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Conductance through a quantum dot in the fractional quantum Hall regime
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We study a parabolic quantum dot in the fractional quantum Hall regime by solving the problem
exactly for up to eight electrons at filling factors between l and —,

' . Many-body coherence in the frac-
tional regime strongly suppresses the resonant conductance through the dot below the integer-regime
values. In particular, we predict that at v= —,

'
all conductance peaks are lowered by a factor of I/JV,

and that at v= -', odd and even peaks are suppressed differently.

Advances in microfabrication techniques have recently
made it possible to fabricate electronic devices on the
nanorneter scale. The physics of electron interactions in

these new devices has attracted a great deal of both exper-
imental and theoretical interest. For example, novel reso-
nances have been observed in the conductances of these
devices as a function of gate voltage in the presence of a
magnetic field. ' Analysis of the experimental data in view
of a recent theory yielded detailed information on the
single-electron levels in the quantum dot in the integer
quantum Hall regime. The situation in the fractional
quantum Hall regime is quite different and no theoretical
predictions exist for the conductance. In this paper, we
solve the problem exactly for up to 8 electrons in a quan-
tum dot in the fractional quantum Hall regime. A similar
approach was used earlier to discuss the properties of a
quantum dot at filling factor v= —', . Our work focuses on
the experimentally observable effects of many-electron
correlations in a quantum dot in the fractional quantum
Hall regime. In particular, we predict that many-body
coherence leads to a strong, filling-factor-dependent sup-
pression of the conductance between two electrodes cou-
pled to each other via the dot. The good agreement be-
tween our exact wave functions and those based on
Laughlin states leads us to believe that these predictions
are valid for larger dots as well.

We consider an interacting two-dimensional electron
gas, in a magnetic field, confined in the plane by a para-
bolic potential —'moor . Throughout this paper we limit
our discussion to the regime of su%ciently high magnetic
fields perpendicular to the plane such that only the lowest
kinetic-energy level is occupied. Since the Hamiltonian H
is cylindrically symmetric (in symmetric gauge), it com-
mutes with the angular momentum operator, and its
eigenstates can be written as

r
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where PM is an Mth order symmetric polynomial of N
variables and z~ =x1+iy~ gives the coordinate (x~.,yj. ) of
the jth electron. The length scale is chosen so that the
effective magnetic length I„. (Bt)r—which is given by
l, tr (8) =mto„tr/ft, where to„tr=(4too+to, . )'t and co, is
the cyclotron frequency —is set equal to unity. It is a spe-
cial feature of the parabolic potential that the magnetic

field only appears in the length scale and does not affect
the functional form of the states. The quantum number
M denotes the excess angular momentum of a state so
that the total angular momentum is given by L= —,

' N(N —I )+M, and a enumerates the different eigen-
states with the same M. In the absence of electron-
electron interactions, states with the same excess angular
momenta are degenerate. This degeneracy is broken by
interactions, and the energy is given by

EN tu, = —,
' otto„a[[ —,
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+ N+ —.
' N(N —I )(N, st, ,j, (2)

where (N st, is the expectation value of the electron-
electron interaction V(r) in the many-body eigenstate
yM, . Our aim is to find y~ „the exact ¹ lectron eigen-
states. Since the interaction does not couple many-
particle states with different angular momenta, we solve
each angular momentum separately in three steps: (a)
enumerate all possible N-particle basis states ~NMp) with
a given angular momentum, (b) calculate the interaction
matrix (NMp'~ V ~NMp), and (c) diagonalize the matrix.

To facilitate step (a) we use the fact that the center-of-
mass coordinate separates in our problem. In contrast to
cyclotron resonance, which couples to the center-of-mass
motion, only the lowest-energy states of the dot contrib-
ute in a conductance measurement at low temperatures,
and center-of-mass excitations can be excluded. In the
following we construct states which explicitly exclude the
center-of-mass motion. We construct a basis from the
primitive symmetric polynomials a/v", which are given by
sums of all h-term products of N variables, i.e.,

(] ) w (2) m (3)
&/v ~zi &iv M &j z'zj && ~ &j &g z zjzg, etc.
All symmetric polynomials of N variables can be written
as sums of products of primitive symmetric polynomi-
als. ' To exclude the center-of-mass component we per-7,8

form a change of variables and consider cr's of the vari-
ables z; —z, where z is the complex center-of-mass coordi-
nate z=(l/N)+z;. The products of these polynomials
can be used as a basis of symmetric polynomials of order
M without center-of-mass motion. The exclusion of
center-of-mass degrees of freedom reduces the number of
basis states significantly.

