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Dependence of T, on normal and magnetic impurities in the hole mechanism of superconductivity
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The inhuence of impurities on the superconducting transition temperature including effects of the
finite bandwidth is investigated. The attractive Hubbard model is treated first, where it is found that
normal impurities are pair breaking for narrow bands. Nonetheless, magnetic impurities are almost al-

ways significantly more pair breaking. Then we investigate a recently proposed model for superconduc-
tivity in the high-T, oxides, the hole mechanism. It is found that for the relevant parameter regime of
the high-T, oxides, normal and magnetic impurities are equally pair breaking. This behavior is in quali-
tative agreement with transition-metal-doping experiments.

I. INTRODUCTION

Since the discovery of the high-T, oxides several kinds
of substitution experiments have been attempted. These
include rare-earth substitutions (e.g. , Eu for Y in
YBa2Cu307 „), doping substitutions (e.g. , Sr for La in
La2 Sr Cu04), and transition-metal substitutions (e.g.,
Ni or Zn for Cu in either of the above compounds). The
first kind of substitution has almost no effect on T„
presumably because the rare-earth site is well removed
from the hole-conduction paths. The case of Pr for Y
remains an intriguing exception. Superconductivity is ac-
tually achieved by the second category of substitution. In
the La2 ~Sr~Cu04 compounds, T, vs y has the shape of
an inverted parabola, ' with maximum T, near

y -0.15.
The third kind of substitution presumably creates

scattering centers for the relevant conduction holes
without increasing or depleting the hole concentration.
It is found experimentally that T, is significantly reduced
by both ' normal — (nonmagnetic) and by magnetic-ion
substitutions. Moreover the T, reduction is approxi-
mately the same in both cases. The conventional theory
of superconductivity maintains that normal impurities
have little or no effect on T„whereas magnetic impuri-
ties quickly suppress T, . It is therefore important to try
to understand this behavior in the context of different
theoretical proposals for high T, .

At the same time it is important to realize that the
aforementioned "conventional" behavior of T, with
respect to impurity doping is a weak-coupling result. As
we shall see, removing this assumption alters the picture
significantly. Normal impurities become pair breaking,
but never to the extent that magnetic impurities are.
These results will be outlined in Sec. III, after the neces-
sary theoretical formalism has been introduced in Sec. II.
In Sec. IV the dependence of T, on impurities is dis-

I

cussed in the context of the hole mechanism of super-
conductivity. Many of the implications of this theory
have already been presented in Ref. 9. T, is driven by a
term in the Hamiltonian that modulates the hopping of
electrons due to the presence of other electrons in the vi-
cinity. In a single-band picture, T, is nonzero only when
the chemical potential lies in a regime where the hole pic-
ture is more appropriate —hence the name "hole mecha-
nism. " In the remainder of this paper we therefore adopt
the hole representation. Similar ideas have been dis-
cussed recently by other authors as well. ' ' One im-
portant result is that the effective potential between two
holes is momentum dependent, through the hole kinetic
energy. This in turn leads to a pairing function, 6k,
which is also dependent on the hole kinetic energy:

k 0 Dy2 I

Since the pairing potential between two quasiparticles is
significant throughout the Brillouin zone, and not just at
the Fermi surface, Anderson's argument no longer holds
and one expects normal impurities to affect T, . Indeed, a
similar momentum dependence in the pairing function is
obtained in the mean-field treatment of the resonating-
valence-bond theory. ' ' There it has been noted' that
normal impurities have a pair-breaking effect, analogous
to that of magnetic impurities. We find this to be the
case here, and indeed, over a wide parameter range, we
find that normal and magnetic impurities are equally pair
breaking. Finally, in Sec. V, we conclude with a sum-

mary.

II. BCS EQUATIONS

Using the reduced hole mechanism Hamiltonian previ-
ously defined in Ref. 9, and following the treatment of Al-
len and Mitrovic, ' we obtain the following equations:

t+(k, k') Z(k', i co )

&(p) co Z (k', ice )+ [ Ekp+y(k ice )',] +P (k', iso )
(2a)
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P(k, iso ) =—

t+ (k, k'} s& .—p+y(k ',tco )

N(p) co' Z'(k', i co )+ [E„. p—+y(k', i co )] +P (k', i~ )

1 P(k', iso )

NP g ~ co Z. (k', ia) )+. [sq. p—+y(k', ico .)] +P (k', iso .)

(k, k') P(k', ico )

N (p) co' Z'(k', iso )+ [sq p—+y(k', i co ) ]~+/'(k', ico )

(2b)

(2c)

Here, Z and y are contributions to the self-energy due to the impurities, and P is the generalized pairing function.

