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Car-Parrinello-like simulations critically depend on the ability to control the drift of the electronic
wave functions away from the instantaneous ground state. This problem, particularly severe for metals,
is gaining more importance as the time scale of such simulations increases. Here a method is proposed
that solves the problem by introducing two separate thermostats for ions and electrons, without adding
to the computational cost. A detailed analysis of the nonadiabatic behavior leads to a strategy that mini-

mizes the resulting errors. An application of the method to molten aluminum is presented.

A few years ago Car and Parrinello' invented a scheme
that unified molecular-dynamics techniques with the
density-functional framework ' for electronic structure
calculations. This approach allows us to calculate the
atomic motion directly from the underlying electronic
structure. In contrast to standard molecular-dynamics
techniques, in which the interactions between atoms are
parametrized, with parameters adjusted to experimental
data, the interactions in their method are obtained from
first principles. The underlying idea of this technique is
that a fictitious dynamics is introduced for the electronic
wave functions that is treated in the same manner as the
dynamics of the atoms by integrating Newton-type equa-
tions of motion.

Since the electronic wave functions of the density-
functional framework ' are meaningful only if the wave
functions are in their ground state for each instantaneous
atomic configuration, they must reside on the Born-
Oppenheimer surface. This implies that the two subsys-
tems, electronic wave functions and atomic positions,
must not be in thermal equilibrium with each other; the
temperature related to the electronic wave functions must
be very low compared with the physically relevant tem-
perature of the atomic subsystem. However, as thermal
equilibrium is approached, the electronic wave functions
tend to heat up and leave the Born-Oppenheimer surface,
accompanied by a cooling of the atomic system.

An essential condition for the practicability of the
Car-Parrinello method is that this heat transfer is
sufficiently slow to allow simulations over long periods of
time before the dynamics produces unphysical results.
For insulators this is indeed the case, and simulations of
up to a picosecond time scale typically can be performed
without adjustment. However, there is a marked
difference between the behavior of insulators and that of
metals: for metals the heat transfer is very difficult to

control; in insulators, there is a separation of the frequen-
cy spectra of the electronic and the ionic motions that is
roughly proportional to the width of the electronic band
gap divided by a fictitious mass parameter for the elec-
tronic degrees of freedom. Since there is no band gap,
this separation is absent in metals and hence the heat
transfer can no longer be controlled by adjusting the mass
parameter.

The common practice for metals, and for long simula-
tions in general, has been to repeatedly quench the elec-
tronic system back to the Born-Oppenheimer surface, a
method that adds appreciably to the computational cost
and that, in addition, introduces noise to the simulation.
Therefore, an approach that controls the individual tem-
perature of the two subsystems and minimizes the pertur-
bation of the atomic motion is highly desirable.

Such a method can be obtained from an extension of
the constant-temperature molecular-dynamics scheme
that has been introduced by Nose ' and subsequently re-
formulated by Hoover. In the original scheme, one addi-
tional thermostating variable is introduced that is able to
generate a canonical ensemble at a prefixed temperature.
Subsequently, Nose generalized this idea by introducing
several variables that can maintain different portions of
the system at different temperatures. This option has
been exploited very recently by Sprik to perform classi-
cal simulations of polarizable systems.

In this paper we will extend these ideas to the first-
principles molecular-dynamics technique of Car and Par-
rinello, and describe how in this way the temperatures of
the electronic wave functions and the atomic positions
can be kept at two different temperatures. The im-
plementation is simple and does not add to the computa-
tional effort in any noticeable way. We will give guide-
lines that lead to a minimum perturbation of the physi-
cally relevant results. The implications of this method

45 9413 1992 The American Physical Society



9414 BRIEF REPORTS 45

are illustrated with a practical example: aluminum at the
melting point.