The interaction potential is taken to be V(r) =q 1't /
2mr, which allows us to evaluate the interaction matrix
elements analytically [step (b)]. The coupling strength
q- is only a scale factor in the last term in (2) and has
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been set equal to 1 in the subsequent discussion.
In order to interpret our results and make experimental

predictions for larger dots we want to describe the exact
eigenstates in a way which can be extended to larger sys-
tems. Therefore, we first construct an average filling fac-
tor v„. „=N&o/2rrB{r )=N /2(N+I). For large N this
agrees with the filling factor for Jastrow states
vJ =N(N —

I )/2L. We have solved the eigenstates of sys-
tems of 3-8 electrons up to excess angular momentum
M =18 corresponding to average filling factors down to
v„,'" = —,„=0.19 for N =3 and v„. „'"= —,", =0.59 for
1V =8.

While for large systems the filling factor is constant
throughout the bulk, in small systems the edge is much
more important and the average filling factor only serves
as a guide and does not specify the state uniquely. A more
useful way to characterize a few-electron state is via
n(m), the occupation of single-particle states of definite
angular momenta m =0, 1,2, . . . ,

n(m) ={etc„,) . (3)
For the v=1 case n(m) is I for m (N and zero other-
wise.

In Fig. 1(a), we display the occupations of single-
particle states for the lowest-energy eigenstate of 8 elec-
trons with excess angular momentum M =14. At particu-
lar filling factors, for large JV, it has been suggested that
the ground states are given by the particle-hole symmetric
counterparts of Laughlin states. Specifically, these N-
electron wave functions are described by P holes in the I/p
Laughlin state in a background of N+P electrons in the
v=1 state. These Laughlin-like states have excess angu-
lar momenta

M = —,
' (N+P)(N+P —

I ) —(p/2)P(P I)—
——,

' N(N —
I ),

and have core filling factors v=1 —I/p over the central
fraction of the dot, in the large N limit. For example, the
state with N 8, P=2, and p =3 has M =14. The
single-particle occupations in this state are shown in Fig.
1(b), and the resemblance to n(m) of the exact lowest-
energy eigenstate suggests the identification of the latter
as the v= 3 particle-hole symmetric state. We find that
for those M for which a particle-hole symmetric construc-
tion exists, the lowest eigenstate can be identified in this
way. The overlap between the exact many-particle state
and the corresponding particle-hole symmetric construc-
tion varies from 0.6 to 0.8 for those states that could be
identified. In Fig. 2 we show the ground states of systems
with 3-8 electrons as a function of the magnetic field. All
but two of them can be identified using particle-hole sym-
metry. [For compactness, the notation (P,p) denotes a
state with P holes in the I/p state. ) The stability of the
v= —', states (shaded in Fig. 2) increases with the number
of particles as expected, and we see the appearance of a
v=

& state for N =8. The v= 3 states that we refer to
later occur at stronger magnetic fields and do not appear
in Fig. 2.

In the integer quantum Hall regime it has been possible
to experimentally study the conductance through a dot as
a function of gate voltage. ' The dot is weakly coupled to
two electrodes and when the chemical potential of the
electrodes coincides with the energy diA'erence between
the (JV —I )- and N-particle states of the dot, the conduc-
tance of the system exhibits a resonant peak. By studying
the movement and relative heights of these peaks as the
magnetic field is varied one obtains detailed information
about the electronic structure of the dot.

The height and width of a resonant peak for a ground-
state-to-ground-state transition are determined by I I
and I p, which are given by

rl. /e =
1
&N~& I ~~1 I(N I )I'&'.) I T~I., I./R (4)

In (4), T„, &/lr is the square of the tunneling matrix ele-
ment to the left-right electrode for angular momentum m,
multiplied by the electrode density of states. The first
term on the right measures the overlap between the states
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FIG. 1 . (a) Single-particle occupations in the lowest
particle eigenstate with excess angular momentum M = l4. (b)
Single-particle occupations in the 8-electron particle-hole sym-
metric state with P=2 and p=3. The overlap between this
state and the exact state shown in (a) is 0.75. (c) Schematic
picture of the transition at v= —', from an (IV —1)-particle state
to an N-particle state through process I. Solid line, occupations
near the edge of the system of N —

1 particles; dashed line, occu-
pations near the edge of the system of N particles. (d)
Schematic picture of the transition through process II.