N(p) is the density of states at the chemical potential and t+(k, k')= tz—(k, k')+t~(k, k'), where

t~(k, k') =nN
~
(k~ T~~k') N(p),

t~(k, k')=n&&(&+1)I(kITplk'&I'N(p) .

(3a)

(3b)

In Eqs. (3) the scattering potentials have been replaced by their T matrices. The normal (magnetic) impurity concentra-
tion is given by nN (n~), and S is the magnitude of the impurity spin. Eqs. (2a) —(2c) need to be supplemented with the
occupancy condition for holes:

2 sk p +g( k, l&~ }n=l—
NP g co Z(k. ', ia) )+[sq p+y—(k', ice )] +P (k', iso )

(4)

Note that Hartree-Fock terms have been absorbed into
the chemical potential and quasiparticle energy c&. In
particular the mass enhancement as a function of doping
is assumed to be included in the hopping matrix element
t. This results in the replacement'

4k 40 D/2 41 (7d)

and D is the bandwidth. To simplify the numerical com-
putation, we adopt a constant-density-of-states model:

t~t+nht, 1N(s)= —,
D '

D D
2 2

'

so that the effective mass of holes is larger in more hole-
like materials. In this paper, the on-site Coulomb repul-
sion U, as well as the off-diagonal Coulomb matrix ele-
ment b,t=at, is included in the Coulomb potential be-
tween two holes:

which allows all momentum sums to be performed
analytically. The resulting equations are tedious and are
recorded in the Appendix. The T, equation [Eq. (A7) in
the Appendix] is

U +2+( sg + sQ' ) (6)
1+UTO( T, ) —2KT) ( T, )+K [T ) ( T, )

—T (T0, )T~( T, }]

Further-neighbor interactions can also be included in Eq.
(6), but with little qualitative effect on the results. The at-
tractive Hubbard model can be obtained by setting a—=0
and U negative.

In Eqs. (3) the quantities t;(k, k') (i =N, P) are defined
to include a conduction density of states, which is can-
celed upon insertion into Eqs. (2). This has been done to
conform to standard notation, although, as will be seen
below, such a practice can be very misleading. To
proceed further we assume that the momentum depen-
dence of the scattering matrix elements, t, (k, k').
(i =N, P), can be ignored. One is then left with scatter-
ing probabilities, t; —= I/2m'; (i =N, P), .where r; is the
lifetime due to impurity of type i. The momentum depen-
dence of the unknown functions Z, g, and P is then con-
siderably simplified:

1+UZ(n)—
'2

aD
2

I'(n)Z (n) =0, (10)

=o, (9)
where E—=aD and the T& are defined in the Appendix.
Some of the simple limiting cases are also derived there.
In particular, in the absence of impurities, Eq. (9) be-
cornes the T, equation considered in previous work, with
T&~I& of Ref. 9(b). In the general case. Eq. (9) must be
solved numerically.

As already mentioned, the presence of a modulated
hopping term alters the electronic band structure [Eq.
(5)]. We then expect that the strong-coupling regime
(T, ~D) may be appropriate in this model. In this case,
assuming also that Dtz Dtz « T, , Eq. (9) can be
simplified:

Z(k, ice ) =Z

y(k, ice ) =y

P(k, ico )=Pz+g(m),
where

(7a)

(7b)

(7c)
Z(n)=

t+D+t D L~(p) +
(2m T, ) vr 2p

where
t+D Lz(P) n —1&(n)= +

(2~T, )' ~ 2p
( 1 la)

(1 lb)
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and Eq. (4) becomes

n —1 1 Li(S)
2p 277T 7T

t+D
(2nT, }.

3L2(p) —4 p
2&T.

1.0 I I
I

I I I I

In Eqs. (1 la) —(1 lc), the L s are defined

(1 lc)

(12) 0.0
0.0

l I I I I

0.5 1.0
where p =

p, /2m—.T, . The L s can be expressed in terms of
hyperbolic tangents and secants. Then Eq. (11c),for ex-
ample, becomes

t+D
n —1= 1 — n (2—n) tanhnP,

4T
(13)

which gives p as a function of hole concentration n.
Analytical solutions to Eq. (11) will also be presented in
the following sections.

