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Theory of luminescence polarization anisotropy in quantum wires
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The polarization dependence of the optical transition is studied as a function of the aspect ratio of the
rectangular cross section of a quantum wire. The effective-mass approximation is used to treat the
valence- and conduction-band states. Calculated results lead to a simple physical understanding of
luminescence polarization anisotropy.

I. INTRODUCTION II. THEORY

Quantum-well wires (QWW) have received intense
research interest over the past few years because of the
rich physical environment (i.e., reduced dimensionality,
significance of interfacial roughness to transport, etc.) for
the study of the confinement of electrons and holes.
From a technological viewpoint, the optical characteris-
tics of QWW are being investigated for applications to
laser' and photodetectors. In particular, the gain of
QWW is theoretically predicted to be enhanced over
that for quantum wells. The gain of QWW is proportion-
al to the density of states for a two-dimensional system
and the strength of the optical-matrix element. The den-
sity of states is enhanced for the first subband of the
QWW over that of a quantum well. ' Optical experi-
ments determining luminescence polarization depen-
dence on the direction of the emitted light relative to the
wire axis have been performed on QWW. These experi-
ments have shown strong polarization anisotropy of the
emitted light which is taken as a signature of confinement
of carriers in the wire. Here, we focus on gaining a sim-
ple physical understanding of how confinement of valence
holes in two dimensions leads to polarization anisotropy.

First, we present a theoretical model of a single QWW.
In order to relate the results of our calculations to experi-
ment, the effective-mass Hamiltonians and Bloch wave
bases for the hole and electron are taken to be oriented
along the axes of the quantum wire. The experimentally
fabricated wires ' suggest a fairly realistic geometry for
the wire if the wire is rectangular. Our study of the rec-
tangular wire complements the studies of a wire of circu-
lar ' or square' cross section. A way to understand the
confinement effect of the wire is to vary the aspect ratio
of the rectangular cross section from the quantum-well
limit to a square.

In Sec. II, we give the details of the approximations for
calculating the energies and wave functions of conduction
electrons and valence holes confined to a wire of infinite
length and rectangular cross section. In Sec. III, we
present our calculation of the luminescence intensity as a
function of the orientation of the polarization vector foI
three different aspect ratios of the rectangle. In Sec. IV, a
discussion of the results is given.

The following assumptions have been made to simplify
the calculation.

(1) The wire is assumed to have a rectangular cross sec-
tion and infinite length. QWW, formed by molecular-
beam epitaxy (MBE) of GaAs/A1As on vicinal substrates,
have been fabricated in two types of deposition patterns,
Tilted (TSL) and serpentine superlattices (SSL). Com-
parison of the energy levels for the rectangular cross sec-
tion with the finite element analysis" of SSL's indicates
that the confinement effect in the first few lowest levels of
the conduction band is well described by the simple mod-
el. Therefore, the model can be used for photolumines-
cence (PL) which is dominated by the lowest-energy
electron-hole recombination.

(2) The interior of the wire is assumed to be pure
GaAs. Inadvertent mixture of the barrier material A1As
will be discussed in the last section.

(3) The barrier height is assumed to be infinite. The
band offset for GaAs/A1As is approximately 1.06 eV for
the conduction band and 0.53 eV for the valence band. '

We are interested only in the lowest conduction subband
and the uppermost valence subband, which are of the or-
der of 10 meV from the band edges.

(4) The Luttinger Hamiltonian' is used for the I s
valence bands. The spin-orbit split-off band I 7 is ig-
nored. Recently, it has been shown that the split-off
valence band does not, in a substantial way, affect the
highest valence subband. '

(5) We calculate the PL intensity by transitions from
the lowest conduction to the highest valence subband
edge, i.e., we consider the case E, =O, with no particle
momentum along the wire axis. Since the exciton is
made up of states in the neighborhood of the band edges,
the polarization dependence should be very similar.

(6) Terms linear in wave vectors in the Luttinger Ham-
iltonian are neglected.