If we combine the two thermostats of Nose and the
method of Car and Parrinello, ' we obtain the following
equations of motion for electronic wave functions (II; and
atomic positions R,-:

estimate for the kinetic energy related to the adiabatic
motion can be inferred from a model system of well-
separated atoms. The adiabatic (atomic) wave functions
of this model system follow the corresponding atom rig-
idly. Thus we can relate the fictitious kinetic energy of
the system to the velocities of the atom. If we average
over a canonical ensemble, we obtain the following ex-
pression under the simplified assumption that the atomic
masses are identical:

M, R;=F; —M;E.,x~ . (2)

Q~x~ —2 g ,'M;R, ,'—gk~T—— (4)

The fictitious kinetic energy of the electronic wave func-
tions fluctuates about the mean value Ez;„0 and the aver-

age kinetic energy of the ions is —,gkz T, where g is the
number of degrees of freedom for the atomic motion, k~
is the Boltzmann constant, and T is the physical tempera-
ture of the simulation. The masses Q, and Qs determine
the time scales for the thermal Auctuations. These equa-
tions of motion conserve the total energy of the system,

+—,'Q, x, +2Eq;„ox, +—,'Q~xs+gks Txs .

It can be shown, under the assumption of ergodicity and
small heat transfer between electronic and atomic dynam-
ics, that both the fictitious dynamics of the wave func-
tions and the atomic motion each form a canonical en-

semble with different temperatures.
A proper choice of the value of Ez;„0 is not important

for a physically relevant simulation: If, on the one hand,
this value is too large, the electronic wave functions will

depart from the Born-Oppenheimer surface and ultimate-
ly become meaningless. If, on the other hand, it is too
small, the electrons cannot easily follow the atomic
motion, which results in a retardation of the atomic
motion.

In order to analyze the situation, we distinguish an adi-
abatic from a free contribution to the dynamics of the
electronic wave functions. The adiabatic motion is given
by the exact electronic ground state for each instantane-
ous atomic configuration. A free motion of the wave
functions would be possible even for a static atomic ar-
rangement. Ideally, the free motion should vanish. An

The forces acting on the ions, F, , and the fictitious forces
acting on the electronic wave functions, HI%—&, are ob-
tained from the corresponding partial derivatives of the
total-energy functional E(~%;&,R;) of the local-density
approximation. The matrix of Lagrange multipliers A,z
assures orthonormality of the wave functions. p is a ficti-
tious mass for the wave functions and M; are the atomic
masses. The last term of each equation is a friction term
which couples wave functions and atom dynamics to the
Nose thermostats. These friction terms are governed by
the dynamical variables x, and x&, which obey the fol-

lowing equations of motion:

Q, X, =2 g p, (4;~%; & E&;„—

(6)

Here M stands for the mass of one atom. This value gives
us a guideline for setting the average kinetic energy of the
electronic wave functions.

In Fig. I the heat transfer is shown as a function of the
preset average kinetic energy of the electrons for solid
aluminum at the melting point. We can clearly distin-
guish two regimes which are separated at approximately
the value of the kinetic energy calculated in Eq. (6). For
very small values of Ej,;„0,the heat transfer rises sharply
to very high values. This is the region where the average
kinetic energy is smaller than necessary for adiabatic
motion of the electrons; the thermostat hinders the elec-
trons from following the atomic motion, which in turn re-
tards the atomic motion. Hence the dynamics of the
atoms is strongly perturbed in this regime. If the average
kinetic energy is larger than needed for the adiabatic
motion, the heat transfer becomes virtually independent
of E&;„o. This is the regime in which the electrons are
free to follow the atoms, and the additional kinetic ener-

gy results in deviations from the Born-Oppenheimer sur-
face, which ultimately will lead to a deterioration of the
results for the atomic motion. The optimum choice
clearly lies just to the right of the transition region. As
our estimate neglects fluctuations of the atomic kinetic
energy, we should choose EI„„o somewhat larger than

Ez;„,d. %'e recommend a value that is about twice that
given in Eq. (6).