III. NEGATIVE-U MODEL

The weak-coupling limit of this equation has been de-
rived in the Appendix. In that limit, as is well known,
normal impurities have no effect on T„whereas magnetic
impurities are pair breaking, and T, follows the
Abrikosov-Gorkov curve as a function of tp. In the op-
posite limit (strong coupling), the situation is much
different, and Eq. (10) becomes

1=
~
U~Z(n), (15)

where Z(n) is given by Eq. (11b), and, to lowest order in

t+D we find

Lz(n)= [f(n) —n(2 —n)],f (n)
4 (1 n)— (16)

where f (n)=2(1 —n)/ln[(2 —n)/n]. Note that
lim„&f (n)=1 and lim„&L2(n)=n. /6. From Eq. (16)
we obtain

n —1 t+++t — f (n)Z(n)= + [f(n) n(2 —n—)] .
2p 32T, (1—n)

(17)
Let us denote the solution in the absence of impurities
with a subscript "0." Then p =go+ 5p and

T, =T,o+5T„and we obtain from Eqs. (15), (17), and
(13}

T,o
'

iUi T,o
(18)

where gz(n)=[1 —f (n)]/(I n), and gp(n)=1. —Since

f (n) ~ 1 for all n, both normal and magnetic impurities

In the negative-U model (a =0), Eq. (9) is considerably
simplified:

(14)

FIG. 1. The universal function g&(n) vs occupation n. gN(n)
describes the reduction in T, caused by normal impurities rela-
tive to magnetic ones within the negative-U model, in the
strong-coupling limit. For most of the occupation regime, mag-
netic impurities are 2 —3 times more effective pair breakers. In
the extreme dilute limit g&(n) approaches unity logarithmically.

are pair breaking in the strong-coupling limit. In partic-
ular, lim„&gz(n)= —,', so that at half-filling, T, is re-

duced by normal impurities —,
' as effectively as by magnet-

ic impurities. In the dilute limit (n~0) both kinds of
impurities become equally effective. In Fig. 1 we show
gz(n) vs n, which illustrates the pair-breaking effect of
normal impurities as a function of occupation in the
strong-coupling limit. The effect from both types of im-
purities becomes comparable only in the extreme dilute
limit. In Fig. 2 we show numerical results of T, /T, o vs

t, /T, o for both no.rmal and magnetic impurities, for vari-
ous bandwidths. We have used D =5.0, 0.1, and 0.02 eV,
and

~
U~ has been chosen in each case to give T,o= 100 K.

In Fig. 2(a) the occupation has been fixed at half-filling,
whereas in Fig. 2(b), n =0.1. It is apparent that the
strong-coupling limit [Eq. (18)] is achieved only when the
bandwidth becomes comparable to T,o. Otherwise, mag-
netic impurities are far more detrimental to T, than Eq.
(18) might indicate. In particular, in Fig. 2(a), the
Abrikosov-Gorkov curve is reproduced for D =5.0 eV,
with a critical scattering strength, tp =0.14T,o.

In Fig. 2 we have compared normal and magnetic
pair-breaking effects for a given bandwidth. Comparing
the results for various bandwidths would lead one to con-
clude that a narrower band-width gives rise to less pair
breaking. In order to investigate the dependence on
bandwidth itself, however, it is more appropriate to plot
T, /T, o vs Dt;/T, o. In this way the explicit dependence
on the density of states contained in Eqs. (3a} and (3b) is
removed, and Dt, /T o is an unbiased measure of the im-

purity concentration and/or scattering strength. In Fig.
3 we show results for the dependence of T, on both mag-
netic and normal impurities, for the same three band-
widths plotted with abscissa Dt,. /T, o. It is then clear that
a narrower bandwidth gives rise to increased pair break-
ing. This is expected since considerably more smearing
and therefore lowering of the density of states occurs for
a narrower bandwidth.



95945 N NORMAL AND MAGNETIC. . .DEPENDENCE OF T, ON

of air breaking onis la the full dependence o p
'

Fi . 4, the initial slopebandwidth, we plot in ig.

m; —= ~B(T, /T, )/B(Dt, /T,

1.0
.SeV

D, in the negative-U mo eo el at half
I =, /T. ), hT /T =f(To/D, Dt; co ~

h b k. The solid line represents e
h d hdl h d
k 1' 1' t

ma netic impurities, t e as e

p A
'

ies. In t e wea -co
have no first-order e6'ect. n ig.

h d 1' o ch the ong~n
h d h olid

hat the dashe ine a
with zero slope. OnOn the other an, e

ori in with a nonzero s ope. o1 For low con-proaches the o gm
centration of impurities, express&on

Tc m'2 ~co Dti
(19)

Tc0

f the solid line in Fig. 4 is approximate-
ly n. /2, in agreement with this resut. n

1.0

0.5
I-

~6

0.0
0.0 5.0

Dt/T',
10.0

i =N, P) for the negative-U mod-
h'

el at half filhng, orin for the bandwidt s in ic
'd h rresponds to weak cou-The widest bandwidth corresponT,0=100 K. T e

d t strong coupling. Weling while the narroweowest correspon s o s
rder to remove the~ T for the abscissa in or er o

dd i of [ E.dependence on the cconduction ban ensi y
ond to magnetic (nor-re solid (dashed) lines correspon(3)]. As before so i

d 'dth enhances pair breaking.mal) impurities. A. A smaller bandwi t en a
limit [Eq. (18)] only applies forNote t ahat the strong-coupling limit q.

