibility of
the fermion system including the contribution from the
fluctuating g field. The gauge flux h is given by

Bz Qy By az and the magnetic field H =V X A is as-
sumed to be perpendicular to the plane with the magni-
tude H. Because only the gauge invariant product f/*
and its complex conjugate can appear in the Josephson
coupling, the random phase average of the f field makes
the interlayer coupling ineffective and each layer becomes
an independent 2D system.

In the absence of the external magnetic field (H=O) the
boson order parameter is coupled only with the fluctuat-
ing gauge field a. This model has been discussed to show
a first-order phase transition in d =4—c dimensions in

where C is a constant of the order of unity. The density
nz of the vortices is dominantly determined by the
Boltzmann factor, i.e., n r exp—[ Ev( T) /T—]. When
Er(T) & T, i.e., T) T&E=[C/(I+C)]T&&~ the thermal
population of the vortices is large and the amplitude of
the order parameter ( lPl ) itself is considerably reduced
from unity. [It should be noted that lgl=l(l(tl=1)
means that the order parameter takes the temperature-
dependent mean-field value which is proportional to
l
T —TD 'l '

( l
T —TaE l

'
) near the transition tempera-

ture TD '( T B)E.] When Ei ( T) ))T, i.e., T« T&E, on the
other hand, the vortices are dilutely populated and can be
regarded as phase defects with (lPl ) remaining nearly
unity. The role of P and P can be interchanged in the
above discussion, and the following conclusions are ob-
tained. It is impossible that only one of the bose conden-
sation and the fermion pairing occurs without accom-
panying the other. The phase transition is replaced by a
crossover with the gradual development of the amplitude
of the order parameter. The only true phase transition is
the superconducting one at which both the bose conden-
sation and the fermion pairing occur simultaneously.
When TD) TBE and TBE) TD' are satisfied the ampli-
tudes of P and g grow almost simultaneously at
T, =max(TD, TBE). This situation corresponds to the
concentration region with high-T, (0.05 &5 &0.3). For
higher 5 (overdoped case) the amplitude of P develops
while its phase remains disordered with the correlation

Ev(T) f2T
length g- n v

'~~- e in the temperature region
TDO'= T, & T & TBE. This exponentially large g makes it
difficult to distinguish the system from the ordinary Fer-
mi liquid. Actually, g can easily exceed the thermal
length AUF/k&T of the fermions and the bosons can be
regarded as a condensate within the thermal length.

The above discussion can be generalized to the case of
nonzero external magnetic field H. In the T-H plane, we
concentrate on the small region near (T,H)=(T„O) and
discuss the slope s =dH, z(T)/dTlz r . When 5 is small

C

enough and TBE(TD, the spinon pairing is already
developed in amplitude at T=T, =TBE, and the super-
conducting properties are determined by the Bose con-
densation. The slope s is very steep determined by gii(T),
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and the coherence length g(0) estimated from s becomes
gs(0)-5 '~, which is of order 10 A. When 5 is large

enough and TD'&T~E, the superconducting properties
are determined by the fermion pairing. The slope s is
smaller than the above case, and g(0) estimated from it is
g~(0)-J/b which is of the order 100 A. In the inter-
mediate region of 5 where TD & T~~ and T~E & TD ', the
situation is complicated, but we expect that the slope s is
larger than that expected from the BCS theory using a
reasonable value of the bandwidth because the boson
character remains important in this region. The screen-
ing of the magnetic field by the gauge field occurs, and
the fermions and bosons feel reduced fields the sum of
which is the external magnetic field H. This efFect also
increases H,2(T) and hence s, and the coherence length

g(0) estimated from the slope s is very short in this inter-
mediate concentration region compared with the over-
doped region. As a result, a more rapid increase of g is
predicted as the concentration 5 is increased towards the
overdoped region than is expected from the relation
g(0) ~ T, '. The scenario of the single superconducting
T, at which both lfl and lPl develop substantially can be
applied also in the case of nonzero magnetic field by re-
garding the transition temperatures TD '(H), T~aE'(H) and

TD(H), TaE(H) as functions of H. This means that in the
normal state realized by applying magnetic field below
T„both f and P are destroyed as in the normal phase
above T, in the intermediate concentration region.

Next we discuss the structure of a single vortex in the
ordered phase assuming that the system is in the type-II
limit which is reasonable for the high-T, superconduc-
tors. The GL equations are obtained by putting the func-
tional derivative of the free energy Fwith respect to g, P,
a, and A tobe zero.

2

where p, q are integers and 8 is the unit vector
(—sin8, cos8). Putting Eqs. (12} into Eqs. (10}and (11),
we obtain

„df +Qzf g
—2(1 f2)f

1 d)' dT
(13a)

r +P2b =g 2(1—b~}b
r dr dr

P

d 1 d e
r yF a+ —A +yea

dr r dr c

(13b)

c2

16me2
Qf 2Pb

kF
(13c)

d 1 d r A+ ~F
a

dr r dr e c

where

Q (r) =+—2a (r) — A (r),2e
T c

Qf, (13d)
28 A.F

(14a)

P(r)= —a(r} .
T

(14b)

q
—2Ra (R)— RA (R)~0,2e

c
(lsa)

Now we investigate the behavior of the solution to Eqs.
(13). In the limit r ~ ao, both f and b are unity and both

Q and P should go to zero faster than r ' because other-
wise the energy diverges at least logarithmically. There-
fore, we obtain from Eqs. (14)

