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Transition from metastability to instability in the dynamics of phase separation
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We present results from a numerical study of the Cahn-Hilliard-Cook model in two dimensions. We

study the transition from metastability to instability in this model by systematically changing the quench

depth for an off-critical quench condition. We use different kinetic probes in the simulation to distin-

guish between two types of growth mechanisms: nucleation and spinodal decomposition. Although we

can distinguish between nucleation and spinodal decomposition in some cases, the transition between

these two growth processes is gradual. We do not see any evidence of a sharp transition from one to the

other at the mean field spinodal line. Actually, the center of the diffuse transition zone that we find in

the simulation is located above the mean-field spinodal line. These features of the transition zone agree
extremely well with analytical theories and with recent experiments.

I. INTRODUCTION

The dynamics of phase separation in systems like metal
alloys, fluid mixtures, and polymer blends is of great
theoretical and practical interest. ' One usually makes a
distinction between two very different mechanisms of
evolution during such a phase-separation process. If the
system is quenched from a high-temperature single-phase
region to a point inside the metastable part of the phase
diagram, i.e., between the coexistence curve and the so-
called spinodal line, it evolves by nucleation of the minor-
ity phase and subsequent growth of the nuclei formed.
On the other hand, if the system is quenched to a point
between the spinodal curve and the center of the phase
diagram, it becomes unstable against long-wavelength in-
stabilities and evolves by spinodal decomposition.

In the mean-field-type theory, ' the transition between
nucleation-growth (NG) and spinodal decomposition
(SD) is sharp and separated by the (mean-field) spinodal
line. However, when statistical fluctuations are taken
into account, theoretical calculations show that the
spinodal line gets smeared out and the transition from
nucleation and growth to spinodal decomposition be-
comes diffuse in models with short-range interactions.
The general picture of a diffuse spinodal line predicted in

the theory is supported by numerical simulation of Ising
models. However, no systematic calculation is available
to predict how the kinetics of the phase-separation pro-
cess should change as a function of quench depth, as one
quenches the system at different points on each side of
the mean-field spinodal line.

In this paper, we carry out a numerical simulation of
the Cahn-Hilliard-Cook (CHC) model in two dimensions
to study the transition in the dynamics of the phase-
separation process as the system is quenched at different
locations across the mean-field spinodal curve. The
motivation of this calculation comes from a recent exper-
imental study of phase separation in a viscous liquid
mixture, where a diffuse metastable to unstable crossover
phenomenon has been observed in the early to intermedi-
ate time regime. Since the CHC model is used in the

literature as a prototype model for theoretical study of
phase separation, ' it is interesting to study the nature
of such a transition in this model for intermediate time
regimes, where the linear theory of phase separation
breaks down and nonlinear effects become important.

In the numerical simulation reported here, we sys-
tematically change the quench depth under an off-critical
quench condition. We study the dynamical evolution of
the system in the early to intermediate time regime at
each quench location and try to determine whether the
phase-separation process is controlled by a NG-type
mechanism or by a SD-type mechanism. Since the nu-
merical simulation is carried out in two dimensions, the
minority phase is below the percolation threshold for any
off-critical quench. In the intermediate time, then, we
find that even if the system is clearly inside the unstable
region, the interconnected structure usually associated
with spinodal decomposition is absent in the simulation.
As a result, the morphology of the phase-separated
domains is always of droplet type and it is difficult to dis-
tinguish between NG and SD just from morphological
evidence. Using different kinetic probes in the simula-
tion, we find that for the off-critical quenches considered
here, there is clear evidence that the phase separation is
governed by a NG mechanism at some part of the phase
diagram and by spinodal decomposition at some other
part. We can draw such conclusions from data taken in
the intermediate time regimes. Analysis of the data taken
in the intermediate time regime also suggests that the
transition region between the two growth mechanisms is
diffuse as suggested in previous theoretical work.

II. MODEL AND NUMERICAL PROCEDURE

In the CHC model of phase separation, one writes the
time (r) variation of the concentration field %(r, r) in
terms of the functional derivative of a coarse-grained
free-energy functional F[4] and a thermal noise term.
Since the order parameter is conserved, one finds

8+(r, r) 2 oF
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where M is the mobility and g(r, r) is the Gaussian noise
term obeying the fluctuation dissipation relation
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The free energy F[%] in this model is taken to be the
Ginzburg-Landau free-energy 2.0—
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The above equation can be written in a simpler form by
suitable rescaling. We introduce a time variable
t =r/(Mks TK ), a field P =K '~ 4, and parameters
e=b/K and g=u /K . In terms of these variables, Eq.
(4) becomes

~ " =v'( ey+y—y' v'y)+—g,at
(5)

where the new noise term g satisfies the fluctuation-
dissipation relation

(g(r, t)g(r', t')) = —2V 5(r —r')5(t —t') .