linear.T +1 where the results are inear.Dt; «

0.0
0.0 0.1 0.2

roach —' and —,'„respec-coupling uni1' it the two curves approac

th t th th
nd Fi . limply.
this section we note a

del both magnetic an no
king in the intermediate- d

1 the BC sou io
not expecte od t be physical in this regime.

l I I I0+3 I I I I
i

I I I I

0.2 magnetlc—

----normal

0.1
~armgeao++ ~zeasraQ

0.0
0.0 0.1

t;/T„
0.2

0.0
0.0 0.2 OA

T„/D

re ratio T, /T«vs t;/T« i =N, P)FIG. 2. Critical temperature r
model for occupations (a) n =1. ang

us bandwidths. Solid as e
) 1 magnetic impuri-i =P (N). In weak coup

'
glin (D)&T«on y m

h curves approachin . In strong coupling, t e curveg.
the behavior indicated y q.b E . (18). In a e

labeled withare iven; in (b) the solid curves are aeach curve are given; rn

h d rve is for bandwidththeir bandmdths. The lowest das e curve i
f r D =0.02 andu ermost curves are orD =0. 1 eV and the two upp

the condition5.0 eV. In each case U is determined from t e c
T,o= 100 K.

of the slope,The absolute value o
m, =(B(, „,„)'~ (i =X, v

f the diagram, strong coupling is op g
d line is for magnetic normThe solid (dashe

h in magnetic impun-urves a proach the origin, mEven though both curve p
d e to the finite slope ofin in weak coupling ue oties are pair breaking

' '
s are not. In strong cou-reas normal impurities are no .the solid line, wherea

—'). Note that these curvesplying mz mz(m ) approaches 4 —, ). ote
lt displayed in Fig. 3, sop ' p1 slo es on the resu ts isp

nl in the linearized regime.these results apply on y in
plies to half filling (n = 1), and is universal.



F. MARSIGLIO

transition is expected to occur via Bose condensation. In
the weak-coupling regime the BCS solution to the
negative-U model is expected to be accurate. Here, mag-
netic impurities are pair breaking and normal impurities
have only a small pair-breaking efFect. In the following
section we discuss a model in which normal impurities
have a strong pair-breaking effect in a regime that is be-
lieved to be physically relevant, and accurately described
by BCS theory.

IV. HOI.K MECHANISM

When E is nonzero, Eqs. (9) and (4) must be iterated
numerically to determine T, as a function of both irnpuri-
ty concentration and hole occupation. Before presenting
numerical results we first review some previous work
and derive the strong-coupling limit analytically in analo-
gy to the negative-U model. T, (n), as determined in this
theory, is nonzero only for a narrow region of hole occu-
pation: 0& n &0.2. The reason for this is that the terms
in the efFective hole potential proportional to a [see Eq.
(6)] are most attractive when the momenta are such that
the eigenvalues lie near the bottom of the hole band. The

linear increase in potential as a function of energy yields
a gap function that is monotonically decreasing (increas-
ing) as a function of energy in the hole (electron) picture
[see Eq. (7d)]. It is important to emphasize that the gap
remains isotropic, that is, it is constant over constant-
energy surfaces. Therefore, within this model, impurities
do not effect T, through the standard mechanism of
washing out anisotropy. The reason we expect impuri-
ties to have a direct inhuence on T, is that Anderson's ar-
gument does not carry through when states we11 away
from the Fermi surface also contribute to the pairing in-
teraction in a nontrivial way. As the electron eigenstates
are readjusted by impurities the pairing interaction
remains rigid across the entire bandwidth; in contrast, in
the usual scenario, the constant pairing potential
"tracks" the Fermi level, leading to no change in T, .

It is useful to obtain analytically the T, correction due
to impurities to lowest order in t,. /T, o, in the strong-
coupling regime. As before, the occupancy condition is
given by Eq. (13). The function Z(n) is given by Eq. (17)
and 1'(n) is given by a similar expression [see Eqs. (11)].
Carrying through the same expansion as before, we ob-
tain

Tc0

D tN+tp 1 f (n) —n (2—n) tN 4' f (n—)—n (2—n) 1f(n) 1 ——
4T~O T~o 2 (1—n}z T~o 2(1—g) 2+( UI4T~O)f (n)

(20)

g(n),

Physically, we expect U && T p always, so that the second
term in Eq. (20) is negligible. This implies that for all
fillings normal impurities are as equaLly pair breaking as
magneticimpurities. For UPSET o we write

oT, I D(t~+tp)
(21)

To 6

( )
3 f( ) 1

f(n) —n(2 —n)
2 2(1 n)— (22}

1.0

A plot of g(n) vs n is shown in Fig 5. In .this model

where

1.0

8I- 0.5
I-

C 05
Ul

0 A I I I I I I I I I I I I I I
~%J

0.0 5.0 10.0
Dt,/T

15.0

0.0
0.0

I I l I I I

0.5 1.0
fl

FIG. 5. The universal function g(n) vs n for the hole mecha-
nism, in the strong-coupling limit.

