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Numerical simulations of two-dimensional, spatially periodic cellular structures in directional
solidification of a binary alloy show the existence of multiple steady-state, traveling-wave, and spatiotem-
porally chaotic structures in samples that admit up to eight cells. This variety of dynamics is observed
within a small range of dimensionless growth rate P above the critical value P, and transitions occur on
long time scales; both phenomena are linked to the shallow neutral stability curve, which controls the in-

itial formation of cells. Traveling-wave states bifurcate supercritically from stationary cellular patterns

and have lateral wave speeds that increase proportional to P —P„ in agreement with the theory for trav-

eling waves introduced by parity-breaking bifurcations.

I. INTRODUCTION

As the question of wavelength selection in the micros-
tructures formed in two-dimensional directional
solidification experiments receives more attention, it is
becoming increasingly clear that the cellular patterns ob-
served do not exhibit a unique relationship between
growth rate and wavelength, but that a myriad of struc-
tures along the interface are possible, representing a band
of length scales in the solidification microstructure.
Moreover, the selection of particular states within this
band is influenced by nonlinear dynamical phenomena
caused by interactions between neighboring cells. This
paper reports numerical simulations for the evolution of a
section of a laterally periodic solidification interface, as a
mechanism for probing the nonlinear dynamics of cellu-
lar structures and the microstructural length scales of the
interface.

Cellular structures in directional solidification form
along the melt-solid interface of a binary alloy as the
growth rate is increased for a constant temperature gra-
dient. A planar interface initially becomes unstable to
sinusoidal disturbances of infinitesimal amplitude. ' The
relationship between the wavelength of the undulation A,

and the growth rate V at which the instability begins is
given by the neutral stability relation V= V(A, } from
linear stability theory. ' The critical growth rate V—= V, is
the lowest value for neutral stability and occurs at the
most dangerous wavelength A,

—=k, . As is typical in non-
linear transport processes involving diffusion, the neutral
stability curve is locally parabolic about A, =—A, For
V) V„ linear stability theory predicts that the planar
front is unstable to a band of wavelengths. The problem
of wavelength selection for finite amplitude cells focuses
on understanding the evolution of the solidification inter-
face in this state. The analysis for cellular solidification is
particularly complex because the typical neutral stability
curve is extremely flat; that is, for V slightly above V„a
large band of wavelengths is unstable. Bifurcation
analysis applied to small collections of cells has shown
that this flatness leads to nonlinear interactions between

cells with spatially resonant wavelengths at growth rates
very close to V, .

We believe that the presence of these nonlinearly cou-
pled modes causes temporal interactions along a cellular
front and leads to time-dependent dynamics. This view
has been partially substantiated by the time-dependent
simulations of cellular growth of Bennett and Brown,
who demonstrated that time-periodic and aperiodic states
were possible for a collection of shallow, two-dimensional
cells confined between rigid boundaries as V was in-
creased. En these simulations, the microstructure
changed continuously in time over a scale of 100—1000
diffusion times, based on the cell size. A unique cellular
pattern was not observed for V above a threshold ex-
tremely close to V, and the "average wavelength" of the
cellular structure decreased with increasing growth rate.

The time-dependent dynamics in these simulations
seemed to result from interactions of the birth and death
of individual cells along the front with adjustments in the
wavelength and phase of the front caused by the lateral
motion of irregularities in the front —traveling waves.
Cell birth is by tip splitting and is connected to the
codimension-2 bifurcations caused by spatial resonance
of cells with wavelength 1 and A, /2; see Refs. 2 —6 for a
description of this phenomenon. The local birth of a new
cell causes an asymmetry in the spatial periodicity of the
front and leads to lateral migration of the cell. During
this migration and in subsequent dynamics, the new cell
formed by the splitting may persist or be consumed by its
nearest neighbors. In the simulations of Bennett and
Brown (Ref. 5, henceforth referred to as BB},the sample
was surrounded by rigid boundaries where reflective sym-
metry was imposed on the field variables and the inter-
face. Hence, traveling waves in the interface structure
were reflected back from the boundaries. The aperiodie
dynamics observed with increasing growth rate is caused,
at least partially, by the interactions of traveling-wave
states moving in both directions.

These predictions from simulations are very dificult to
confirm experimentally because of the very narrow range
of growth rate over which the transitions occur; however,
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several recent directional solidification experiments do
bear on these predictions. Two-dimensional directional
solidification experiments of an organic alloy by Lee
focus on observation of the development of the cellular
pattern near onset (V= V, ) over a long time. These ex-
periments show the evolution of the interface structure to
wavelengths less than A,, and demonstrate aperiodic dy-
namics over long time scales involving cell wavelengths
within a band. The dynamics of the front is marked by
tip splitting and lateral motion of cells over short dis-
tances; however, true traveling waves have not been seen.
Overall, the interface appears to be undergoing a form of
spatiotemporal chaos that is similar to states observed in
other systems with large aspect ratios ' and to observa-
tions reported by others in directional solidification. "

Most notable among these are directional solidification
experiments of Simon, Bechhoefer, and Libchaber" for
the thermal transition between isotropic and nematic
liquid-crystalline phases in a thin-film experiment. Again
there is a critical velocity for the onset of a cellular pat-
tern. For a range of velocities above this value, the inter-
face has a broad band of wavelengths, similar to the spec-
trum seen in Ref. 6; however, above a second critical
value, solutions in the form of traveling waves are ob-
served. With the presence of these solitary waves, the
band shifted to lower wavelengths and narrowed consid-
erably.

The experiments of Cladis, Gleason, and Finn' ' for
thin-film directional solidification of an organic alloy also
substantiate the picture introduced by BB of spatiotem-
poral chaos in this system. Two additional critical
growth rates (V, &, V,2) were observed in these experi-
ments: for V, & V& V, &

and V& V,2, spatiotemporal
chaos is observed. In the interval V„&V& V,2, lateral
propagation of the interface is observed and wavelength
selection is enhanced considerably.