Our simulation has focused on two-dimensional sys-
tems. In a previous study' we have carried out a calcu-
lation of the phase diagram of the model in two dimen-
sions by using a heat-bath Monte Carlo method com-
bined with extrapolation techniques. " We show the
phase diagram in Fig. 1 by plotting 0 versus the average
order parameter (P) for y= 1. In the above figure we
also show the corresponding mean-field spinodal line
given by

e=3&y)'.
We have considered both critical and off-critical

quenches in our simulation. Since the phase-separation
process is always controlled by spinodal decomposition
for a critical quench, results for the critical quenches are
very useful for comparison with those for the off-critical
quenches where the phase-separation process might be
the nucleation-growth type or the spinodal decomposi-
tion type, depending on the quench location. We always
start from a random initial configuration of the system
and do an instantaneous quench at a point inside the
phase diagram given by different 0 values. The critical
value' of 0 is =1.265 for g=1. For critical quenches
( {P) =0) we have chosen e= l. 5, 1.7, 1.9, 2.1, and 2.3 as
the final quench locations. For off-critical quenches we
have fixed {P)=(—,

')'~ and considered different final

quench locations by varying 0 from 1.4 to 2.3 at an inter-
val of 0.1 (see Fig. 1). For this choice of {P),the coex-
istence curve is located at 0= 1.45 and the mean-field spi-
nodal line is located at 0=2.

We have carried out the numerical integration of Eq.
(5) (with y= 1) for a lattice of size 240 up to a rescaled
time of t =1000. We have used a simple Euler scheme'

where b, u, and I( are phenomenological parameters of
the model. The resulting equation of motion after per-
forming the functional derivative is

FIG. 1. The phase diagram of the two-dimensional model
studied here (see text) for y=1. This phase diagram is obtained
in Ref. 10. The dotted line is the mean-field spinodal curve.
The solid circles denote the off-critical quench locations studied
in this work.

for the numerical integration and used a time step of
At =0.025 and a mesh size equal to unity which would
correspond to a model with short-range interaction. '

We have chosen the initial configuration of (()(r, t ) to be
Gaussian distributed with the center at {P ) and with a
variance 0.1. In order to average over the initial random
configurations and the thermal noise, we have performed
20 runs at each quench location.

III. RESULTS

In Figs. 2(a) —2(c) we show the characteristic morphol-
ogy of the phase-separated domains for off-critical
quenches at t =1000 for 0=1.6, 1.9, and 2.3. In these
pictures the minority phase is denoted dark, i.e., wherev-
er P(r, t = 1000) took a value less than zero we put a dark
dot at that r. Since the system is still in the relatively ear-
ly stage of evolution, the domains are separated by diffuse
interfaces. The structure of the interface is somewhat
lost in the above figures though, due to the sharp cutoff
used between the black and white in the drawing. How-
ever, one can still make a few general observations from
the above pictures. For 0=1~ 6, one finds many single-
particle nuclei of the minority phase due to large thermal
fluctuations. As 0 increases, more well-developed drop-
lets appear at the same time t, although there are still
quite a few single-particle clusters for 0=2.3. Also, the
formed droplets are not circular, either. ' These features
of the domains are expected since the system is yet to
enter the late time-scaling regime. As mentioned earlier,
the domain morphology in the off-critical quenches con-
sidered in the simulation is always the droplet type. Thus
it is difficult to distinguish between the growth mecha-
nisms just by looking at the morphology of the phase-
separating domains.

