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We investigate the effect of the angular-momentum character of the emitted wave on Auger electron

diffraction patterns, and on the form of holographically reconstructed images of scattering atoms in the

vicinity of the emitter. We find that this can have as much effect on the nature of the reconstructed im-

age as the anisotropy of the atomic scattering factors. As in the case of the scattering factors, isotropy of
the reference wave is the optimum form for good image reconstruction. We show with both model cal-

culations and experimental Auger electron diffraction data that a reconstruction algorithm which simul-

taneously corrects for the anisotropy of both source and scatterer is capable of reproducing atom images

at their correct positions even in the case of non-s-wave emitters.

I. INTRODUCTION

Two recent developments have caused a considerable
resurgence of interest in the study of the angular distribu-
tions of Auger electrons emitted near a surface and the
subsequent multiple scattering by their near-neighbor
atoms.

The Grst is a controversy surrounding experiments by
Frank et al. ' in which the conventional view that elec-
tron intensities are enhanced in the so-called forward-
scattering (or "forward-focusing") directions along chains
of scattering atoms was challenged by the suggestion
that, instead, intensity dips are found along these direc-
tions. To explain their observations, Frank et al. ' pro-
posed an alternative theory in which electrons are as-
sumed to be "blocked" by some form of inelastic scatter-
ing mechanism at the scattering atoms. This suggestion
has received much criticism by others in the Geld. Re-
cent work by Terminello and Barton appears to have
vindicated the experimental observations of Frank
et al. ,

' but has pointed to some aspect of the initial
emitted-electron state in the Auger process to be the
cause of the apparently anomalous forward-scattering
dlps.

The second recent cause of the renewed interest in
Auger electron diffraction has been the suggestion by
Szoke that an Auger electron difFraction pattern (among
others formed from atomic electron sources) may be un-
derstood in terms of holographic concepts, thereby point-
ing toward a means of the direct reconstruction of atomic
structures. Using an algorithm due to Barton, Harp,
Saldin, and Tonner' have holographically reconstructed
the positions of the nearest-neighbor atoms to emitter
atoms near a Cu(100) single-crystal surface, thus pointing
the way to another direct method in crystallography.

In fact, of the many means of implementing atomic-
resolution holography with reference waves from atomic
sources, ' Auger electron diffraction must be con-
sidered one of the most attractive since such diffraction
patterns are capable of being generated by relatively inex-

pensive laboratory equipment, angular distributions from
chemically distinct atoms can be measured separately,
and the nature of the emitted-electron state, which forms
the reference wave in Auger holography, is capable of be-

ing calculated by well-established theories. ' ' In this
paper we make a detailed examination of the principles of
Auger electron holography.

As in all of the above recently proposed schemes for
electron holography, image reconstruction is performed
by computer, rather than by the analog method suggested
by Gabor, used in most of present-day optical hologra-
phy. The algorithm proposed by Barton was derived
from the Helmholtz-Kirchhoff integral and cast in the
form of a phased two-dimensional Fourier transform.
The positions of scattering objects are reconstructed well

by this algorithm for isotropic reference and scattered
waves, but model calculations have shown that, for real
atomic scatterers, images of the atoms are found to be
somewhat displaced from the true atomic positions. '

These displacements have been attributed mostly to the
anisotropic nature of atomic scattering factors for elec-
trons. Consequently, more sophisticated algorithms'
have been suggested for reconstructing more accurately
the positions of the atomic scatterers, which are based, in
one way or another, on correcting for the anisotropic
scattering factors.

We point out in this paper that, as in the explanation
of the apparently anomalous results of Frank et al. ' on
the form of Auger-electron diffraction patterns, an essen-
tial determinant of the nature of a reconstructed holo-
graphic image is the form of the reference wave. We il-
lustrate this by simulating Auger electron diffraction pat-
terns from initial states of various angular momentum
character, and by examining their effects on the recon-
structed images. We compare these simulations with im-

ages from measured Auger electron diffraction patterns.
We develop a theory for understanding these effects.

We point out that an algorithm which corrects only for
the anisotropy of the atomic scattering factor can make
reconstructed images worse. The only procedure that
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would be expected to work under all circumstances is one
which simultaneously corrects for the effect of both
the reference and scattered waves. Our algorithm,
the scattered-wave-included Fourier transform
(SWIFT), ' 's accomplishes this, as we illustrate with
both calculated and measured Auger electron diffraction
patterns.

II. THE DIFFRACTION OF AUGER ELECTRONS
FROM THEIR ATOMIC NEIGHBORS

Consider an electron source at the origin emitting a
spherical wave

AL h("'(kr) YL(k),

scattered by an atom at the position r . The resulting
wave field detected in the far field in a direction specified
by k can be written

Under such circumstances the Green's function may be
approximated by

GIL (kr) =4'�' '(e'""/ikr) YL* (r) YI (r) . (7)

This may be regarded as the lowest-order approximation
to a "separable" Green's function as defined by Rehr and
Albers. Substituting (7) into (2) and dropping the com-
mon factor i ', we can write

as is customary in work on the electronic structure of
solids' ' or in the study of x-ray-absorption near-edge
structure (XANES), ' this turns out to be very time-
consuming for electron energies of greater than a few
hundred electron volts (eV), which are of interest in the
electron holography of atomic structures. ' In order
to resolve atomic structures, the electron wavelength
should be significantly smaller than the distances between
the atoms studied, and this implies that

kr ))1 .

p(k) = AL (i 'YL(k)
—ik r, I.+ g GLL''(krj )tt e 'i YL (k))

L'

Q(k) = AL [ YL (k)