Spatiotemporal chaos and traveling waves have also
been observed in the directional viscous fingering experi-
ments of Rabaud, Michalland, and Couder. ' The phys-
ics of these systems, caused by the balancing of viscous
and surface-tension forces leads to a much stronger
dependence of the critical velocity on the cellular wave-
length and much more regular interfacial patterns. '

Coullet, Goldstein, and Gunaratne' advanced a model
for the cause of traveling-wave solutions in nonlinear
transport problems with spatially periodic structures.
The model is based on the idea of a disturbance that
breaks the natural parity of the reAectively symmetric
cells and leads to anisotr op y in the structure to
traveling-wave solutions. Coullet, Goldstein, and
Gunaratne, and, later Goldstein et al. ,

' used multiple
length scale analysis to derive generic amplitude equa-
tions describing the onset of a parity-breaking instability
to an initially cellular state. The results of this analysis
suggest that traveling-wave solutions exist beyond a criti-
cal value of the control parameter and that the wave
speed is proportional to the difference (V—V, ). The cal-
culations described in Sec. III confirm this prediction.
Proctor and Jones' have explained the existence of
traveling-wave solutions due to the presence of
codimension-2 bifurcation points. Levine and Rappel'

applied the results of Proctor and Jones to the system of
directional solidification and compared with calculations
of traveling waves for conditions meant to correspond to
the liquid-crystal system used in Ref. 11. Again, the Aat-
ness of the neutral stability curve makes these states ac-
cessible at conditions only slightly above critical.

II. MODEL FORMULATION AND SOLUTION METHOD

A. Solutal model

The numerical simulations described here are based on
analysis of the solutal model of alloy solidification de-
scribed in BB. Here the melt and solid are modeled as
having equal thermal conductivities; latent heat release at
the melt-crystal interface and convective heat transport
are ignored. With these assumptions, a constant temper-
ature gradient 6 imposed in the direction of crystal
growth is unaltered by the shape of the melt-crystal inter-
face, which is computed from analysis of the solute field
and from the Gibbs-Thomson condition for interfacial
equilibrium. Dimensionless model equations are obtained
by scaling lengths with the characteristic wavelength A,o
of a cell, temperatures with the melting temperature of
the pure material T, concentrations with the bulk con-
centration of the melt co, and time with the di6'usive scale
A,o/2). The dimensionless solute balances are

ac
Vc +P

By

in the melt and

Bc

B1

Bc, Bc,
R Vc, +P

By 81
(2)

where & is the mean curvature of the interface, m is the
slope of the liquidus curve, I is the dimensionless capil-
lary length, G is the dimensionless temperature gradient,
and c„f is a reference concentration that is fixed at the

in the solid, where y is the coordinate direction for
growth, r is the dimensionless time, R~ =2), /2) is the
ratio of the solute diffusivities in the solid and melt, andP:VA,O/2) is —the Peclet number of dimensionless
translation rate of the sample.

At the interface, the concentration of solute in the
solid c, and melt c are related by the idealized phase re-
lation c, =kc, where k is the segregation coeKcient, and
by the interface solute balance

(n Vc )+R (n. Vc, )=(n e~)[P+ V, (x, t)j(k —1)c

(3)

where V, (x, t) is the vertical component of the interface
velocity in the y direction in excess of P, e is the unit
vector in the y direction, and n is the unit normal vector
to the interface pointing into the melt. The Gibbs-
Thomson condition for interfacial equilibrium is written
as

c t+ =c +—2&,Gy I
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concentration in the melt for a planar interface;
c f

= 1 /k. The definitions of the dimensionless groups
used here are the same as reported in Table II in BB.
The dimensionless translation rate P is used as the pa-
rameter for initiating and increasing the amplitude of the
cells.

The values of the dimensionless groups used in the cal-
culations are k =0.1, R = 1.0, G =2. 1 X 10
m = —6.7X10,and I =1.6X10 . The neutral stabil-
ity curve from linear stability theory for these parameters
is shown as Fig. 1 in BB.

B. Numerical method

We compute time-dependent solutions to the solutal
model with the conditions that the concentration field
and the interface shape are spatially periodic for an inter-
val of the interface 0 x L. The numerical integration
is conducted using the finite-element —isotherm method
described by Ungar, Ramprasad, and Brown. ' Galerkin
finite element discretization is used to reduce the continu-
ous problem to a set of differential-algebraic equations
(DAE s), which are integrated using a fully implicit,
second-order accurate Adams-Moulton method: see Ref.
19 for details. The calculations presented here are for L
taken to be an integer number, i.e., for sample sizes that
admit the development of an integer number of small am-
plitude cells from the planar state. The problem is discre-
tized by using 16 finite elements along the interface for
each primary wavelength and ten elements in each the
melt and solid. The total number of DAE's solved
ranged from 1024 for L = A, to 8192 for L = 8A., where A, is
the nominal wavelength of the cells; only A, =A,, will be
considered here. See Bennett for details.

C. Neutral stability and symmetry considerations

Introducing boundary conditions for spatial periodicity
alters the steady state solutions computed in BB for the
same conditions, by eliminating solutions that do not

have periodic structure. With reflective symmetry condi-
tions, a collection of n cells with wavelength A, computed
in the L-sized box need only satisfy the relation
n(A, /2)=L to be admissible; i.e., an integer number of
half wavelengths must fit into the sample. For a spatially
periodic domain the cells must satisfy nk=L, so that an
integer number of wavelengths must fit into the sample.
This added restriction in the periodic sample increases
the size of the sample needed to see many of the steady-
state and time-periodic forms computed in BB. For ex-
ample, the steady-state family of cells with wavelength k
is computed in a sample of size L =A, /2 if reflective con-
ditions are used, but requires a sample size of L =A, with
periodic conditions.