We compute the probability distribution function P(P)
at a particular time t for both off-critical and critical
quenches. In Fig. 3(a) we show the results for off-critical
quenches and in Fig. 3(b) we show the corresponding re-
sults for critical quenches for the same 0 values. The
time at which these computations are carried out is given
by t =1000. For the off-critical quenches, we find that
the peak of P(P) at negative values P (which we will call
the second peak) grows gradually as e increases. For
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0= 1.5 the second peak is invisible in this figure, since the
volume fraction of the minority phase is quite small.
This behavior is expected for nucleation at earlier times.
On the other hand, for 0=2.3, the bimodal nature of the
distribution is clear. If we compare this figure with the
corresponding Fig. 3(b), we find that the distribution in
3(b) is clearly bimodal for all quenches (which are
governed by spinodal decomposition for all 0 above the
critical value). For the off-critical quenches then, as 8 is
increased, there seems to be a transition from nucleation
[with a barely visible second peak of P(P) at intermediate

times] to spinodal decomposition [with a well-developed
bimodal distribution of P(P)]. However, the transition is
gradual and nothing spectacular happens at the mean-
field spinodal (8=2). One can qualitatively estimate that
the diffuse transition region is in between 0= 1.7 and 1.9.

We draw a similar conclusion when we analyze the
data for the nonequilibrium structure factor. The struc-
ture factor is defined as

S(k, t ) = —gee'"'[p(r+r', t )lI)(r', t) —(l))) ]
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FICx. 2. (a) A typical configuration of the phase-separated domains at t =1000 for an off'-critical quench with (P) =( —, )' and
0= 1.6. (b) Same as in (a) except that 0= 1.9 here. (c) Same as in (a) except that 0=2.3 here.
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FIG. 3. (a) Probability distribution function P(P}at t = 1000
for off-critical quenches for different 8 values. (b) Same as in (a)
except for critical quenches.

where the sum is over the lattice and N is the total num-
ber of lattice points. In the simulation we consider the
circularly averaged structure factor S(k, t) In Figs.. 4(a)
and 4(b) we plot S(k, t =1000) for different 8 for off-
critical and critical quenches, respectively. For off-
critical quenches, the peak of the structure is barely visi-
ble for 8= 1.5. The peak, however, increases gradually as
8 is increased. On the other hand, for critical quenches,
the peak is already well developed for 8=1.5. In this
respect, the situation is quite similar to the case of the
probability distribution function P(P) discussed before.
Thus, again we find evidence of a gradual transition from
nucleation to spinodal decomposition as 8 is increased in
the off-critical quenches.

The peak and different moments of the structure factor
are accessible in experiments. As we present shortly,
these quantities also carry the signature of a diffuse tran-
sition. We define a moment k, of the structure factor as

gkS(k, r)
k

QS(k, r)
k

and in Fig. 5 we plot k, vs 8 for off-critical quenches and
for t =250 and t =1000. The corresponding graphs for
the peak of the structure factor S,„vs 8 are shown in
Fig. 6. As 8 increases S,„(or k, ) shows little change in-
itially (8~1.7). Subsequently, it passes through what
looks like an inflection point around 8=1.S—1.9 and
then finally becomes flat again for even larger values of 8.
This suggests a clear but diffuse transition in kinetics of
domain growth from nucleation (which we estimate to
occur for 8& 1.7) to spinodal decomposition (which we

0
0 6

kL/2z
12

FIG. 4. (a) Circularly averaged structure factor S(k, t) at
t =1000 for off-critical quenches for different 8 values. The
solid lines in this and other figures are guides to the eye. (b)
Same as in (a) except for critical quenches.

estimate to occur for 8~ 1.9). We note that this behavior
of S,„as a function of quench depth is very similar to
what has been found in recent experiment by Tanaka
e~ al. '

Next we focus our attention on the nonequilibrium
pair-correlation function g(r, t), defined as

g(r, t ) =ge'"'S(k, t ) .
k

(10)

In this case also we consider the circularly averaged
quantity g(r, t} in the simulation. In Figs. 7(a} and 7(b)
we plot g(r, t =1000) vs r for different 8 values used in
off-critical and critical quenches. For critical quenches
[Fig. 7(b)], the correlation function shows an oscillatory

1.4

0.0
1.5 1.9 2.3

FIG. 5. Moment k, of the circularly averaged structure fac-
tor S(k, t) at t =250 and 1000 for off-critical quenches for
different 0 values.
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FIG. 6. Peak S,„ofthe circularly averaged structure factor
S(k, t) at t =250 and 1000 for off-critical quenches for different
0 values.
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behavior for all values of I9 considered here. For off-
critical quenches with 0 1.9 the correlation function
shows such an oscillation. On the other hand, for 0 ~ 1.7
the correlation function is quite flat after its first zero.
This behavior is also found in a recent simulation' of
domain growth in the nucleation regime. Thus, we can
conclude that the phase separation is the NG type for
L9 1.7 and there is a gradual transition to SD if t9 is fur-
ther increased.