In addition to these assumptions, we align the wire in
the experimental crystal orientation. For both TSL and
SSL, the GaAs/A1As lateral superlattices are deposited
on tilted (from 0.5' to 4') vicinal GaAs [100] substrates.
The tilt is toward the [011] direction. These two axes
form the plane of the cross section. The wire axis is
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oriented along [01 1]. Cxiven the orientation of the wires
in the experiment, the Luttinger Hamiltonian is rotated
so that the wave-vector component K, is oriented parallel
to the wire axis along [01 1], K„ is parallel to the step
direction [01 1], and K is along [100], the growth direc-
tion (Fig. 1). This yields

states which are doubly degenerate.
In the effective-mass approximation, the carrier wave

function in the wire is the sum of products of the zone-
center bulk Bloch wave function, U-, and the associated
envelope function which is slowly varying over the unit
cell of the wire layer. The carrier wave function must
satisfy the boundary conditions that 0'(x,y)=0 at the
four interfaces of the wire. For the valence hole in the
Luttinger representation, the basis set consists of the four
Bloch waves at the top of the valence band, indicated by
the index j=—,', —,', —

—,', —
—,'. Each of the four-component

envelope functions may be expanded as a double Fourier
series'
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The notation used in Eq. (1) follows that of Ref. 13. Set-
ting EC, =0 and rearranging the Hamiltonian, we arrive at
the block-diagonal form'

where E~=m./L, E =~/L, and Lz Ly are the wire
widths. The sine functions ensure the wave function van-
ishes at the boundary. The conduction electron wave
function, with the spin state given by the index s= —,',

2, is

qy(t.")— 2
sin(n, K„x)sin(m, K~y ) .

QL„L
(4)

The eigenvalues and eigenvectors are computed including
four terms in the series for the hole wave functions as a
function of the aspect ratio (L~/L„), by diagonalizing the
subblocks of Eq. (2). The uppermost valence-subband en-
ergy, which has a term proportional to (L ) (the di-
mension of the wire) and is negative, becomes increasing-
ly more negative as L„decreases from infinity to L,
which is kept fixed. These subbands and corresponding
wave functions for different aspect ratios are used in
determining the optical-matrix elements for different po-
larization directions.

H
H

P+Q R
R" P+Q

III. LUMINESCENCE POLARIZATION

Clearly, this Hamiltonian yields two sets of distinct eigen-
The optical-matrix element for transitions between

conduction and valence bands is given by

y PL
[1 00]

Ly

Z[0 11]

FIG. 1. Schematic of the quantum-well wire and its orienta-
tion to the [100] substrate.

S J

where p is the momentum operator and A is the polar-
ization vector of the emitted light. In the infinite-well ap-
proximation, from the overlap of the electron and hole
envelope functions in Eq. (5), allowed transitions occur
only between conduction- and valence-band states where
n, =n, and m, =m„. The results of the calculation are
shown in Fig. 2. The three different curves represent as-
pect ratios equal to 1, 2, and 3. The optical strength for
each aspect ratio is plotted as a function of the polariza-
tion direction varying from one coordinate axis to anoth-
er. The graph indicates that maximum emission occurs
for light polarized along the wire, the z axis.

For understanding the polarization anisotropy in a rec-
tangular wire, we find it convenient, as we shall see in the
next section, to express the wave function of the top
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IV. DISCUSSION
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FIG. 2. Dependence of the luminescence intensity (in arbi-
trary units} on the angle of polarization varying from 0' to 90'
from x to y, etc. Dashed, dash-dotted, and solid curves are for
the aspect ratio = 1, 2, and 3, respectively.

valence subband state in terms of the p-like orbital basis'
of Bloch states ~X),

~
Y), and ~Z) times the spin-up or

spin-down state instead of the spin- —,
' basis used above for

the Luttinger Hamiltonian. For a cylindrical wire along
the [001] direction, the approximate cylindrical symme-
try makes it convenient to consider the hole wave func-
tion in terms of the total angular momentum eigenstates.
For the rectangular cross section, where total angular
momentum about the wire axis is no longer a good quan-
tum number, the basis states which reflect the symmetry
of the rectangle are more appropriate. The modulus
squared of the envelope functions as coefficients of ~X),

~ Y), and ~Z ), for the three aspect ratios are plotted as
functions of the coordinate x in the middle of the y di-
mension in Fig. 3.