The primary bifurcation points for periodic sample
sizes with L =1, 2, 4, and 8 times the critical wavelength

k, are listed in Table I for a narrow range of growth rates
and Peclet numbers. Besides integer multiples of cells
with wavelength A,„forms with smaller numbers of larger
cells and with large numbers of smaller cells are admissi-
ble. Most importantly, the time-dependent dynamics in-

volving tip splitting and traveling waves that is reported
in BB requires L =2k, for reflective conditions; hence,
this dynamics is expected in samples larger than L =4k, ,
for the periodic boundary conditions.

The steady-state, tusk-shaped shapes discovered by BB
for L =2k,, satisfy the reflective boundary conditions by
coming in pairs with the shapes either tilted inward or
outward. These shapes are not allowed with periodic
boundary conditions; however, shapes that all tilt in ei-
ther the positive or negative x direction are admissible.
Fronts of such tilted cells cause a skew in the concentra-
tion field and lead to lateral motion of the cells, i.e., trav-
eling waves, as observed in experiments" and calcula-
tions.

III. SIMULATION RESULTS

Time-dependent simulations were carried out for vary-
ing Peclet number P and for sample sizes in the interval

TABLE I. Primary bifurcation points for the shape families admissible in periodic domains with
widths of four different sizes: L =A,„2A,„4A,„and 8A,

Families for
periodic samples
2A, , 4k, 8A,, P (—= VA,„f/2)) E [ —= 100(P Pc)/Pc] V (pm/sj

1/2

2/3

4/5
4/3

4/7

8/9
8/7

8/11

8/5
8/13

8/15

0.391 41
0.39146
0.391 47
0.391 60
0.391 69
0.391 82
0.392 10
0.392 13
0.392 44
0.392 83
0.392 96
0.393 28
0.393 77

0.0000
0.0128
0.0153
0.0485
0.0715
0.1047
0.1763
0.1840
0.2632
0.3628
0.3960
0.4778
0.6029

4.2324
4.2329
4.2330
4.2345
4.2354
4.2368
4.2398
4.2402
4.2435
4.2478
4.2492
4.2526
4.2579
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k, &L ~8k, These results are reported separately for
each sample size. 1.0 — o o o o o « o o

A. The L =A,, sample

y=—2 0+2~
C /2

=28—P,

where [0+2m(x/A, , )] and {P+2a[x/(A,, /2)]] are the
phases of the A., and A,, /2 modes, respectively. The
phase difference y is plotted as a function of the dimen-
sionless growth velocity P in Fig. 2. As shown there, for

This sample is important as a base case for the interac-
tions between the wavelengths A,, and A,, /2. As shown in
Table I only cell shapes with wavelengths A,, and A,, /2 bi-
furcate for L =A,, in the parameter range
0.3914~PRO.407. As expected from the analyses of
Haug and Proctor and Jones, ' quadratic nonlinearities
will lead to interactions between the spatial modes involv-
ing the wavelengths A,, and A,, /2. Such interactions lead
to a number of characteristic types of steady and tran-
sient nonlinear behavior: (i) the steady lA, , solution joins
the steady 1/2A, , solution at a secondary bifurcation, (ii)
a Hopf point is possible on the 1A,, solution leading to
standing waves, and (iii) a traveling wave solution bifur-
cates from the 1A,, family for periodic boundary condi-
tions. The connectivity between the steady primary solu-
tions 1/A, , and 2A, , and the Hopf point on the 1A,, family
have been studied numerically ' and analytically. '
Here we concentrate on the traveling-wave solution.

Time integration reveals a supercritical transition from
the steady one-cell solution to a traveling wave at
P, =0.39305; we refer to this state as 1A,, TW, since its
spatial period is A, For P &P„ the steady 1A,, family is
stable, while for P )P, stable traveling waves are predict-
ed; calculations were performed up to P=0.3940, as
shown in Fig. 1. Both these states involve mainly two
spatial modes with wavelengths A,, and A,, /2, but in the
traveling wave these modes are out of phase. Here a
phase difference is defined as

0
pg

0
Q.7

0.392

0 ~ ~ t&0 stable 1P, solution
~ stable traveling —wave solution

0.393 0.394

Dimensionless Growth Rate P

FIG. 2. Phase shift between the two leading modes in steady-
and traveling-wave solutions for L =A,

P & P„ the phase difference y deviates from ~ resulting in
asymmetric cellular shapes and concentration fields. This
asymmetry causes the lateral migration of the cells with
traveling speed that increases as the phase difference

~y
—n

~
increases, as shown in Fig. 3, in agreement with

the predictions of Coullet, Goldstein, and Gunaratne'
and Proctor and Jones. ' For the shape of the traveling
wave shown in Fig. 1 the traveling velocity is pointing to-
wards increasing values of the x coordinate; the reflection
of this wave also is a solution traveling towards decreas-
ing values of x.

The quantity y is not new but has been used in the
past' to account for periodic boundary conditions in the
interactions of the two spatial modes e' ' and
e' ' involved in a codimension two singularity with
1:2 spatial resonance. In contrast to the case of reflective
boundary conditions where the amplitudes of the two
critical modes e' ' and e' ' are enough to de-
scribe the center manifold of the singularity, in the case
of periodic boundary conditions both the amplitudes and
the phase y are needed, resulting in a three dimensional
dynamical system. ' An important result of the asymptot-
ic analysis of Ref. 17 was that the amplitudes of the two

0.005

0.002

0 stable 1h., solution
0.003 ~ stable traveling —wave solution ~

"e
Q)

(5 0.002
E 0 0
S (:)0 0

0
0 001 — o

0.00i-
' W

Q

(Q

0.392
I

0.393

Dimensionless Growth Rate P

0.394 0.000:-
0.0 0.2 0.4 0.6 o.e

FIG. 1. Results from time integration in the L =A,, domain
with periodic boundary conditions. Sample interface shapes for
the steady- and traveling-wave solutions are also shown.