FIG. 6 T, /T, o vs Dt;/T, o for three different bandwidths,
D =0.5, 0.1, and 0.02 eV. Here, U = 5 eV, n =0.1, and b t has
been chosen to yield T,o=100 K. Solid (dashed) lines denote
magnetic (normal) impurity scattering. As the bandwidth de-
creases, T, suffers a greater reduction for given impurity con-
centration and the effects of magnetic and normal impurity
scattering become the same. The dashed-dotted line indicates
the strong-coupling limit (applicable for small Dt;/T, o). It is
clear that this limit has been achieved for D =0.02 eV.



45 DEPENDENCE OF T, ON NORMAL AND MAGNETIC. . . 961

100.0
TABLE I. Effective bandwidths {in eV) and T,p{n) for vari-

ous hole occupations {see Fig. 7). U=5.0 eV, h, t =0.135 eV,
and t& =0.001 eV.

50.0

0.0 0.1 0.2

0.03
0.06
0.09
0.12
0.15
0.18

D{n)

0.005
0.009
0.013
0.017
0.021
0.025

Tp {K)

97.3
98.1
87.3
69.5
46.6
19.2

T,p/D

0.207
0.116
0.072
0.044
0.024
0.008

the physically relevant occupation regime is 0(n &0.2
(see Ref. 9 and below). Note that, contrary to the result
for the negative-U model, in the strong-coupling limit,
normal impurities are more effective pairbreakers for
larger n. It is worth emphasizing that in this model the

1.0

8
O.6

I-

I «« I0A~lJ
0.0 5.0 10.0

ot,/T„
1.0

8
0.5

io ~ os +weep ~
~ 0 ~ 11%$0010+ i ~

~ ~ ~ I ~ + Og~ y +~ 0 \ y
~ 0 ~ O~~ ~ I~ 0 ~ ~~ 4 0 ~ e ~ ~

4 ~~ ~ eo + ~'~ ~ \ Og
~ g~~

0 ~

'~

t
4

4

0

'~

(b)

FIG. 7. Critical temperature T, vs hole occupation n. Here
U =5 eV, tz =0.001 eV, and ht =0.135. The parameters were
chosen to give a maximum T, = 100 K. The effective bandwidth
changes as a function of occupation, as described in the text and
in Table I.

strong-coupling limit is physically relevant, due to the
hopping renormalization that occurs. '

In order to investigate the effects of the different types
of impurities in the weak- and intermediate-coupling re-
gimes, we have solved the T, equations numerically, us-

ing different bandwidths, as a function of Dt;/T, o. Fig-
ure 6 illustrates the renormalized reduction of T, for
D =0.5, 0.1, and 0.02 eV. Solid (dashed) lines denote
magnetic (nonmagnetic) impurities. In each case we have
used n =0.1 and U =5.0 eV, and ht has been adjusted to
give T,o=100 K. Also included is the strong-coupling
result from Eq. (21), indicated by the dashed-dotted line.
Clearly the strong-coupling result is already achieved for
D =0.02 eV. For weaker-coupling strengths T, is more
effectively reduced by magnetic impurities. %e have also
obtained solutions for U=10 eV again adjusting ht to
give T,o= 100 K. The results are nearly indistinguishable
from the cases shown.

It is also important to examine the influence of impuri-
ties on T, as a function of occupation, for a given set of
parameters. In Fig. 7 we show T, vs n for U=5.0 eV,
ht =0.135 eV, and t„=0.001 eV, where t„ is the hopping
at the bottom (top) of the hole (electron) band. The pa-
rameters have been chosen to give a maximum T, of 100
K at n =0.045, and to approach the strong-coupling lim-
it as n ~0. The T, vs n curve has the familiar maximum
at very low hole filling, as discussed previously. Table I
lists the parameters for representative hole concentra-
tions. In Fig 8we sh. ow plots of T, /T, o vs Dt, !T0 for

100.0

50.0

0.0 ~ « I « « I ~

0.0 5.0 10.0
ot„n'

0.0FIG. 8. T /T p vs Dtp /T p in {a) and Dt~ /T p in {b), for the
last 6ve oeeupations listed in Table I. In both eases the hole oc-
cupation decreases as the curves progress from top to bottom.
At the lowest occupations shown T, /T, p becomes comparable
for both normal and magnetic impurities.