4.0 4.5 5.5

FIG. 2. Ground states of N-electron systems as a function of
B in units of mmo/e. The shaded regions correspond to v= l and

The notation (P,p) denotes a state with P holes in the 1/p
state in a background of electrons in the v= l state.
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of N —
1 electrons, plus one additional electron with the

appropriate angular momentum hL =N —1+M —M',
and the state of N electrons. In the integer regime this
overlap is unity but in the fractional regime it can be
significantly less than 1. At very low temperatures,
kT((I Lgg, the width of a resonant peak is expected to be
(I I+I R), and we expect the overlap factors to reduce the
peak widths below the integer regime values. At higher
temperatures or weaker couplings, k T && I LyR, peak
widths are determined by kT, and peak heights are pro-
portional to I LI tt/(I t. +I tt)—thus we expect the coher-
ence effects to lower the peak height in this regime. In the
remainder of this paper we will concentrate on the lattice
case.

We first evaluated the overlap matrix element between
v=

& Laughlin states with N —
1 and N particles and

found that it decreases as (N ——.
' ) 't (Fig. 3). We also

evaluated the overlap matrix element between the exact
lowest-energy eigenstates of 8 at filling factor & . The re-
sults agree with those obtained for the Laughlin state to
within 3.5% and 2.5% for N =4 and 5, respectively.

There is a simple way to understand the above results
for v= T in the thermodynamic limit. First we notice
that the low-energy excitations on the edge of the v= 1/p
state move with the same velocity. ' Thus for large x and
t we may assume that the low-energy part of the electron
propagator is a function of x —vt and has the form

G(x, t) =(T(y(x, t) yt(0))) = exp(ikFx iEFt )a"—

(x —vt)"

0. 60—
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FIG. 3. Overlap matrix elements between (N —I)- and N
particle ground states for v= —,', multiplied by (W —

—,
' )'t2.

Solid dots are for Laughlin states and open dots for the exact
eigenstates (zero suppressed).

momentum of the added electron and is denoted by m(N).
I n the following, we argue that y is given by
y =m (N) —m (N —I ) =p.

For a quantum dot the electron propagator in the edge
obeys periodic boundary conditions and can be written as

G(RO, t) =exp(imFO iEFt)a" —'R "(1 —e' " )

where R is the radius of the dot and r =v/R. For t & 0 we

may expand G(Re, t) as

where a is a cutoff length scale (a = ls). In the 1/p state
the angular momentum of an N-particle state is
L(N) =pN(N —I)/2, so the addition of one electron in-
creases L by pN, which can be viewed as the angular

I

G(Rg t & 0) r-~R re""'F'-
k 0

We compare this with the spectral decomposition,

y

. (5)

G(R, t &o) =gg(Nly(0)IN+i, m, a)(N+I, m, all"(0)lN&

xexp[i[m+L(N+1) L(N)]8]exp[——i [E„, (N+1) Ep(N)]tI, (6)

where IN+ I,m, a) is an (N+1)-electron state with angular momentum L(N+1)+m and energy E,,(N+ I), and
Ep(N) is the ground-state energy. The m=0 term contains information about the (N+1)-particle ground state, and by
comparison with the k =0 term of Eq. (5) we can read off both mF =m(N) and the overlap matrix element between
ground states I(Nlc„;&NEIN+ I)l =(a/R) " ' t =N " ' t. Finally, yean be determined by noting that G(RH, t &0)
requires a diAerent expansion

'
y

G(Re, t &0) =(—I) "a" 'R "exp[i[(mF —y)8 —(EF —Fy)t]] g e
I( 0

By comparing (7) with a spectral decomposition similar to
(6), we find m(N) —

y =L(N) L(N I) =3N ——p, and-
obtain y=p. Furthermore, from the time dependence we
find that Ep(N+1) —Ep(N) =Ep(N) —Ep(N I )+i'y, —
i.e., an energy gap exists for the finite-size system. For
v 3 we find y =3 which agrees with the numerical re-
sults that suggest the scaling behavior N ' for the ma-
trix elements.