Phase Difference ~y
—

vr~

FIG. 3. Traveling velocity as a function of phase shift y for
the traveling-wave state of L =A,
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'e
o 0 stable 1P, solution

~ stable traveling-wave solution

2.0

1.5

1.0

0 4

0,5

0
~ ~ 3

X
0.392

~ ~ ~ ~ ~ ~ ~ ~ ~

0.393 0.394

0.0
I

1 2

Time 10
4 5

Dimensionless Growth Rate P

FIG. 4. Ratio of the amplitudes of the two spatial modes
with wavelengths k, and A,, /2 for the steady- and traveling-
wave solutions in L =A,

FIG. 5. Contours of the melt- solid interface height for simu-
lation with P=0.3920 and L =2k, Solid contours represent
the portion of the interface above the average height and dotted
contours represent points below this level.

dominant spatial components of the traveling wave have
constant ratio. This is demonstrated by the calculations
shown in Fig. 4.

The traveling-wave state described in this subsection is
the simplest and best studied dynamical behavior
differentiating the solidification system with periodic
boundary conditions from that with reflective boundary
conditions. New and more complex states appear as the
length of the domain increases admitting an increasing
number of spatial modes.

with modes of wavelength A,„2A,„2/3A, „and A,, /2.
Dynamical simulations were performed for the values of
P listed in Table II. Four qualitatively different types of
behavior were found and are in sharp contrast to the dy-
namics seen in BB for samples with L =2A., and
reflectively symmetric boundaries. The initial conditions
for each of these simulations and the final states reached
are discussed below.

1. Steady- and standing-wave states

B. The L =2k,, sample

As shown in Table I, increasing the sample size to
L =2k,, leads to the possibility of nonlinear interactions

First, the simulation for P =0.3920 produced a
steady-state structure with two cells of wavelength k, ;
the transient lasted approximately 5~=400 and the
steady-state shape persisted for 6~=5000 units, corre-
sponding to 15 h of growth. The contours of the inter-

Dimensionless
growth rate P Dynamic behavior

0.392 000

0.393 215

0.393 000

0.393 100

)0.393 200

Stable steady-state
growth with X,
cells
Weakly aperiodic
dynamics
Periodic dynamics
showing height os-
cillation, tip split-
ting, and lateral
shifts of cells
Periodic dynamics
showing tip splitting
and cell annihila-
tion
Traveling-wave solu-
tions

TABLE II. Growth rate and results for simulations in sam-

ple with L =2k, . I ~ f I
/

I l ~ ~
f

I f I 1
/

I I 1 I
i

I I I l
/

I I 1 1

, i)I I

I jd" p~ '&l0&&I( It

, t lIIlaI. ",
I 8 Ii) Ii, lI

0 5 10 15 20 25 30

Time 10

FIG. 6. Contours of interface amplitude computed at
P=0.39215 and L =2k, Only contours corresponding to the
portion of the interface above the average height are shown.
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1.0

0.5

0.0

0
I I

2 4

Time 10

I I

6 S 10

(b)

face shape for this state are shown in Fig. 5 as a function
of time ~. The initial condition for this simulation was
the time periodic state found by BB for P=0.3930 with
reflective boundary conditions. The same initial condi-
tion was also tried for P =0.3930 and periodic boundary
conditions giving distinctly different behavior than that
seen by BB,as discussed later in this section.

Starting a transient simulation with an initial condition
composed of tusk-shaped cells from a calculation with
reflective boundary conditions produced interface dy-
namics that is very different from what is described
above. This is demonstrated using an initial condition
composed of two outside facing tusks computed in a sam-

ple with L =2k,, and reflectively symmetric boundary
conditions. With only a very slight increase in the

growth rate to P =0.393 215 the cellular front continued
to evolve in time for 6~=30000 in what appeared to be
an aperiodic trajectory. The lack of temporal periodicity
is demonstrated by the contours of the interface height
shown in Fig. 6. Although the dynamics appears exceed-
ingly complicated, the local behavior of the interface is
characterized by only a few types of generic behavior. At
short times the heights of the two tusks in the initial state
begin to oscillate out of phase with one another. These
oscillations increase in amplitude until tip splitting of one
cell occurs and a small cell moves laterally into the neigh-
boring groove and is dissolved. This sequence is repeated
throughout the simulation with both cells showing tip
splitting, cell migration, and dissolution, and is qualita-
tively similar to experimental observations discussed in
Sec. I.

Simulations for P =0.3930 exhibited dynamics with tip
splitting for two distinctly different initial conditions. In
the first, the initial condition was the same as the one de-
scribed for the simulation with P=0.3920. The results
for the calculation with P =0.3930 are shown in Fig. 7(a).
After an initial transient of approximately hv =2000, the
tip of the cell with its center at x =0.5 splits and both
cells persist at the expense of the cell with center at
x =1.5. As a result, the centers of the cells are shifted
approximately Ax =0.5, or one half of a cellular wave-
length. The newly developed cells are almost stable, ex-
cept for slight amplitude oscillations, which grow in mag-
nitude for 6~=2000 until tip splitting occurs again and
the cycle is repeated.

The same behavior, amplitude oscillation, followed by
tip splitting and cell death also was observed in a simula-
tion for P =0.3930 using the solution from the simulation
with P=0.3920 at ~=5000 as an initial condition. The
contours of interface amplitude computed in this simula-
tion are shown in Fig. 7(b). The periodic dynatnics of the
interface is clearest from Fig. 8, where the arc length

2.0
I I l

/
I l I I 1 I

I I

I 1
/

I I l
/

I I 1
J

I I I
/

1 I4

1.5

1.0

0.5

0.0
I I I ~ I I ~ I I E ~ ~ I I ~ ~ I ~ ~ I I

0 4 8 12 16 20

Time 10

FICx. 7. Contours of interface amplitude computed in simula-
tions for P=0.3930 and I =2k,, and I.=2k,, for two different
initial conditions: the initial states are (a) the time-periodic
state described in BB for P=0.3932 and reflective boundary
conditions and (b) the solution from the simulation with
P =0.3920 at r=5000.