+(e '/r ) YL (r. )e 'f (k rj )],
where

(8)

hI" '(z) —i e "/t'z, (4)

and omitted some common constant factors.
Although the Green's functions GL & may be evaluated

exactly by the formula

GLt (kr)=4m g t '( '—1) hI"'(kr)

~-(r) f Y& YI ~ Y&. dA,

In the above expressions AL is a complex amplitude, I.
(—= Im) and L' (=—1'm') represent angular momentum
quantum numbers, hI" is a Hankel function of the first
kind, YL a spherical harmonic, GL L an element of the
free-space propagator in an angular-momentum basis, k
the wave vector of the electrons, r a position vector, and

ill
tI =ie 'sin5& (3)

is an element of the atomic t matrix, where 6I is the phase
shift of a spherical wave of angular momentum I on
scattering from the atom. In deriving (2) we have made
use of the asymptotic expansion of hi "(z) as z~oo,
namely,

1f (k r )= —. Q(21'+1)tI P, (k r, )
1'

is the "plane-wave" atomic scattering factor, ' and Pl
represents a Legendre polynomial. Systematically more
accurate approximations for 1((k) may be written, using
higher-order separable Green's functions and the so-
called spherical-wave corrected atomic scattering fac-
tors, ' but we will not pursue them in this paper.

It is a common assumption that an Auger electron is
equally likely to be emitted in all directions since an
Auger transition involves atomic inner-shell processes,
and since any memory of the initial excitation process
which creates the core hole is assumed to be lost. This
implies that

(10)

i.e., that the amplitudes of waves emitted into states of
different magnetic quantum numbers m of the same angu-
lar momentum quantum number l are equal. It is also as-
sumed that each of these states is excited incoherently
with respect to the others. Thus the angular distribution
of Auger electrons scattered by the single atom above can
be derived from (8) and (10) to be

I(k)= g ~AI~ 1+[f(k r )/r ] + e ' ' g Y&*(k)Y& (rj)[f(k rj)/rj]*+c.c.
4m

where we have made use of the relation

(12)

for an arbitrary direction R, and c.c. denotes complex conjugate. Notice that the interference term within the large
parentheses in (11)can be simplified if we take the direction of the polar axis along that of rj. Since then
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Y( ( r ) = [(21+ 1)/4m ]' 5 0,
Eq. (11)can be rewritten

I(k)= g ~A&~ 1+[f(k rj)lr ]+[.e ' ' P&(k rj)[f(k.rj)lrj]*+c c.].
s

4~ (14)

Thus the interference between the emitted and scattered
waves may be thought of as occurring only via the spheri-
cal waves of magnetic quantum number m=O with the
respect to the emitter-scatterer axis. That this is not a re-
sult which depends on a particular choice of axis, and
that it indeed holds on a single-scattering model even in
the presence of many scattering atoms can be seen by
noting that alternatively (14) may be derived from (11)by
the general relation

P (k rj)=
( g Y(~(rj)Y~~(k) .

2l +1 (15)

Since not only this interference term, but also the
squared terms within the first set of curly brackets in (14)
reflect azimuthal symmetry about the emitter-scatterer
axis, so will the diffraction pattern as a whole, despite the
fact that the electrons emitted into individual mutually
incoherent magnetic quantum number channels may not
have any such symmetry. One of the consequences of
this symmetry of the diffraction pattern is that for many
purposes it may be advantageous to choose as a polar axis
the direction between emitter and scatterer.

ing from emitter atoms can be guessed from the appear-
ance of a diffraction pattern, as has been asserted in the
case of so-called "forward-scattering" or "forward-
focusing" diffraction patterns, the missing piece of crys-
tallographic data is information concerning the distance
of the scattering atom from the emitter. It was originally
hoped that this information might be found by plotting a
so-called "radial image function" (or RIF, for short)'
and that the radial distance of this atom from the source
would correspond to a peak of the reconstructed intensity
along this line. It was subsequently recognized' ' that
the very nonisotropic nature of the atomic scattering fac-
tors, which gives rise to the forward-scattering effect is
also the cause of systematic displacements of the image
peak on an RIF from the true position of the scattering
atom. In an earlier paper' we showed that (16) may be
reformulated to express the RIF as a one-dimensional
Fourier transform of the azimuthally-integrated polar an-
gle variation of the diffraction intensity when the direc-
tion of the RIF is taken as that of the polar axis. In this
case it is easy to see that the reconstructed intensity along
the RIF can be written

III. THE HOLOGRAPHIC RECONSTRUCTION
ALGORITHM AS A ONE-DIMENSIONAL

FOURIER TRANSFORM

2 (z)= k f f—l(k, 8,$)dg e'"'"' d(cos8) .

Defining

(17)

We begin our consideration of Auger electron hologra-
phy by reconsidering the algorithm

A (r) =f I(k)e '""'dk
and

k, =k cos8,

J(k, )=fr(k, 8,$)dg,

(18)

(19)

(16)
(17) may be rewritten as

proposed by Barton for reconstructing an image of the
atomic environment near an emitting atom by direct
rnathernatical processing of the angular distribution of a
diffraction pattern I (k). In (16), 3 represents the ampli-
tude of the reconstructed image, k =(k„,k», k, ) the wave
vector of the electron forming the corresponding point on
the diffraction pattern, r=(x,y, z) a position vector in the
image space, and 0 the polar angle of the vector k with
respect to the z axis. In this expression the Cartesian
axes (x,y, z) are fixed relative to the experimental ap-
paratus.

For the general reconstruction of a full three-
dimensional image, (16) or its modifications'
represent an efficient way of calculating it. In the spirit
of our discussion of the Auger electron diffraction pat-
terns of the previous section, however, it would seem to
be profitable to employ a more flexible definition of the
coordinate axes. If the directions of atomic rows radiat-

A (z)= —k fJ(k, )e ' dk, . (20)

Hence we observe that the radial distance z from the
emitter, and k, may be regarded as conjugate variables of
a one-dimensional Fourier transform. In the following
we will show that the well-known properties of Fourier
transforms may be invoked to provide understandings of
the role of various features of diffraction patterns in the
formation of atomic images on reconstruction.