A measure of domain size used in the literature is the
location (R

~
of the first zero of g(r, t) In Fig.. 8(a) we

plot R vs 0 for off-critical quenches at two times. The
transition from NG to SD is clearly visible in this figure.
R increases with increasing 0 initially, then passes
through a broad peak around L9=1.8, and finally appears
to take a constant value. We conclude that the system is
undergoing nucleation and growth for those values of 8
where R is sharply increasing (i.e., 8 ~ 1.7). On the oth-

7
1.4 1.9 2.4

FIG. 8. (a) A measure of the average domain size R~ vs 0 at
t =250 and 1000 for off-critical quenches. Typical error bars
are also shown in the figure. (b) Same as in Fig. 7(a) except for
critical quenches.

er hand, the system is undergoing spinodal decomposi-
tion for those values of 0 where R is apparently constant
(i.e. 8 ~ 2.0). The broad peak at around 8= 1.8 suggests a
diffuse transition from NG to SD. The fact that we asso-
ciate spinodal decomposition with a constant value of R
is supported by the corresponding graph of R vs 0 for
critical quenches [Fig. 8(b)) where we find R to be al-
most independent of 0 at both t =250 and 1000.

We also compute the effective exponent of domain
grown (n,s for off-critical quenches at difFerent 8 values.
One can define an effective exponent by writing the aver-

age domain size R(t)=at ' . This effective exponent is
computed in two different ways: (1) from values of Rg at
two times t =1000 and 250 and (2) from values of k, at
those two times. The corresponding results are plotted in
Fig. 9. Although the asymptotic growth exponent is —,

'

both in the NG and SD regimes, ' ' the effective ex-
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FIG. 7. (a) Circularly averaged pair-correlation function
g(r, t) at t = 1000 for off-critical quenches for different 0 values.
(b) Same as in (a) except for critical quenches.

FIG. 9. The effective exponent n, ff calculated from Rg and k,
vs 0 for off-critical quenches. The effective exponent is calculat-
ed from data at two times: t =250 and 1000.
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ponent' at intermediate times could well be smaller than
the above value. The effective exponent is quite small in
the intermediate time regime for NG possibly due to the
weak interaction among the droplets. For SD the
effective exponent is smaller than the asymptotic value
due to the presence of strong surface diffusion at inter-
mediate times. ' ' We note that the effective exponents
calculated both from R and k, increase with 0, go
through a maximum, and then finally settle down to a
lower value. A similar behavior has been seen in the Rg
vs 8 graph [Fig. 8(a)] but not in the k, vs 8 plot (Fig. 5).
Similar to the results for R vs 0, here also one can draw
a conclusion of gradual transition from NG to SD from
the above plots, although we note that the estimated er-
ror bars to these effective exponents are quite large.

IV. SUMMARY AND CONCLUSION

In this paper we present results from a numerical study
of the Cahn-Hilliard-Cook model in two dimensions,
where we investigate the transition from metastability in
this model. We study the dynamics of the phase-
separation process by systematically changing the quench
depth for an off-critical quench condition. We use
different kinetic probes in the simulation to distinguish
between two types of growth mechanism, namely, nu-
cleation and growth and spinodal decomposition. We
also carry out simulations for critical quenches to corn-
pare with the data for the off-critical quenches.

Although the phase-separated domains have droplet-
type morphology for all the off-critical quenches con-

sidered in the simulation, analysis of our data taken in
the intermediate time regime clearly shows that there are
regions of the phase diagram which are metastable and
the phase separation in those parts is governed by nu-
cleation of the minority phase. On the other hand, the
phase separation is controlled by spinodal decomposition
at other parts of the phase diagram. It is interesting to
note that this distinction is possible from data taken in
the intermediate time regime where the nonlinear effects
affect the dynamics considerably, whereas the theoretical
concepts in the "classical" picture are developed from
linear-type analysis. ' Although we can distinguish be-
tween nucleation and spinodal decomposition for some
values of the parameter 0, the transition between these
two growth processes are gradual. We do not see any evi-
dence of a sharp transition from one to the other at the
mean-field spinodal line. Actually, the center of the
diffuse zone that we find in the simulation seems to be lo-
cated above the mean-field spinodal line. These features
of the transition zone agree extremely well with analyti-
cal theories and with recent experiments.
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