I I I I I I ~ I I I ~ I I I ~ I I I I I I0
0 4 8 12 16 20

Time 10

FICx. 8. Plot of the normalized arc length S=S(r) along the
interface for the simulation described in Fig. 7(b).
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along the interface S=S(r) normalized with the value
for the planar state is plotted; see BB for a precise
definition of S. In this projection the oscillation appears
to have intermittent or bursting character.

Another standing-wave state was obtained for
P =0.3931 using a new traveling wave as the initial con-
dition, as described in the following subsection.

2. Traveling-wave states

0.006

U o.oo4

'e
Q 0.003

0 1A,TW traveling wave
0 2A, ,TW traveling wave

First, simulations with dimensionless growth rates in
the range 0.3932 P 0.3942 were carried out to exam-
ine whether the traveling-wave state 1A., TW found for
L =I,, is stable for L =2k, The traveling wave solutions
for L =k, repeated twice in the x direction were used as
initial conditions for the various values of the growth
rates. These simulations verified that the 1k, TW state
exists for 0.3932~P ~0.3942 in the L =2k,, domain, as
shown in Figs. 9(a) and 10.

Trying a different initial condition revealed a second
family of traveling solutions, shown in Figs. 9(b) and 10.
The initial condition used was the steady-state solution of
two cells with wavelength A,, computed at P=0.3920.
After an initial transient of h~= 1500 the interface settled
into two tusk-shaped cells that pointed to and traveled la-
terally in the negative x direction at a dimensionless
speed of V, "-"1.0X10 (0.01 pm/s) or two orders of
magnitude slower than the dimensionless growth rate
P =0.3935. The contours of the interface amplitude for
this simulation are shown in Fig. 11. Although the trav-
eling wave appears to move at constant velocity after the

4.02

4.01

4.00

3.99

~o0.002

0.001
0.3930

k I I I I I I L

0.3935 0.3940

Dimensionless Growth Rate P

FIG. 10. Traveling-wave states for L =2k,

initial transient (r) 1500), there are subtle changes in the
wave shape at longer times. For times between
2000 (~(4200, the interface is composed of two, almost
identical tusk-shaped cells. However, at longer times
there is a shift to a pair of cells in which only one is tusk-
like and the other is a slightly distorted ce11 with wave-
length slightly less than A,, as shown in Fig. 9(b); we refer
to this traveling-wave state as the 2A,, TW state because
its spatial period is 2A, With the result of this simula-
tion as the initial condition simulations were performed
for dimensionless growth rates of 0.3931, 0.3933, 0.3935,
0.3937, 0.3939, and 0.3940, as shown in Fig. 10. The 2A,,
TW state existed for dim ensionless growth rates
0.3933~P ~0.3940. For P=0.3942, the 2A,, TW state
became unstable and the interface evolved to the 1A., TW
state after approximately 4000 time units. On the other
hand, for P=0.3931, the 2A, , TW state ceased to exist
and periodic dynamics resulted involving tip splitting and

3.98

3.97
0.0

I

0.5
I

1.0
I

1.5 2.0

X
1.5

4.02

4.01

4.00

3.99
0.5

3.98

3.97
0.0

I

0.5
I

1.0

X

I

1.5 2.0

0.0
I a I ~ I I I I I

0 2 4 6 8 10

Time l. 0

FIG. 9. Traveling-wave state at P =0.3935, (a) 1A,, TW fami-
ly and (b) 2k, TW family.

FIG. 11. Contours of interface amplitude for P =0.3935 and
I.=2k, .
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TABLE III. Stable steady-state solutions for L =4k, .

Dimensionless
growth rate P

0.393 215

0.393 300

0.393 400

0.393 500
0.394000

Initial condition

(a) Outside facing tusks

(b) Solution for P=0.393215
and ~=3X10 for L =2k,,
Solution for P=0.393215
and ~=3X10 for L =2k,,
Solution for P=0.393215
and ~= 3 X 10 for L =2k,,
Outside facing tusks

Solution for P =0.393 215
and ~=3X10 for L =2k,

Approximate wavelength
of steady-state cells

4X,

5 ~c

5 ~c

4X,

3

cell annihilation to a neighboring grove, as shown in Fig.
12.

C. The L =4k,, sample

Transient simulations with L =4k,, revealed both
steady-state and traveling-wave solutions for growth rates
in the range 0.393 215 ~ P &0.395 500. Simulations lead-
ing to both types of solutions involved transients of
he= 1000.

1. Multiple steady-state cells

The transient simulations that lead to steady-state cel-
lular forms are summarized in Table III according to the
value of the growth rate, the initial condition and the ap-
parent wavelength of the steady-state cells. Two different
initial conditions were used with P=0.293215 to corn-
pute steady-state cells with wavelength 4A, The first

was made by using two pairs of outer facing tusks
reflected about x=2, the midpoint of the sample. At
short times, ~(3000, the heights of the cells being to os-

ciliate and tip splitting occurs. For long times, ~& 8000
(corresponding to 24 h of growth), five cells persisted, the
oscillations in cell amplitude decayed and a stable steady
state is reached. This transient is shown by the contours
of interface height in Fig. 13 and is very similar to a simi-
lar one observed in the same size sample and reflective
boundary conditions in BB.