For Auger electron diffraction from a single source and
a single scatterer, as considered in the last section, where
the diffraction intensity has azimuthal symmetry about
the source-scatterer axis, very interesting analytic results
follow from the use of Eq. (20), if we choose our polar axis
(z) to lie along this axis. The absence of any azimuthal
dependence of the diffraction intensity enables Eq. (14) to
be recast in the simpler form
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I(k)=I(k, )= g IA, I [1+[f(k,)/z ]2
21 +1

I

+ + Ie ' ' ' I'&(k, /k)[f(k, )/, ]*

+c.c. I, (21)

i.e., we may regard I as a function of only the magnitude
of the z component of the electron wave vector associated
with the corresponding point on the diffraction pattern.

The azimuthal integral in {19)then yields just a factor
of 2~ and the corresponding RIF along the z axis can be
evaluated from (20) as

z max
A (z)=2nk J

' I(k, )e ' dk, . (22)

In the following sections we will examine the conse-
quences of this integral for a number of special cases.
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FIG. 1. Far-field diffraction intensity (solid line) of a Cu
0

atom scatterer 2.54 A along the z axis from an s-wave source of
914-eV electrons as a function of the normalized z component,
k, /k of the electron wave vector. The dashed line shows the
corresponding intensity variation (the Gabor zone plate) from
an s-wave scatterer.

IV. s-WAUE EMITTER

If, in addition, we consider an s-wave scatterer, the
scattering factor reduces to the form,

f (k, ) =(1/ik)to= foe' (24)

say, a complex quantity with neither angular nor position
dependence (we take fo and o. as real). Then (23)
simplifies further to

I (k, ) = ( I
A 0 I

/477) I 1+ [f /zJ ]

+2[fo/z ]cos[(k —k, )z, +o ] I .

(25)

A plot of I (k, ) versus k, would thus be of pure
sinusoidal character, as shown by the dashed line in Fig.
1. The curve shown was calculated from (25) for k=8.2
(a.u. )

' (corresponding to an electron energy of 914 eV)
and taking z =4.8 a.u. (=2.54 A, the spacing of nearest-
neighbor atoms in a Cu crystal), and o =0. If the range
of k, were infinite, of course the Fourier transform of (22)
would yield just three 5 functions at z =+z and z=O.
The origin of the + pair can be most clearly seen by
decomposing the cosine term in {25) into its two complex
exponential components. The 5 function at z=O is due to
the constant terms preceding the cosine in (25). This may
be removed by subtracting the mean value of I(k, ) prior
to Fourier transforming. In practice, of course,
diffraction data can only be measured over a finite range
of k, . If source and scatterer were aligned perpendicular
to a surface, since an electron diffraction pattern may be

Expression (21) is considerably simplified if the dom-
inant channel of the emitted waves corresponds to I=O
(an s wave). In this case we may write

I(k, }=(IAOI /4m. )(1+[f(k, )/z ]

+Ie ' 'e '[f(k, )/z, ]"+c.c. I } .

(23}

detected only over a hemisphere covering the half-space
outside the surface, k, would at best range from 0 to k.
In practice, detection of electrons emerging close to a
glancing angle to the surface is difficult, and more typi-
cally measurement of a diffraction pattern is restricted to
polar angles with respect to the surface normal in the
range 0' to about 70'. Assuming a maximum polar angle
of 70', k, /k would range from 0.34 to 1, as depicted in

Fig. 1. Thus in practice I(k, ) can be thought of as a
cosine wave multiplied by a top-hat function spanning
just the measurable range of k, . From the convolution
theorem, the Fourier transform of this product is the
convolution of the Fourier transforms of the factor func-
tions: i.e., the convolution of the 5 functions with a sine
function whose width is inversely proportional to the k,
range. Thus the resulting RIF would consist of sine func-
tions centered around the precise position of the scatterer
and its twin. ' ' In the absence of significant overlap of
the sine functions, the resulting intensity RIF is indepen-
dent of the constant phase o..

If the artificial s-wave scatterer above is replaced by a
Cu atom scatterer placed at the same distance from the
emitter, the resulting variation of I(k, ) with k, may be
evaluated from (23), with f (k, /k) evaluated from (9)
with calculated Cu atom phase shifts 6& ~ This variation is
illustrated by the solid curve in Fig. 1, over the same
range of k, /k. Several important differences from the
case of the s-wave scatterer are noted. First, a very nar-
row region around k, /k=1 contains an extremely in-

tense peak, due to the forward bias of the atomic scatter-
ing factor. Second, it will be noticed that the oscillation
frequency of I(k, ) with k, is distinctly greater than that
of the s-wave scatterer near the forward-scattering region
around k, /k= 1 than for smaller values of this quantity,
when the oscillation frequency approaches that of the
dashed curve in Fig. 1. We can see that the value of
k, /k =0.76 corresponding to about 40 from the
forward-scattering direction, and which is marked by the
vertical dashed line, may be regarded as an approximate
dividing line between these two regions. The Fourier
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transform (20) applied to the region to the right of the
vertical dashed line in Fig. 1, would therefore tend to
peak at a "frequency" z somewhat greater than z, while
that of the region to the left of that line would tend to
peak around the true atom position. Notice, however,
that since the amplitude of the oscillations is greater
around the forward-scattering direction, the radial image
function will tend to be dominated by a peak at z &z..
Also, since l(k, ) can be Fourier analyzed into sinusoidal
functions of many different frequencies, each of which
spans exactly the same range of k, as in the case of the s-
wave scatterer, it is inevitable that the reconstructed "im-
age resolution" in this case will be poorer than the latter
case. This could be regarded as a proof that the s-wave
scatterer must give rise to the best-resolved reconstructed
"image. "

In an earlier paper' we have termed the full diffraction
pattern from the s-wave source and s-wave scatterer a
Gabor zone plate, and that from the single atom
scatterer an atomic zone plate. In that paper we calculat-
ed the RIF's in the directions joining source and scatterer
for the two cases considered above, from the full
diffraction patterns, using Barton s two-dimensional
reconstruction algorithm (16). All the features of those
RIF's are understandable in terms of the one-dimensional
Fourier analysis above.