Our numerical results for the overlap matrix element in
the v =

3 case are shown in Table I. The notation is the
same as in Fig. 2, i.e., (P,p =3) denotes that exact eigen-
state of H (not necessarily a ground state) which can be

(b) (c) (d)

0.626
0.636
0.654 0.568

0.344
0.248 O. l 06

TABLE I. Overlap matrix elements between (N —I)- and
iV-electron systems for v = —', : (a) & (2,3) I c r

I (2,3)l, (b)
&(3,3)lc'1(3,3)&, (c) &(3,3)lc'I(2, 3)), (d) &(2,3)lc'I(3,3)l.
The notation (P,p) denotes a state with P holes in the I jp
Laughlin state in the background of N+ P electrons in the v= l

state. Columns (a) and (b) correspond to process I in Fig. I (c),
while column (c) corresponds to process II in Fig. I (d).
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identified as a particle-hole symmetric state with P holes
in state &. The empty entries are due to the fact that
states with P=3 can only be identified for N=7 and 8.
We see that columns (a) and (b) are close to unity,
whereas columns (c) and (d) give smaller overlaps.
Column (a) extrapolates to a constant in striking contrast
to the (N ——, ) ' behavior in the v= —,

' case. Energeti-
cally favorable transitions are either by process I,
)tN

—I,P,p=3) i!V,P, 3) [columns (a) and (b)], where
the electron is added to the outermost edge as shown in

Fig. 1(c), or by process II, iN I,P—, 3) iN, P+1,3)
[column (c)l shown in Fig. 1(d). Column (d) describes
an energetically very costly transition in which the v= =,

core shrinks while an electron is added to the system. Pro-
cess II can be thought of as process I plus a particle-hole
excitation whereby an electron is transferred from the in-
side to the outside edge, thereby expanding the v = =, re-
gion. Because the coupling between the holelike excita-
tions on the inner edge and the electronlike excitations on
the outer edge is not known explicitly, we cannot yet make
detailed analytical predictions of how the peak heights
due to processes I and II scale with N; however, our nu-

merical results suggest that conductance peaks due to pro-
cess I are higher than those due to process II. In order to
preserve the n(m) structure of the edge region, processes I

and II must alternate as electrons are added to the dot.
Thus in a measurement of conductance versus gate volt-

age we expect the heights of successive peaks to be
different due to the different overlap factors. This dou-
bling of the periodicity with N is expected on the general
ground that for v =

& two added electrons are required to
change the flux by an integer amount. This prediction is
clearly limited to low temperatures where thermal excita-
tion of process I is suppressed. The I, II ordering of the
peaks may also switch as a function of N or the magnetic
field as the structure of the edge region evolves, but its de-
tailed description is beyond the scope of the present
small-N study.

As the magnetic field is varied at core filling factor
v = &, the height and position of a given conductance
peak vary smoothly except at some magnetic field values,
when the height changes abruptly. These sudden changes
are due to a change of the ground state of either the N- or
(N —1)-particle system, and the height of a given peak as

a function of the magnetic field should exhibit an alternat-
ing pattern similar to the alternation of peak heights
versus gate voltage. In our numerical study we see one ex-
ample of this behavior: The peak that corresponds to
7 8 electrons in the dot is due to process I for 8 ( 5.53
and to process II for B & 5.53 (Fig. 2), so that the height
of the peak is lower by a factor of (0.248/0. 654) =0.14
(Table I) for B & 5.53. The dependence of the single-
particle coupling T„, t ig on angular momentum and
geometry may modify this prediction.

In conclusion, we have exactly diagonalized the Hamil-
tonian describing up to 8 electrons in a parabolic dot in a
strong magnetic field. Identifying the exact eigenstates
with particle-hole symmetric counterparts of Laughlin
states allows us to extrapolate our results to larger, experi-
mentally relevant systems. In particular, we predict that
many-body coherence effects will strongly suppress the
resonant peaks in a measurement of conductance through
a quantum dot in the fractional quantum Hall regime. At
the simple filling factors v= I/p both numerical and
analytical results suggest that the conductance is sup-
pressed by the factor N ', whereas at composite
filling factors a more complicated behavior is expected.
Specifically, at v= =, we predict that odd and even peaks
will be suppressed differently (at temperatures smaller
than the gap to excitations). Finally, let us point out that
our discussion was based on the abrupt edge picture,
which was realized in the simulations. In the literature an
alternative picture has been proposed for smooth confining
potentials, '' and our results do not apply in that case.
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