The second initial condition for P=0.293215 was
made by reflecting about x =2.0 the final state
(r=3 X 10 ) for the calculation with L =2k, , at the same
growth rate. The interfacial dynamics observed with this
initial state is similar to the evolution described above, al-
though the length of time needed to make the transition
to five cells in the sample is somewhat longer. This same
initial condition was used in simulations with dimension-
less growth rates of 0.393 30, 0.393 40, and 0.3940, as list-
ed in Table III. As described below, these calculations
lead to different steady-state solutions and to traveling
waves.

The simulations with P=0.39330 and P=0.39340
both returned to steady-state forms with cellular wave-
lengths of 4A,, after several thousand time units; the con-

2.0 4 I
1 I

[
I I I I

1.5

0.5

0 2 4 6 8 10 12 14 16

Time 10

I i I i s I

Time 10

I s s s

10 15

FIG. 12. Contours of interface amplitude for P =0.3931 and
L =2k, Only contours corresponding to the portion of the in-
terface above the average height are shown.

FIG. 13. Contours of interface amplitude for P=0.393215
and L =4k,, started with the second boundary condition listed
in Table III.
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tours of interface amplitude for these simulations are
shown in Fig. 14. The simulation for the highest growth
rate, P =0.3940, evolved much more quickly to a stable
steady-state of cells with wavelength —,'A, The rolls of tip
splitting and lateral motion of the cells are obvious from
the contours of interface amplitude shown in Fig. 15.

2. Traveling-wave states

0

Time 10

10

I '
I l

'
I

'
I

'
I

) 0

0
a

n

4 6

Time 10

I

8 10

FIG. 14. Evolution of interface amplitude with time for
simulations listed in Table III with L =4k, and growth rates of
(a) P=0.3933 and (b) P=0.3934.

Both stationary and traveling-wave states were
identified in simulations for P =0.393 50. Starting a cal-
culation with two pairs of outside facing tusks lead to a
long transient involving tip splitting, lateral cell motion,
and cell death until the front stabilized with five cells in
the sample, I = 4k, . Traveling-wave states were found
using an initial condition composed for four tusk shapes
a11 oriented in the negative x direction. The evolution of
the interface amplitude for this simulation is shown in
Fig. 16. After only b ~= 1000 the front is composed of al-
ternating tusk-shaped and more rounded cells, similar to
those seen in the traveling wave solutions for L =2k, and
shown in Fig. 17(b). The initial interface shape and the
traveling waves that result at ~=1000 are shown in Fig.
17.

The effect of increasing the growth rate on the form
and lateral velocity of the traveling-wave forms was stud-
ied in a simulation started with P =0.3935 and where P
was increased by 5X10 every 5000 time units. The
simulation was initiated with the mirror image of the
cells shown in Fig. 17(a), so that the cell travels in the
direction of positive x. Increasing the growth rate leads
to deep cells and to a faster rate of lateral migration. The
increasing deformation of the cells is visible from the evo-
lution of the scaled arc length of the interface with time,
which is shown as Fig. 18. Also, the decay of oscilla-
tions of the interface shape caused by the step increase in
the growth rate is obvious. As in the simulation de-

1 I I I
J

I I I I
)

I I I 1 [

4 I

0 I

0

Time 10
FIG. 15. Contours of interface amplitude for P=0.3940 and

L =4k,, started with the initial condition listed in Table III.

0 I I I I I I I I I I I I

5 10 15

Time 10

FICx. 16. Contours of interface amplitude for traveling-wave
states computed for L =4k, and P=0.3935. Only solid con-
tours representing the portion of the interface with elevations
above the mean are shown. Sample interface shapes are shown
in Fig. 16.
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4.04

4.00

0.3935
0

4
1 2 3 4

3.98

3.96

0.3940
10

4.04

0.3945

4.00

3.98 0.3950

3.96

FIG. 17. Sample interface shapes for traveling-wave forms
portrayed in Fig. 15 for P=0.3935; (a) ~=0 and (b) ~=1000.

0.3955
20 21

Time 10

24 25

scribed above for P=0.3935, the interface evolved from
four identical tusk-shaped cells to tusks alternated with
more rounded forms. This feature of the front persisted
until P =0.3945, where in the first 1000 time units of the
simulation at this growth rate the front evolved to four
identical, tusk-shaped cells. This form continued for the
remainder of the calculations at higher growth rates.

The length of the transient needed to reach the new
traveling-wave solution after a step in growth rate in-
creased with increasing P, until at P=0.3955, the tran-
sient consumed the entire increment of 5000 time units.
These oscillations barely damped out, indicating the pres-
ence of a pair of complex conjugate eigenvalues with a
small negative real part to the linear stability problem for
the traveling waves. Further increases in the growth rate

FIG. 19. Contours of interface amplitude computed for the
simulation shown in Fig. 17. Only solid contours representing
the portion of the interface with elevations above the mean are
shown.

may uncover the mode of instability of these forms. Un-
fortunately, these calculations could not be pursued here
because of the extreme deformation of the interface that
results.

The evolution of the contours of the interface ampli-
tude with increasing growth rate is shown in Fig. 19. The
increasing slant of the cells corresponds to their increas-
ing translational speed. This dimensionless speed is plot-
ted as a function of the growth rate in Fig. 20 for simula-
tions leading to fronts of like cells and to the alternating

I I I I
/

I I I I
/

I I I I
f

I3

O

6
(D
N

~ W

(Q

20
0
Q

-o

0

40
I I ~ I ~ I I I I I I I I ~ I I ~ ~ ~ I I ~ ~ ~ I I

0 5 10 15 20 25

Time 10
FIG. 18. Evolution of the interfacial arc length as a function

of time for simulation with increasing growth rate every 5000
time units. Contours of the interface amplitude are shown in
Fig. 13.