V. THE FORM OF THE SWIFT ALGORITHM
FOR AUGER ELECTRON DIFFRACTION

In Barton's original formulation of the Helmholtz-
Kirchhoff reconstruction algorithm (16), he appealed to
an approximate stationary-phase condition arising from

ik r
the e ' factor in the third term in an expression of the
form (14) for the diffracted intensity to suggest that the
reconstructed image intensity

~
A (r)

~
would tend to peak

at the atom position r . We now know' ' that a much
better stationary-phase condition results if the algorithm
(16) is replaced by the scattered-wave included Fourier
transform (SWIFT):

E,(k, )=[f(k, )]*g ~ Ai ~ Pi(k, /k),
1

(29)

which is independent of z. Since (28) is a true Fourier
transform, E, may be viewed as a deconvolution factor.

We show below that the view of the SWIFT algorithm
as a deconvolution is both elegant and instructive. The
diffraction pattern of a linear chain of Cu atom scatter-
ers, separated from each other and from an s-wave source
of electrons by the nearest-neighbor interatom distances
of a Cu crystal was calculated by an exact multiple-
scattering theory. Holographic RIF's along the Cu atom
chain were reconstructed from this data by the one-
dimensional form (20) of Barton's algorithm [Fig. 2(b)],
and by the SWIFT algorithm (28) above, using the kernel
1/E, [Fig 2(c)].. Note that, although multiple scattering
must be expected to be present in the case of the three-
scatterer chain above, a kernel based on the kinematic
plane-wave scattering factor is apparently able to achieve
the desired result of returning the atom peaks to the posi-
tions of the atom centers. A comparison of these two
plots with the Fourier transform

F(z)= f [K,(k, )]e ' dk,

of the (inverse) scattered-wave kernel, shown in Fig. 2(a),
is a graphic illustration of the deconvolution concept.

to evaluate (26), which to some minds tends to belie the
acronym SWIFT.

If, however, the three-dimensional reconstructed image
were built up from a sequence of RIF's, the SWIFT algo-
rithm could indeed be implemented by a sequence of
one-dimensional Fourier transforms. It is apparent from
(21) that the SWIFT form of the algorithm for evaluating
an RIF (20) in Auger electron difFraction is

J(k, ) i, ,A(z)= —k f e * dk, ,

(26)

where we have termed 1/K(k, r) a scattered-wave ker-
nel "

To correct for the distorting effect of the source wave
in Auger electron diffraction, we deduce, by replacing the
quantities r,. in the angle-dependent parts of the
coefficient of the term containing e ' in (14) by the gen-
eral vector r, that the appropriate kernel is defined by

K(k, r) = g ~ A&~ P&(k r)[f (k r)]' . (27)

0
~ W

V

I I

I I

I I

b)i
I ~ I

In view of the fact that this contains factors due to both
initial and scattered wave, 1/E is perhaps best termed a
source-and-scattered-wave kerne1. Likewise, the SWIFT
algorithm should in fact be regarded as a source-and-
scattered-wave transform. Since in genera1 K depends on
both k and r, the SWIFT algorithm is not of the form of
a strict Fourier transform. As a result, the computation-
a1 machinery of the fast Fourier transform cannot be used

—2 0 2 4 6 8
Distance from emitter (A)

FIG. 2. Radial image function (RIF) reconstructed along the
source-scatterer axis for the single Cu atom scatterer of Fig. l as
calculated by Barton's Helmholtz-Kirchho8 integral (b); and
our SWIFT algorithm (c). The corresponding Fourier trans-
form of the deconvolution factor E,(k, ) is shown as (a). Curve
(b) is seen to be the convolution of (c) with (a).
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FIG. 3. Diffraction patterns due to off-axis Cu atom scatterers for emitted waves of s, p, d, f, and g angular momenta and other pa-
rameters as for Fig. l.

VI. NQN-s-%'AVE EMITTERS

In Sec. II we pointed out that a single atom scatterer
imposes the symmetry of the emitter-scatterer axis on the
interference between an emitted and a scattered wave.
On the usual model of Auger emission as occurring into
incoherent sums of all the magnetic quantum number
channels I of any particular angular-momentum channel
l, the sum of the squared terms from the emitted wave is
isotropic, and the sums of the squared terms from the
scattered waves also possess azimuthal symmetry about
the source-scatterer axis

I
see Eq. (14)]. Thus the

diffraction pattern as a whole will have this azimuthal
symmetry. A striking illustration of this is provided on
Fig. 3, where emitted Auger electrons of 914-eV energy
of singLe initial state angular momenta I ranging from 0
(an s wave) to 4 (a g wave) are assumed to be scattered by
a single Cu atom 2.55 A from the source at an angle of
45' to the diffraction pattern normal. The azimuthal
symmetry referred to above is clearly seen.