(loa) p —Ra (R)~0, (15b)

e 1
XFV a+ A +XsV a (Jp+Js)c 2e

8meyF
V A+ V a+ —A = — JF

C c C

where the supercurrents JF and Jz are given by

z I

JF=
z

f* V 2ia —A—P—c.c.g c '

~ . 2le

1677e A.Fi c

(lob)

(loc)

(10d}

(1 la)

as R ~ 00. Recognizing

2nRA(R)=(t)~,
~

a A dr= I f VX A dS, (16)
[r](Z

we conclude that the total magnetic Aux 4 penetrating
the system is

4= lima „2@RA(R)= (q —2p),
e

which is the multiple of p Om. /ec(which is hc/2e when
we recover h) because q

—2p is an integer. From Eq.
(loc) the penetration depth A,, for the gauge field is es-
timated as

c2
z [P*(V ia)P c—c ].—. .

8~e A.zi
(1 lb)

1 c 1 1

16me (XF+Xs) A,~ A,s
(18}

P(r) =b (r)e'~

a(r) =a (r}8,
A(r) = A (r)8,

(12b}

(12c)

(12d)

We are now interested in the cylindrically symmetric
solution, and assume

P(r) =f (r)e" (12a)

(19)

and A,, «A,F, A,z because c /e J»1. For r larger than

gz, g'~, and A,„f and b can be regarded as unity, and we
can neglect the left-hand side of Eq. (loc). In this region
the London equation (13d} is transformed with the help
of Eqs. (13c) and (14) as

d 1 d ~ 1(rA) = — A,
dr r dr &F2+
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AF +A it

Therefore, the solution of Eq. (19) is given by

(q —2p)@o r
H (r)=. Ko

2%A2 A,

(20)

(21)

where Ko is the zero-order Bessel function of an imagi-
nary argument, and the contribution E& to the excitation
energy of a vortex from this region is given by

E, =(q —2p) Eo,
where

0o
ln

max(gF, pit )

(22)

In the normal core region, particularly in the limit r ~0,
the behavior of f and b is determined by
mf =lim„orQ (r) and mb =lim„orP (r), respectively.

From Eqs. (13a) and (13b) f-r f and b-r ' forIm I l~b I

small r. In order for the magnetic energy F, in Eq. (7)
to be finite, the physical magnetic field H cannot be
singular at r =0. The gauge field a, on the other hand, is
defined on a lattice originally, and we have the natural
short distance cutoff of the order of the lattice constant.
Therefore, the singular gauge transformation as a —1/r is
possible, and mf(rnb) is not necessarily equal to q(p) al-
though mf —2mb is equal to q

—2p. However, this singu-
lar gauge will cost an energy of the order of gF+gz —J
which destabilizes the vortex with mf Aq (m&Ap).
Therefore, we consider only the case where mf =q and
mb =p. The two possibilities for the lowest energy
configuration are [1]q = El, p =0, and [2] q =0, p = El.
In case [1] the spinon pairing is destroyed at the center
while the holon condensation remains. Hence the normal
state appearing in the core region is the usual Fermi
liquid. The flux quantum is Po and the energy E(&}of the
vortex is estimated as

2
0

E(i) =Eo+C i
7T F

(23)

where

A=A— c g —2p
28 r

Equation (19) is the same as the usual London equation
with the penetration depth A, given by

where c, is a constant of the order of 0.1. In case [2] the
holon condensation is destroyed at the center while the
spinon pairing remains, which means that the "spin gap
state" appears in the normal core region. The flux quan-
tum is 2$o and the energy E(2~ of this vortex is given by

0
E[z] 4Eo+ c (24)

4m', ~

Under the external magnetic field 2El&~ and Et2~ should
be compared. In the type-II limit Eo is larger than the
core energy. Therefore, El z~ is larger than 2Et & ~

and the
vortex of type [1] is realized. The vortex of type [2] is
stabilized only when A,F «A, ~ which is realized near T,
in the low-concentration region. We wish to caution,
however, that this result is obtained only in the mean-
field theory, and inclusion of fluctuations may destabilize
the type-[2] vortex. For example, the coupling to gauge-
field fluctuations may make the transition first order, " in
which case there may be no region of stability for the sin-

gle flux quantum vortex.
In summary, we have developed the GL theory of the

spin-charge-separated system. There are two order pa-
rameters corresponding to the spinon pairing and the
holon condensation which are coupled through the gauge
field. The Kosterlitz-Thouless type phase transition in
2D is replaced by a crossover when either the holon con-
densation or the spinon pairing occurs. Therefore, we
have only the superconducting phase transition at which
both of them occur simultaneously. The combination
laws for the physical quantities discussed in the normal
state thus far are extended to the superconducting phase,
and we obtain A, =A,r+A, it. The coherence length g, on
the other hand, is given by gtt and gz for small and large
5 limits, respectively, but is complicated in the intermedi-
ate high-T, region. However, g is expected to be very
short in this region so that the system is in the type-II
limit. We find the two possible types of the vortex with
the flux quantization hc/2e and hc/e, respectively. In
the type-II limit the former is stable in almost all the
cases while the latter is stable near T, in the low-
concentration region.

The possible stability of the flux hc/e vortex has been
pointed out by Sachdev. We thank him for communi-
cating his results to us prior to publication. The work at
MIT is supported by the National Science Foundation
through the Material Research Laboratory under Grant
No. DMR 89-13624.
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