0.0 0.1 0.2

FIG. 9. T, vs n for U =5 eV, tI, =0.03 eV, and ht =0.1875.
The result is similar to that in Fig. 7.
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TABLE II. Effective bandwidths (in eV) and T,o(n) for vari-
ous hole occupations (see Fig. 9). U=5.0 eV, ht =0.1875 eV,
and t& =0.03 eV.

1.0

0.03
0.06
0.09
0.12
0.15
0.18

D(n)

0.285
0.330
0.375
0.420
0.465
0.510

To (K)

97.0
97.9
85.6
64.3
36.3
11.0

T,o/D

0.029
0.026
0.020
0.013
0.007
0.002

0.5

I I I I I ~ I I I I I00

the occupations listed in Table I. In particular, Figs. 8(a)
and 8(b) show the separate effects of magnetic and non-
magnetic impurities, respectively. In both cases the larg-
est occupation is given by the uppermost curve. As occu-
pation decreases, T, /T, o decreases as a function of hole
concentration for given impurity concentration. For
clarity we have omitted the result for n =0.03. For the
lowest occupations, both kinds of impurities initially have
a similar effect on T, . For extremely low occupations (not
shown) the initial slope is given by Eq. (21), and then
there is a very slight reversal of the above trend with hole
concentration as the curves follow the behavior indicated

1.0

0.5

0.0 I I I I I I

0.0 25.0

Dt, /T,',
50.0

1.0

I- 0.5
I-

0.0

t~0 ~

\
'I

1

\

1

4

4
0

+
4'~

(b)

I I I I I

0.0 25.0

Qt„/7„
50.0

FIG. 10. T, /T, o vs Dtp/T, o in (a) and DtN/T, o in (b), for the
hole occupations listed in Table II. At the lowest occupation
there is a nonmonotonic dependence of T, /T, o on hole occupa-
tion in the case of magnetic impurity scattering.

0.0 5.0 10.0

Dt,/T„
15.0

FIG. 11. T, /T, o vs Dtp/T, *o where T,o =—100 K, for the pa-
rameters listed in Table II and the figure caption in Fig. 9.
Magnetic impurities reduce T, more effectively for higher hole
occupations than for low occupations.

by Fig. 5 (less pair breaking for lower hole occupation).
As the occupation is increased there is a crossover to the
weak-coupling limit (see Ref. 20 for a full discussion of
this crossover) and magnetic impurities have a more de-
trimental effect than nonmagnetic ones on T, . Nonethe-
less, normal impurities continue to be pair breaking.

In Figs. 9 and 10 we provide similar results for a
different set of parameters: U =5.0 eV, ht =0.1875 eV,
and t&=0.03 eV. Again, these were chosen to give a
maximum T, of 100 K at n =0.045, but now the theory
is in the weak-coupling regime for the entire hole concen-
tration range. Relevant parameters for various hole oc-
cupations are listed in Table II. In Fig. 9, T, is shown

versus hole occupation. The result is very similar to that
of Fig. 7. In Fig. 10(a) [Fig. 10(b)] we show the effects
due to magnetic (normal) impurities for a range of hole
concentrations. Again, the pair breaking is generally
greater for decreasing hole concentration, since as hole
concentration decreases the bandwidth decreases and the
regime is stronger coupling. For the lowest occupation
shown (n =0.03), however, the trend has reversed itself,
and magnetic impurities are less pair breaking than for
somewhat higher concentrations. This is the same behav-
ior alluded to in Fig. 8.

Fujishita and Sato ' have studied the compound
La2 ~Sr~Cu, „Ni„04 as a function of y and x. Assum-

ing Ni acts as a magnetic pair-breaking impurity, it is in-

teresting to compare our results with experiment. Fujishi-
ta and Sato ' examined the effect of Ni substitution for
compounds with three nominal hole concentrations,

y =0.10, 0.15, and 0.22. They found that, as hole con-
centration increases, the same concentration of Ni is less

pair breaking (see Fig. 5 of Ref. 21). To compare with
our results it is necessary to plot T, /T, p vs Dt /T,*p

where T,*o is some axed temperature. In this way

Dtp/T, *p rejects only the impurity concentration and/or
scattering length. In Fig. 11 we show T, /T, p vs Dtp/T p

for the parameters of Fig. 10 (see Table II). It is clear
that as hole concentration increases, the pair breaking
also increases, in disagreement with the experimental re-
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suit. Similar behavior is found for normal impurities, and
for the strong-coupling case given in Table I.

ized Eqs. 2(a) —(2c) requires the integrals

1 JD/2 [—s/(D/2)]'
D D—/2 g + (e —p+y }z

We have investigated the effects of both normal and

magnetic impurity scattering on the superconducting
transition temperature T, within the theoretical frame-
work of the hole mechanism of superconductivity. Since
the standard BCS treatment assumes an infinite band-
width, we have also investigated the effects of finite band-
width by studying the negative-U model. We have found
that in the strong-coupling limit (D « T, ), both magnet-
ic and normal impurities are pair breaking. Over most of
the possible occupation regime, magnetic impurities are
more effective than normal ones by a factor of 2-3.
However, the regime of the negative-U model over which
this occurs is probably unphysical and inaccurately de-
scribed by BCS theory. In the more physical weak-
coupling regime, normal impurities are not very effective
pair breakers.