In conjunction with our one-dimensional reconstruc-
tion algorithm (20), this symmetry enables us to analyze
easily the effects on the reconstructed images of the angu-
lar momentum character of the reference wave. Taking
the emitter-scatterer direction as the polar axis, we plot
in Fig. 4 the intensity variations in Fig. 3 as functions of
k, /k. That for the s-wave emitter has already been plot-
ted in Fig. 1. In that case, the Legendre polynomial
P&(k, ) in (21) was a constant, and the deviation of the
diffraction pattern from that of the ideal Gabor zone

plate (dashed line in Fig. 1) is attributed solely to the
dependence of the atomic scattering factor f of k„as
manifested via the second (squared) term in curly brack-
ets in (21), which acts to cause a rapid decay of I(k, )

with decreasing k„and the third term (and its complex

I

I

I

0.34 0.54 0.74 0.94

FIG. 4. Intensity variations of the diffraction patterns of Fig.
3 as functions of k, /k, where the z axis is defined as the line
joining source and scatterer. The angular momenta of the emit-
ted waves are specified by the letters s —g in the usual spectro-
scopic notation.
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conjugate) in which the variation of the phase 0, of f
with k, affects the periodicity of the oscillations of I(k, ).
As in the case of Fig. 1, we indicate by the vertical
dashed line at k, /k=0. 76, the approximate dividing line
between the parts of the curve oscillating at about the
same frequency of the corresponding Gabor zone plate
and that, close to the forward-scattering direction for
which this frequency is higher.

For emitted waves with I&0, PI(k, ) is no longer con-
stant and this affects the form of I (k, ). The variations of
I(k, ) with k, for p (1=1), d (l=2), f (1=3), and g (l=4)
wave emitters are also shown as solid lines in Fig. 4. Also
plotted as dashed lines on the same graphs are the corre-
sponding functions P~(k, ). Note that the plots of I(k, )

against k, for all the non-s-wave emitters are a result of
multiplying the curve for the s-wave emitter with the
Legendre polynomials, represented by the corresponding
dashed lines. These Legendre polynomials have nodes
which progressively approach the axis k, /0 = 1 as the an-

gular momentum quantum number l increases. The main
effect on the corresponding plots of I (k, ) is that the in-
tensities in the regions around these nodes are severely
reduced. In the cases of the p- and d-wave emitters, the
first nodes of the corresponding Legendre polynomials
fall well to the left of the vertical dashed line in Fig. 4,
and thus do not significantly affect the high-intensity
fringes to the right of the vertical dashed line. In the
cases of the f and g-wav-e emitters, on the other hand,
the first bright finge next to the forward-scattering peak
is completely suppressed.

These facts strongly influence the corresponding RIF's,
which were calculated from (21) and (20) and displayed in
Fig. 5. The image peak associated with the scattering
atom is displaced substantially away from the scatterer
for the s-, p-, and d-wave ernitters, thereby giving rise to
erroneous estimates of the atom position, unless a SWIFT
algorithm is used, as discussed in Sec. V. The f- and g-

0
~R
0

wave ernitters, however, reconstruct image peaks fairly
well centered at the atom position, even with the use of
Barton's reconstruction algorithm (16).

The dependence of the diffraction intensities on k„as
shown in Fig. 4, presents us a clear way to understand
these results. It will be recalled that in our discussion of
Fig. 1 in Sec. IV we pointed out that, in the case of an s-
wave emitter and an atomic scatterer, the part of the
I(k, /k) curve to the right of the vertical dashed line has
a higher oscillation frequency than that of the ideal Ga-
bor zone plate, while that to the left of that line approxi-
mated that frequency quite well. The distortion of the
holographic image of the atom was thus seen to be large-
ly due to the few large-intensity, higher-frequency fringes
within about a 30' polar angle from the forward-
scattering direction. These fringes survive, largely intact,
in the cases of the s-, p-, and d-wave emitters. For the f-
and g-wave emitters, however, Figs. 3 and 4 indicate most
clearly that these distorting fringes are removed from the
diffraction pattern by the first node of the Legendre func-
tion next to the forward-scattering direction. This leaves
the fringes further away to correctly reconstruct the
atom position, if the simple Fourier transform algorithm
(16) or (20) were used.

VII. THE ANGULAR MOMENTUM OF 914-eV Cu

I.3 VV AUGER ELECTRON

The last section has drawn attention to the substantial
effect on a holographic reconstruction of the angular-
rnomentum character of the reference wave. None of the
numerical reconstructions of holographic images to date
have explicitly taken account of possible deviations of the
reference wave from isotropy. We emphasize here the
importance of doing so by first drawing attention to the
strong evidence that, contrary to the assumptions made
in earlier calculations of diffraction patterns from the
Cu(100) surface due to the same Auger line, the angular-
momentum state of the electron emitted by the well-
known Cu L3 VV transition at 914 eV is not an s wave.

First, we review the evidence from calculations of the
Auger matrix elements for this transition. If l; represents
the angular-momentum quantum number of the initial
core hole, and l and lk represent those of the final-state
holes, Weissmann and Muller' have pointed out that the
possible values of the angular momentum l of the emitted
electron are determined by the relations

(31)

and

l +l,-+lk+l=even . (32)

0 2 4 6 8 10
Distance from emitter (A)

FIG. 5. Radial image functions along the source-scatterer
axes, reconstructed by Barton's algorithm from the diffraction
patterns of Fig. 3. The angular momenta of the emitted waves
are specified as in Fig. 4.

~hen all three holes are atomic core states, (31) and (32)
are easily applied to determine the possible angular mo-
menta of the emitted electron. In the case of the Cu
L3VV transition, l;=1 and lj and lk are determined
largely by the dominant angular momentum of the local
density of states (LDOS) of the valence band centered on
Cu atoms. Since this LDQS is dominated by the Cu d
band, we assume I =lk =2. Substituting these values in
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(a) (c)

FIG. 6. Diffraction patterns due to 914-eV LVV Cu Auger electron emission from a Cu(100) surface: (c) represents the experimen-
tal diffraction pattern; (a) the computer simulation for an s-wave emitter; and (b) that for an f wave em-itter.