I I I ~ I I I I I I I I ~ ~ I I ~ ~ ~ ~ I0
0.393 0.394 0.394 0.395 0.395

Dimensionless Growth Rate P

FIG. 20. Dependence of dimensionless lateral speed of
traveling-wave state on growth rate computed with L =41,.
Results are shown for traveling waves composed of four nearly
identical tusklike cells (circles) and for alternating tusklike and
more rounded cells (squares).
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forms described above. The translation rate is approxi-
mately linear with P, as expected from the theory in Refs.
15 and 16.

O & 0 Q C3 0 0 0 0 a 0 0 0 8 0 '. D. The L =8k,, sample
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FIG. 21. Contours of interface amplitude for simulations
with L =8k,, and growth rates of (a) 0.3930, (b) 0.3935, and (c)
0.3940. Only solid contours representing the portion of the in-

terface with elevations above the mean are shown.

The complicated dynamics and long transients seen in
the simulations with L =4k„compared with the much
simpler results in the smaller samples, suggest that simu-
lations with even larger samples will be slower to reach
stationary or traveling-wave states. We have attempted
four calculations in a sample with L =8k, to test this hy-
pothesis. Unfortunately, the large computational expense
of these simulations makes these results far from
comprehensive and only trends are suggested of the effect
of increasing sample size on the simulations.

Three simulations are discussed here for growth rates
of 0.3930, 0.3935, and 0.3940. The simulation with
P=0.3935 was initiated with the same initial condition
described above for the simulation with L =4k, and
P=0.3935, but reflected about x =4.0 to create a solu-
tion for the larger sample. The contours of the interface
amplitude for this simulation are shown as Fig. 21(b). Al-
though a steady-state interface shape with ten cells was
reached, corresponding to a wavelength of 4k„ this did
not occur until over 2X10 time units. In dimensional
terms, the transient lasted three days and required one
meter of solidification. It is interesting that ten cells
formed after only 6~=5000, but that the first cells were
unstable to amplitude oscillations that lead to tip split-
ting of several of the cells, the death of others and to an
apparent phase shift in the front at 5~=10000. This
shifting occurred a second time at 6~=24000 before the
steady-state forms results. The growth of the tip oscilla-
tions and the abrupt transition to cells with a slight shift
in phase is portrayed in Fig. 22(b) by the plot of the inter-
facial arc length as a function of time. Clearly, there are
only small differences in cellular fronts that are stable and
those that are unstable to amplitude oscillations and tip
splitting.

Simulations at P=0.3030 and P=0.3940 were per-
formed using the solution at P=0.3935 and ~=5000 as
the initial state. Decreasing the growth rate to
P=0.3930 damps the amplitude oscillations of the cells
and prevents the tip splitting instability; these trends are
shown in Figs. 21(a) and 22(a) for the contours of inter-
face amplitude and the arc length, respectively. After an
initial transient (hr=5000) in which one of the cells is

lost, the nine remaining cells begin amplitude oscillations
that are essentially periodic. It is interesting to note that
the amplitude oscillations of neighboring cells are out of
phase. This oscillation pattern is only possible because of
the odd number of cells in the sample; by comparison the
amplitude oscillations computed for P =0.3935 [see Fig.
21(b)] are approximately in phase. The magnitudes of the
oscillations are not uniform along the front, but are
strongest for the pair of cells with centers at x =6.4 and
7.5. The amplitude of the deformation decreases with
distance along the front from these cells; the cell with
center x =3.0 shows the smallest perturbations.

The results of the simulation with P=0.3940 are de-
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picted in Figs. 21(c) and 22(c) and show an apparently
aperiodic trajectory. The interface contours in Fig. 21(c)
reveal many instances of cell splitting and lateral cell
motion; however, the perturbations in interface ampli-
tude do not continue across the entire sample, as is true
for traveling wave solutions, but instead decay and even-
tually disappear. The decay length for these disturbances
seems to be in the interval 5 ~ hx ~ 8.

IV. DISCUSSION

This numerical study was undertaken to understand
the effect on the dynamics of cellular fronts with large as-
pect ratio, modeled here by a section of a spatially
periodic front, instead of the reQectively symmetric con-

ditions used by BB. The simulations demonstrate two
essential characteristics. First, new traveling-wave forms
are admissible in the context of an in6nite array of
periodic cells. This is not surprising in the context of the
solution of nonlinear transport problems with periodic
boundary conditions, e.g., see Ref. 9, and has been re-
cently discussed in the context of directional
solidi6cation by others. ' Second, states that appear to
be spatially and temporally chaotic also are observed
when large collections (up to eight) of cells are con-
sidered.

Traveling-wave solutions were found in computations
with L =A,„L=2k,„and L =4k,, for a range of growth
rate P. We expect that similar states exist in larger com-
putational domains, e.g. , L =8k,„but that these states
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FIG. 22. Evolution of lnterfaclal arc length with time for slmulatlons with L =8k, and growth rates of (a) 03930. (b) 0-3935 and

(c) 0.3940.
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may become unstable to perturbations that lead to varia-
tions in the ce11 amplitude and lateral speed. More calcu-
lations may lead to the solitonlike cells that move
through the front, as described by Simon, Bechhoefer,
and Libchaber. "

The presence of the traveling-wave states in the calcu-
lations with periodic boundaries may explain the complex
dynamics observed with reAectively symmetric conditions
for 1.=2k,, in BB. When placed in a system with
rejective boundary conditions, the traveling waves in the
cellular front are rejected backwards and collide to pro-
duce nonlinear interactions. This scenario for the quali-
tative difference between the dynamics in small systems
with rejective and periodic boundaries was first estab-
lished by Knobloch and colleagues in studies of time-
periodic thermosolutal convection with both types of
boundary conditions. '

The simulations reported here confirm the complex dy-
namics predicted in BB for small-sca1e solidification sys-
tems. As the size of the system is increased so is the
variety of transient behavior observed, including ap-
proach to stable steady solutions, stationary time-
periodic states, traveling cellular forms, and spatiotem-
porally chaotic interfaces. However complicated, three
interfacial processes seem to be responsible for all the dy-
namics on the local scale; amplitude oscillation, tip split-
ting, and cell death or dissolution. The latter two mecha-
nisms have been observed in several experiments, ' '

but amplitude oscillations have not. A possible explana-
tion for this discrepancy is that amplitude oscillations are
seen in the simulations only for conditions where a
steady-state solution is slightly unstable. This criterion is
not typically met in experiments where the large aspect
ratios of the cells (depth to wavelength) indicate that the
growth rate is substantially above the critical value.