The value of T„as determined within the hole mecha-
nism, is expected to be more sensitive to impurities due to
the intrinsic energy dependence of the gap function. Our
calculations have verified that this is so. For weak cou-
pling, there is again a significant discrepancy in pair-
breaking effectiveness between magnetic and normal im-
purities. In intermediate and strong coupling, however,
both impurities cause an equivalent reduction in T„pro-
vided the Hubbard U is large compared to T, . We em-
phasize, once again, that the strong-coupling regime
arises in a very natural way in this theory, since the
effective mass is expected to be very large in the low-
hole-doping regime. Furthermore, the pair dissociation
will remain of the BCS type, ' so that this theory remains
accurate in strong coupling. In light of these results one
is led to interpret the observed reduction in T, as a func-
tion of both normal and magnetic impurity alloying as
evidence in favor of the hole mechanism of superconduc-
tivity. A significant discrepancy with experiment
remains, however. Fujishita and Sato ' find precisely the
opposite behavior as a function of hole concentration (in
La2 Sr Cu, „Ni,04) compared to what we predict in
Fig. 11. We find that the pair breaking due to magnetic
impurities increases as the hole concentration is in-
creased, whereas they find the opposite. Perhaps these
impurities play a more important role than just elastic-
scattering centers. Experiments similar to that of
Fujishita and Sato ' on other high-T, compounds would
be beneficial.
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whereto —=co Z . We find

A(m)
Jo(m) =—

(A 1)

(A2a)

J,(m)=— P &m J B(m)
D/2

(A2b)

and

+(v —x )
B( m}

(A2c)

where

D/2 p+g—
A (m)= —tan

D/2+@
+tan ' (A3a)

and

co +(D/2 @+y )—
B(m)=ln

co +(D/2+p y)— (A3b)

Equations (2a), (2b), and (4} then become, respectively

t0 =to +mt+ A (m) sgnt0

t+
B(m),

(A4a)

(A4b)

2 " B(m)n=1 ——gP, D
(A4c)

D /2 g( m ) +$0
—[s' /( D /2 ) ]p,f(m)=t de

co + (e —p+y )

2 " &J'~, U$0= ——g de' —+a
p &

a/2 D D—/2

(A5a)

X
1((m)+go —[e'/(D/2) ]P,

(Asb)
co +(e' —p+y )

and

Equation (2c) is a little more tedious to handle. Using the
decomposition de6ned in Eqs. (7c) and (7d), we have

APPENDIX

For a constant density of states and a mornentum-
independent scattering matrix, the solution of the linear-

2a " Dn, 4(m)+Co [c,'/(D/2)]P,
de' . (A5c)~'+(e' —V+X }'
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From Eq. (A5a), the explicit solution for 1((m ) is

Dt
1((m)= [MOJO(m)+Q, J,(m}],

1 D—t Jo m
(A6)

tained, taking a=O, U = —
i Ui, p=O (half filling), and

D))T„t+ . Then A (m) —+1, 8(m)~0, g =0, and

cg ~co +m.t+ sgnco . The limit D &)T„t+, must be
taken with care. We have from Eq. (A7)

which can then be substituted into Eqs. (A5b) and (A5c).
All the energy integrations can be performed analytically,
in terms of Ji(m), 1=0,1,2. The resulting T, equation is

1 —2 KT i ( T, ) +UTO ( T, ) +K [T, ( T, )
—T 0( T, ) T 2( T, ) ]

=0, (A7)

where

(A 10)

In order to use Jo(m)=sr/(Dco ), we must also sum to
infinity using a well-defined limiting procedure:

(Al 1)

Jo(m)
To= —gp, 1 —t DJO(m)

(A8a} where iud =
~ U~ /D, and ED =D/2m T, + —,'. Normal im-

purities have dropped out of the T, equation, as is well

known. Now we follow the standard procedure, using

J, (m)
T, =—gP, 1 t DJQ—(m)

(A8b)
DO

,
=2m T, lim

Qi m=i ~mp
(A12)

and

=2" t D
T2 =—g J2(m)+ —J, (m)

1 t DJO m—
(A8c}

TI ~II (A9)

where II are the sums defined by Eq. (11) in Ref. 9(b),
with the same T, equation.