(31) and (32) it may be concluded that

l=1, 3, or 5. (33)

Although of a much lower energy, the Cu Mp 3 VV Auger
line at 62 eV involves core holes of the same angular mo-
menta, and thus the same possible values of I. By com-
paring model calculations of line profiles of a diffraction
pattern due to this Auger transition from a Cu(100) sur-
face, Davis found that the experimental data was fitted
best for l=3. The LDOS on the atomic sites in Ni is ex-
pected to be likewise dominated by the d band, and calcu-
lations of the Auger matrix elements for the Ni M2 3 VV
transition by Aberdam et al. ,

' based on the theory of
Asaad have also concluded that, of the possible values
(33) allowed by the selection rules, the transitions to the

1=3 state were overwhelmingly the most likely. From
these results it would appear probable that the electron
emitted by the Cu L3 VV transition is likewise dominated
by the angular momentum /=3.

We are able to test this hypothesis independently by
comparing an experimental diffraction pattern from a
Cu(100) surface with model calculations for initial emis-
sion states of differing values of l. The simulated patterns
were calculated by evaluating the multiple scattering of
electrons by a cluster of atoms surrounding inequivalent
emitters in each of the outermost five layers of atoms on
the surface. The cluster is divided into a set of concentric
shells surrounding the emitter, and the intrashell and
intershell scattering computed separately. This
classification of the multiple-scattering paths enables con-
siderable savings of computer time since it allows a

0.11
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R
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0 1 2 3 4
Angular Mornenturn 1(units of%)

FIG. 7. Variation of the x-ray reliability factor (R) compar-
ing the experimental diffraction pattern of Fig. 6(c) with com-
puter simulations for emitted states of angular momenta,
I =0, 1, . . . , 4.

0 10 20 30 40 50 60 70
Scattering Angle (deg)

FIG. 8. Comparisons of the polar-angle variation of the ex-
perimental diffraction intensities of Fig. 6(c) along the [100] and
[110]azimuths (solid lines) with those of the computer simula-
tions for an s-wave emitter (dashed lines). The degree of agree-
ment is monitored by the R factor, whose values are shown.
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tion bears a close similarity to one developed by Pendry
and Saldin in the early 1980s for low energy electron
diffraction (LEED).

Figure 6(c) depicts an experimental Auger electron
diffraction pattern from a Cu(100) surface, due to emis-
sion from the 914-eV L3VV line. Figures 6(a) and 6(b)
are diffraction patterns of the same energy, and calculat-
ed by the scheme described in the last paragraph, assum-
ing Auger emission into states of l=0 and l=3, respec-
tively. Visually, the pattern for l=3 appears to be in
somewhat better agreement with the experimental data.
In fact, we have simulated separate diffraction patterns
for values I ranging from 0 to 4, and evaluated the degree
of correlation between experiment and theory by means
of the x-ray reliability factor

FIG. 9. Same as Fig. 8, except that the simulated profiles are
due to an f wave emitte-r. The substantially better agreement
between experiment and theory compared with Fig. 8 can be
seen by a visual comparison as well as from the significantly re-
duced R factors.

g(E; —T;)
R=

yE2 (34)

neglect of unimportant intrashell processes, while allow-
ing a full treatment of the important forward multiple
scattering. Further savings of computer time are
achieved by exploitation of the point-group symmetry of
the cluster of atoms surrounding the emitter. The final
outgoing wave field is expressed as a linear combination
of outgoing spherical waves centered on each emitter,
and unlike all other existing methods of calculating
Auger or photoelectron diffraction patterns, the multiple
scattering does not need to be reevaluated for each data
point on the diffraction pattern. The method of calcula-

where E; and T, represent the intensities of correspond-
ing points on the diffraction patterns. The resulting plot
R versus I is shown in Fig. 7, where the best correlation
between experimental and theory is found for l=3.

This conclusion is underlined by Figs. 8 and 9, which
compare polar angle profiles, along azimuths correspond-
ing to some low-index crystallographic directions, of the
intensities of the simulated diffraction patterns of s- and
f-wave initial states, with those of the experimental data.
The corresponding reliability factors are also shown in
the same figures. Once again we see considerably better
agreement for the f wave (1=3) emitt-er.

The same is found when images reconstructed from
these diffraction patterns by the algorithm (16) are com-
pared. Figures 10(a), 10(b), and 10(c) show sections

(c)

FIG. 10. Sections through the holographically reconstructed image (using Barton's algorithm) parallel to the crystal surface and
passing through the plane of atoms immediately above an emitter atom: (a), (b), and (c) are calculated from the correspondingly
marked diffraction patterns in Fig. 6. The positions of two of the nearest-neighbor atoms in this plane are marked by the crosses.
Note that the image peaks associated with these atoms are almost coincident with these crosses on the reconstruction (c) from the ex-
perimental diffraction pattern and from the model of the f wave emitter (b), but are somew-hat displaced away from the crosses on
that from the s-wave emitter model (a).
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(b) (c)

FIG. 11. Sections through the holographically reconstructed image (using Barton s algorithm) perpendicular to the crystal surface
and passing through nearest-neighbor atoms to an emitter. Other details identical to Fig. 10.

through the resulting images parallel to the surface, and
passing through four of the nearest-neighbor atoms, cal-
culated from the diffraction patterns of Figs. 6(a), 6(b),
and 6(c), respectively. Figures 11(a), 11(b), and 11(c) are
the corresponding sections through the images, perpen-
dicular to the surface and also passing through the
known positions of nearest-neighbor atoms of a Cu crys-
tal. In both of these figures, the reconstructed images
from the simulated diffraction pattern of the f-wave

—Expt.