The simulations with periodic boundary conditions
substantiate the conclusion in BB that cells with the criti-
cal wavelength A,, are essentially unobservable experi-
mentally. Steady-state calculations in BB predicted that
cells with this wavelength were observable only for

b, V=0.03 @mls above the critical value, where a tip
splitting instabi1ity reduced the wavelength to A,, /2.
Simulations with periodic boundary conditions gave
stable cells with wavelength A,, only up to P =0.3020, or
0.1S% above critical. Beyond this value new steady-state
solutions or time-dependent trajectories lead to cellular
structures with lower apparent wavelengths. The wave-

length decreased with increasing P. For example, simula-
tions with I.=SR,, predicted steady-state forms with

wavelengths or —,'A, , for P =0.3930, —', k, for P =0.3935,
and time-dependent interface with average wavelength of
—', A,, for P =0.3940. The trend of decreasing wavelength

with increasing P agrees with simulations in BB and with
experimental data of Eshelman, Seetharaman, and
Trivedi. Unfortunately, a qualitative comparison is
not feasible because the simulations do not yet cover a
wide enough range of growth rate.

Each of the basic dynamica1 mechanisms —amplitude
oscillations, cell splitting, and cell death —occur on rela-
tively long time scales of O(10 ) difFusion time units, as
scaled with the wavelength of the ce11. We believe that
the time scale for these events and the resulting long time
scale dynamics of the entire cellular front is a result of
the basic mechanism for resonant interactions of neigh-
boring cells that leads to codimension-2 bifurcation be-
havior and time-periodic dynamics. Analysis for simple
models for nonlinear diffusive processes show that the
temporal period of these solutions scales as a power of
the inverse distance between the critical points for the in-
teracting modes. Hence, the flatness of the neutral sta-
bility curve is responsible for the very slow dynamics in
the system.

ACKNO%I, EDGMKNTS

This research was supported by the Microgravity Sci-
ences and Applications Program of the US National
Aeronautics and Space Administration, by the National
Science Foundation through the Grant No. MSM-
8710124 and by a grant of computer time at the Pitts-
burgh National Supercomputing Center.

'W. W. Mullins and R. F. Sekerka, J. Appl. Phys. 34, 444
(1964).

~L. H. Ungar and R. A. Brown, Phys. Rev. B 29, 1367 (1984).
3N. Ramprasad, M. J. Bennett, and R. A. Brown, Phys. Rev. B

38, 583 (1988).
4R. A. Brown, N. Ramprasad, and M. J. Bennett, in Supercom-

puter Research in Chemistry and Chemical Engineering, ACS
Symposium Series, edited by D. G. Truhlar and K. F. Jensen
(ACS, Washington, 1987), pp. 295—333.

5M. J. Bennett and R. A. Brown, Phys. Rev. 8 39, 11 705 (1989).
6T. C. I ee, Ph.D. thesis, Massachusetts Institute of Technology,

1991.
7P. Haug, Phys. Rev. A 35, 2733 (1987).
8H. S. Greenside, M. C. Cross, and W. M. Coughan, Jr., Phys.

Rev. Lett. 60, 2269 (1988).
9Y. Kuramoto, Prog. Theor. Phys. 71, 1182 (1984).
oM. Rabaud, S. Michalland, and Y. Couder, Phys. Rev. Lett.

64, 184 (1990).

A. J. Simon, J. Bechhoefer, and A. Libchaber, Phys. Rev.
Lett. 61, 2574 (1988).

'2P. E. Cladis, J. T. Gleason, and P. L. Finn, in Defects, Pat
terns, and Instabilities, edited by D. Walgref (Kuwer Academ-

ic, New York, 1990)
' P. E. Cladis, J.T. Gleason, and P. L. Finn (unpublished).

V. Hakim, M. Rabaud, H. Thorn, and Y. Couder (unpub-

lished).
'5P. Coullet, R. E. Goldstein, and G. H. Gunaratne, Phys. Rev.

Lett. 63, 1954 (1989).
R. E. Goldstein, G. H. Gunaratne, L. Gil, and P. Coullet (un-

published) ~

M. R. E. Proctor and C. A. Jones, J. Fluid Mech. 188, 301
(1988).

~8H. Levine and W.-J. Rappel, Phys. Rev. A 42, 7475 (1990).
' L. H. Ungar, N. Rarnprasad, and R. A. Brown, J. Sci. Com-

put. 3, 77 (1988).
M. J. Bennett, Ph.D. thesis, Massachussetts Institute of Tech-



45 NONLINEAR DYNAMICS IN PERIODICALLY REPEATED SETS. . . 9575

nology, 1990.
D. R. Moore, J. Toomre, E. Knobloch, and N. O. %'ejss, Na-
ture (London) 303, 663 {1983).
E. Knobloch, D. R. Moore, J. Toomre, and N. O. Weiss, J.
Fluid Mech. 166, 409 (1986).

A. E. Deane, E. Knobloch, and J. Toomre, Phys. Rev. A 37,
1817 (1988).

~M. A. Eshelman, U. Seetharaman, and R. Trivedi, Acta
Metall. 36, 1165 (1988).
K. Tsiveriotis and R. A. Brown {unpublished).