The standard Abrikosov-Gorkov result is also ob-

In practice, the sums occurring in Eqs. (8a)—(8c) are done
numerically up to some large cutoff, while the remaining
portion to infinity is performed analytically using asymp-
totic expansions for the functions involved. Equation
(A7) is iterated to convergence as a function of tempera-
ture in order to find a solution, while at each temperature
Eqs. (A4a) —(A4c) are iterated to determine io, y, and

p, for a given filling.
It is useful to recover some well-known limits from

these equations. With no impurities, y =0, and
co =co, and using Eqs. (A9a) and (Al), one can perform
the Matsubara sum first, leaving behind energy integra-
tions so that one finds

where the added subscript "0" indicates an absence of
impurities. We find

lim P +-D 1 1

D~ oo 27TTcp 2 2

t&

D 27TTc 2 Tc 2 Tc
= limg +—+ —g —+

where f(z) is the digamma function.
»m, „g(z +—,

'
) —lnz, we recover the

Abrikosov-Gorkov expression

Tcp 1 1
ln =1( p, +-

Tc 2 2

(A13)

Since
familiar

(A14)

1=1——
4 wI. T,O

which is equivalent to Eq. (19) in the text.

where p, =tj /T, =1/2~~&T, . For low concentration of
impurities, 1/~z && T„we find

Tc
(A15)

cp

~J. B. Torrance, Y. Tokura, A. I. Nazzal, A. Bezinge, T. C.
Huang, and S. S. P. Parkin, Phys. Rev. Lett. 61, 1127 (1988).

2N. Tanahashi, Y. Iye, T. Tamegai, C. Murayama, N. Mori, S.
Yomo, N. Okazaki, and K. Kitazawa, J. Appl. Phys. 28, L762
(1989)~

H. Takagi, T. Ido, S. Ishibashi, M. Uota, S. Uchida, and Y.
Tokura, Phys. Rev. B 40, 2254 (1989).

4G. Xiao, F. M. Streitz, A. Gavrin, Y. W. Du, and C. L. Chien,
Phys. Rev. B 35, 8782 (1987). More recently, see G. Xiao
et a1., ibid. 42, 8752 (1990); Y. Maeno, T. Tomita, M. Kyo-
goku, S. Awaji, Y. Aoki, K. Moshino, A. Minami, and T.
Fujita, Nature 328, 512 (1987); J. M. Tarascon, P. Barboux,
P. F. Miceli, L. M. Greene, G. W. Hull, M.Eibschutz, and S.
A. Sunshine, Phys. Rev. B 37, 7458 (1988). Many other inves-

tigations have been reported, but these are too numerous to

list here.
Cu nominally has a spin-2 magnetic moment, so that it is not

clear exactly what the magnetic nature of a spin-1 Ni impuri-

ty is vs a spin-zero Zn substitution. The author thanks E. A.
Early for bringing this fact to his attention. Nevertheless in

the remainder of the paper we will proceed calling the Ni-

type substitution "magnetic" and the Zn-type one "nonmag-

netic. "
P. W. Anderson, J. Phys. Chem. Solids 11,26 (1959).

7A. A. Abrikosov and L. P.Gor'kov, Zh. Eksp. Teor. Fiz. 35,
1558 (1958) [Sov. Phys. JETP 8, 1090 (1959)j.

8J. E. Hirsch, Phys. Lett. A 134, 451 (1989).
(a) J. E. Hirsch and F. Marsiglio, Phys. Rev. B 41, 2049 (1990);

(b) 39, 11 515 (1989); (c) F. Marsiglio and J. E. Hirsch, ibid.

41, 6435 (1990).



45 DEPENDENCE OF T, ON NORMAL AND MAGNETIC. . . 965

A. Zawadowski, Phys. Scr. T27, 66 (1989).
V. A. Ivanov and R. O. Zaitsev, Int. J. Mod. Phys. B I, 689
(1988).
R. Micnas, J. Ranninger, and S. Robaszkiewicz, Phys. Rev. B
39, 11 653 (1989).
G. Baskaran, Z. Zou, and P. W. Anderson, Solid State Corn-
mun. 69, 973 (1987).
A. E. Ruckenstein, P. J. Hirschfeld, and J. Appel, Phys. Rev.
B 36, 857 (1987).
L. Coffey and D. L.Cox, Phys. Rev. B 37, 3389 (1988). I wish

to thank Professor Dan Cox for bringing this work to my at-
tention.
P. B. Allen and B. Mitrovic, in Solid State Physics, edited by
H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New
York, 1982), Vol. 37, p. 1.
J. E. Hirsch, Physica C 158, 326 (1989).

~8D. Markowitz and L. P. Kadanoff, Phys. Rev. 131,563 (1963).
J.E. Hirsch, Physica C 161, 185 (1989).
F. Marsiglio and J.E. Hirsch, Physica C 165, 71 (1990).

~ H. Fujishita and M. Sato, Solid State Commun. 72, 529 (1989).