I
~

emitter seem to be closer to that of the experimental
Perhaps most convincing are comparisons of the corre-

sponding RIF's along a line joining an emitter and a
nearest-neighbor scattering atom. Figure 12(a) compares
the RIF calculated from the simulated data of the f-wave
emitter with that from the experimental data, and Fig.
12(b) shows the corresponding comparison for that of the
s-wave emitter. Not only is the peak on the RIF corre-
sponding to the nearest-neighbor atom, but also all of the
small radius peaks associated with artifacts due to the
forward-scattering peaks of other scattering atoms are
faithfully reproduced from the simulated diffraction pat-
tern due to the f-wave emitter.

The detailed agreement between the experimental re-
sults and the f wave calculat-ions shown in Figs. 6—12,
are among the best that have been achieved in work on
forward-scattering diffraction patterns due to Auger,
photoemission or Kikuchi sources. This gives us much
confidence in the conclusion we draw that the 914-eV Cu
L3 VV Auger transition emits an electron primarily into
the l=3 angular-momentum channel. In the next section
we will make use of this conclusion to implement an ap-
propriate algorithm for correcting for the effect on the
holographically reconstructed image from an experimen-
tal diffraction pattern from the above Auger line.

0 2 4 6 8 10
Distance frozn eznitter (L)

VIII. CORRECTING FOR THE ANISOTROPY
OF THE REFERENCE WAVE

FIG. 12. Comparisons of radial image functions (RIF's) join-
ing an emitter and a nearest-neighbor scatterer from the recon-
structed images of which Figs. 10 and 11 represent sections.
The RIF from the experimental diffraction pattern of Fig. 6(c) is
represented by the solid lines. Separately compared with this
are the RIF's from (a) the f-wave emitter model and (b) the s-

wave emitter. Substantially better agreement is seen on (a),
where the positions of all the peaks between source and scatter-
er are correctly reproduced.

We begin with a model calculation which illustrates
the effect on an image reconstructed from a diffraction
pattern due to an f-wave initial state and a single atom
scatterer. We reproduce in Fig. 13(a) the RIF along the
emitter-scatterer axis, calculated from Barton's recon-
struction algorithm (16). As we pointed out in our dis-
cussion in Sec. VI, in this case a peak on the reconstruct-
ed image is correctly reproduced at the atom position.
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FIG. 13. Radial image functions from a diffraction pattern of
the single Cu-atom scatterer and f wave em-itter (e.g., that
marked f in Fig. 3): (a) was calculated by Barton's algorithm;
(b) from a SWIFT algorithm containing only the atomic-
scattering factor, and (c) a S%'IFT algorithm which corrects
also for the deviation of the source wave from s-wave character.
Note that for the reasons noted in the discussion of Fig. 4,
Barton's algorithm fortuitously reproduces the atom peak in (a)
for the f wave emitte-r, while the incomplete SWIFT algorithm
moves the peak too close to the emitter in (b). However, the full

SWIFT algorithm correctly reproduces the atom peak in (c).

One conclusion might then be that, in such a case, it is
unnecessary to employ the SWIFT reconstruction scheme
since the simpler Barton algorithm suffices in correctly
reproducing atom images. Since, however, the SWIFT
algorithm remains the theoretically correct one, it is in-
teresting to examine its effect.

If, as in all numerical work to date, we were to include
in the SWIFT kernel only the anisotropy of the atomic
scattering factor, the kernel would take the form of just
I/[f (k r)]*. Using this form of the kernel in the
SWIFT algorithm (26) the RIF shown in Fig. 13(b) is ob-
tained. The atom image appears displaced to a position
closer to the emitter than the scattering atom. Thus if the
SWIFT algorithm were implemented without proper ac-
count of the anisotropy of the reference wave, an image
could be reconstructed which is actually less accurate
than one from Barton's simpler algorithm.

However, on employing the correct form of the
SWIFT kernel for this case, defined by

was derived assuming the presence of just a single scatter-
ing atom. In the presence of many simultaneous scatter-
ers, to a first approximation the resulting diffraction pat-
tern may be thought of as a combination of many over-
lapping zone-plate patterns like those of Fig. 4. Provided
the central peak of such a zone plate does not dominate,
this overlap has no great effect, and each individual zone
plate may be regarded as the reproducer of the image of
the scatterer which gave rise to it. This is the basis of the
zone-plate model of optical holography, and indeed, also
applies well for so-called backscattering diffraction pat-
terns, e.g., one due to Auger emission from an adsorbate
on a surface. In forward-scattering electron diffraction
patterns of electron energies in excess of about 500 eV,
e.g., the diffraction patterns of Fig. 6, however, the
overwhelming dominance of the forward-scattering peak
of a particular zone plate seriously perturbs the holo-
graphic reconstructing properties of other zone plates.
Before the application of a reconstruction algorithm such
as (16) or (26), therefore, it is important to reduce the
effect of such forward-scattering peaks. A method of do-

ing so has been proposed by Thevuthasan et al. , which
involves multiplying the diffraction intensities in the re-
gion of these peaks by Gaussian functions. This requires
the identification on diffraction patterns of forward-
scattering peaks. We have proposed an alternative
method which does not require this, and which is based
on the idea of Fourier filtering. This technique eliminates
from a diffraction pattern the low-frequency intensity
variations associated with the spacings between forward-
scattering peaks. We have shown that this suppresses the
nonholographic low-radius peaks on RIF's Ref. (37) and
leaves just the peaks associated with the atoms.