8AsPect Ratio 1 0 0.8

Go 0
~ rE

0. 6

a5 0.5

0.4

0.3

Q. 2

0.7

0.6

0.5

0.4

0.3

0.2

Q. 7

0. 6

0.5

Q. 4

Q. 3

Q. 2

0.1 0.1 0.1

X

FIG. 3. Modulus squared of the envelope functions which
are coei5cients of the X, Y, and Z components of the valence
bulk Bloch functions for the top valence subband state as a
function of the coordinate x for a fixed y at 0.5 L~. Dashed,
dash dotted, and s-olid curves are associated with ~X), ~

Y), and
~Z ), respectively.

Experimental results from Ref. 7 indicate that the
strongest emission occurs for light polarized parallel to
the wire axis. Our theoretical results, shown in Fig. 2,
show qualitatively the same behavior. The results can be
explained in terms of the hole wave-function components
~X ), ~ Y), and ~Z ), shown in Fig. 3. These p-like orbitals
are convenient because for the Bloch wave part of the
transition matrix element in Eq. (5), ( u, ~p ~

Z ) is finite
only if a =z.

Now keep L„ fixed and decrease L„ from infinity. For
L at infinity, the system is a quantum well normal to the
x direction. The top valence states are heavy-hole states
with j=—'„——„with the spatial part

~
YkiZ ), i.e., equal

amplitudes of
~
Y ) and ~Z ). From the Bloch wave part

of the transition-matrix element in Eq. (5), it follows that
the light intensity is the same for the polarization vector
along the y and z directions if the envelope functions are
symmetric on interchanging y and z. They would be so if
these were equivalent crystal directions. Actually, they
are not quite equivalent so that there is a little anisotropy
due to the difference between the [100] and [011]direc-
tions. The intensity decreases as the polarization changes
its direction from y or z to x since the hole wave function
contains no ~X) component.

As the aspect ratio (L /L„) decreases, confinement of
the hole state along the y direction brings in a mixture of
a small amount of the ~ZkiX) state to

~
Y+iZ). This

means the largest amount of ~Z ), a slightly small amount
of

~
Y ), and a small amount of ~X ). For the aspect ratio

of 3, Fig. 3 confirms the relative amount of the three
components. As the aspect ratio decreases, ~Z ) and ~X)
continue to grow and

~
Y) continues to wane until the

amounts of ~X ) and
~ Y) become equal at the unit aspect

ratio if the crystal anisotropy between x and y is neglect-
ed. The unequal amounts of ~X) and

~
Y) in Fig. 3 are

due to the crystal anisotropy between [100] and [Oll).
The change in polarization anisotropy in Fig. 2 as the as-
pect ratio decreases simply reflects the change in the
Cartesian components of the hole state. The overlap of
the electron and hole envelope functions in Eq. (5) does
not change much with the aspect ratio because the nodes
are pinned at the boundaries.

While the above argument is based on the computation
results of an infinite potential wall at the wire boundaries,
the same reasoning for the polarization anisotropy may
be used for the case of finite potential steps at the boun-
daries if the aspect ratio of the wire dimensions is
changed to the effective aspect ratio of the wave function
extents in the x and y directions. It is known from
transmission electron microscope measurements on the
tilted superlattice structure that Al and Ga intermix. '

It is beheved also that there is intermixing of Al and Cxa
in the SSL's. To account for alloying of the wire and its
environs, we expect the aspect ratio to be modified from
the dimensions prescribed by the MBE deposition.
Diffusion of Al in the step (x) direction lowers the poten-
tial barrier in the x direction and may produce an
efFective aspect ratio (L~/L ) lower than that of the as
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grown geometrical dimensions. As is evident from Fig. 2,
a lowering of the aspect ratio due to interdiffusion of Al
and Ga will increase the luminescence intensity parallel
to the wire direction. In SSL s, intermixing of Al and Ga
in the barrier and well regions would increase the
effective dimensions of the wire in both the x and y direc-
tions. The effective aspect ratio has to be computed from
the two-dimensional highest hole state wave function.
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