As a preliminary to a SWIFT deconvolution of the ex-
perimental Auger electron diffraction pattern of Fig. 6(c),
we implemented this Fourier filtering procedure. On
subsequently performing an image reconstruction using
Barton's algorithm (16), the RIF joining emitter and
scatterer shown in Fig. 14(a) was obtained. As is the case
of the model calculation for the f wave emitter and t-he

I I I I I I I

I

E( kr)=P (k3P)[f(k.r)]*, (35)

which properly accounts for the form of the reference
wave, not only is the image peak once again correctly
reproduced at the true atom position, but also the prom-
inence of this peak relative to its background has been
enhanced compared to the original RIF in Fig. 13(a).

We next examine the effects of the above two forms of
SWIFT kernel on the reconstruction of images from the
experimental Auger electron diffraction pattern of Fig.
6(c). At this point we recall that the SWIFT kernel (27)

0 i 2 3 4
Dist, ance from emitter (ii)

FIG. 14. Same as Fig. 13, but for RIF's joining a source and
a nearest-neighbor scatterer, calculated from the experimental
diffraction pattern of Fig. 6(c). The comments on Fig. 13 also

apply here.
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single atom scatterer shown in Fig. 13, the most prom-
inent peak is found very close to the true atom position.
We now recognize this as being due to the good fortune
that the reference wave in this case is primarily of f
angular-momentum character.

If the reconstruction were repeated by a SWIFT algo-
rithm with a kernel containing just the atomic scattering
factor f, as in the single scatterer case of Fig. 13, the
reconstructed peak is moved closer to the emitter than
the true atom position, as indicated in Fig. 14(b), and this
incorrect SWIFT algorithm reproduces a worse image
than Barton s algorithm (16). It is of interest to investi-
gate the use of a SWIFT kernel of the form (35) even
though this form was derived for a diffraction pattern
from a single scatterer. The complication here is that the
nodes of P3(k r) in (35) will now give rise to singularities
in the integrand of (26) since other scattering atoms will
ensure that the corresponding values of I(k) will not be
zero. This problem may be overcome by first adding a
small imaginary constant to the denominator in (35) and,
second, by ensuring that the integrated diffraction inten-
sity around the rings corresponding to the positions of
the nodes of P3 is zero. The latter can be done by sub-
tracting the appropriate constant from the diffraction in-
tensities I in (26). Application of the resulting algorithm
to the Fourier filtered diffraction pattern of Fig. 8(a) gives
rise to the RIF shown in Fig. 14(c), where the image peak
is centered correctly at the atom position.

IX. DISCUSSION AND CONCLUSIONS

The importance of taking account of the anisotropy of
the scattering factors of atoms in the computer recon-
struction of the atomic structure around atomic emitters
of electrons from diffraction patterns has been widely ap-
preciated recently. We have pointed out in this paper the
equal importance of taking account of the angular-
momentum character of the reference wave.

We have demonstrated this with numerical calcula-
tions on model systems of Auger electron holography, by
reconstructing atom images from diffraction patterns due
to reference waves of different angular momentum.
When a simple Helmholtz-Kirchhoff algorithm was used,
the peaks associated with the atoms were found to repro-
duce the atom positions much better for f and g-wave-
reference waves than those of lower angular momentum.
We identify this as being due to the suppression of the
large-intensity, high-frequency fringes near the forward-
scattering direction, in the cases of these initial states by
nodes of relevant angular-momentum states of the refer-
ence waves.

The advantages for accurate reconstruction of atomic
positions of suppressing the intensities close to the
forward-scattering directions have already been noticed
by Thevuthasan et al. Those workers achieved this by
multiplying the diffraction intensities by an artificial (in-
verted) window function centered on the forward-
scattering peaks. We have pointed out here that this very
effect is accomplished incidentally by the very nature of

the initial state in f a-nd g-wave Auger emission.
It is worthwhile here to point out that the approach

has been taken by Tong and coworkers, in their small-
window energy extension process ' (SWEEP) is quite
opposite to that of Thevuthasan et al. in that only the in-
tensities very close ( —30') to the forward-scattering
directions are used as input to a reconstruction algo-
rithm.

Our approach is to suppress neither the intensities
close to the forward-scattering directions, nor those more
than -30' from these directions, since information about
all atoms is contained over the whole diffraction pattern
(although the holographic fringes are much weaker away
from the forward-scattering directions). We eliminate
the distorting effects of the anisotropy of source and scat-
tered waves over the whole of the diffraction pattern by
the correct form of the source- and scattered-wave-
included Fourier transform (SWIFT). This also has the
effect of restoring the relative strengths of the more off-

axis holographic fringes. The rationale for the small-
window process, namely the elimination of the trouble-
some effects of other forward-scattering peaks, is
achieved instead by our "Fourier filtering" procedure.
Our use of the information over the whole diffraction pat-
tern should have the bonus of improving image resolu-
tion.

As a preliminary to demonstrating our algorithm in
practice, we determine the angular-momentum character
of the 914-eV L3 VV Auger emitted electron from Cu by
comparing an experimental electron angular distribution
from a Cu(100) surface with the results of model calcula-
tions for emitted electron states of different angular-
momentum character. The calculations were performed
by our scheme in which the clusters of scattering atoms
around the emitters are subdivided into sets of concentric
shells, thereby affording an efficient identification of the
important multiple-scattering paths. The agreement
found between the experimental data and the calculations
for an f wave emitter -is excellent, and is monitored by
the use of a reliability factor. The conclusion that the
electrons of this particular Auger line are emitted pri-
marily into an f-wave channel is in agreement with previ-
ous calculations of this particular Auger electron matrix
element.

A SWIFT algorithm which correctly deconvolves the
anisotropy of the atomic scattering factor and that of the
reference wave is demonstrated with a model calculation
for an f-wave emitter as well as with the experimental
data of a Cu(100) Auger electron diffraction pattern.
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