From Fig. 1, it also becomes clear why the route of re-
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FIG. 1. Heat transfer as a function of the pre-fixed average
fictitious kinetic energy Ez;„0 of the electronic wave functions
for solid aluminum at the melting point. The arrow indicates
the kinetic energy required for adiabatic motion of the electrons
according to Eq. (6).
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peatedly quenching the electronic wave functions to the
Born-Oppenheimer surface is an unfortunate choice: as
one frequently operates in the very left of the diagram,
the heat transfer is very large. Contrary to common be-
lief, the problem cannot be solved by quenching the sys-
tem more frequently; with each quench the ions experi-
ence a kick, which corresponds to a transfer of a fixed
amount of energy to the electrons, namely Ek;„,d.
Hence, more frequent quenching of the electronic wave
functions increases the perturbation of the atomic trajec-
tories. The electronic and the atomic motion can only be
decoupled adiabatically in this way if the wave functions
are quenched after each single time step. Such a pro-
cedure, however, would be computationally exhaustive as
it would increase the number of iterations for the elec-
tronic wave functions —and thus the total computational
effort —typically by more than an order of magnitude.

In addition to Ek;„0, we have to determine the time
scales for the thermal fluctuations of the electronic and
atomic subsystems. The typical frequencies of the
thermal fluctuations ~~ and co, are determined through
the masses for the thermostats via co„=+2gk~T/Qs
and co, =+4E ;k„/0Q, . It should be kept in mind that
the Nose thermostat alters the atomic dynamics and can-
not reflect a realistic coupling to the environment that
acts as a heat bath. Therefore, the period of the oscilla-
tion of the atomic thermostat shall be chosen larger than
the typical time scale for the dynamical events of interest
but, of course, shorter than the simulation time. The
choice of the mass of the thermostat for the electrons is
expected to influence the physically relevant results even
less, as it acts directly only on the fictitious dynamics of
the wave function. However, the frequency should lie
above the phonon spectrum to avoid any interference
effects.

The eScient implementation of the Nose thermostat
for the electronic wave functions, consistent with the
Verlet algorithm used for integrating the equations of
motion, is nontrivial. The problem is related to the fact
that, in the Verlet algorithm, a velocity-dependent force
usually requires a self-consistent cycle for the wave func-
tions of the next time step. For the atomic positions this
poses no problem. For the wave functions, however, this
route would add appreciably to the computational effort,
owing to the vast number of degrees of freedom for the
wave functions and the need to simultaneously satisfy the
constraint of orthonormal wave functions, which itself is
implemented by an iterative solution. This problem,
however, can be avoided by a simple trick: since the Ver-
let algorithm itself is only accurate up to second order in
the time step, a consistent implementation of the Verlet
algorithm requires the forces to be accurate only up to
second order of the time step h. To this accuracy the ve-
locity of x, can be calculated from the present and the
two preceding time steps, '

3x,(t) 4x, (t b, )+x,(t ——2h)—
2h

Next we decompose the equations of motion for the elec-
tronic wave functions, Eq. (I), into its discretized form.
We apply the standard rules
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FIG. 2. Fictitious kinetic energy of the electronic wave func-
tions versus time for liquid aluminum at the melting point (a)
without and (b) with thermostating of the electrons. Both simu-
lation runs start from identical initial conditions.
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~%', (t +6) &
= ~e, (t —6) &+ ~e, (t) &
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This equation can be solved as usual, using the algorithm
to satisfy the constraint to orthogonality described by
Car and Parrinello. "

We have applied the technique to a simulation of solid
and molten aluminum at the melting point. Here, we
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FIG. 3. Pair-correlation function for molten aluminum at the
melting point obtained with the Car-Parrinello method (solid
line) compared to the result of Jacucci et al. (Ref. 17) (dashed
line).
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have chosen the mass parameter for the electronic vari-
ables to be p=1000 a.u. and the time step to be 10 a.u.
We have used supercell geometry with 64 atoms per cell.
The pseudopotentials are the separable version' ' of a
Bachelet-Hamann-Schliiter type pseudopotential'
with s nonlocality only and core radii of 1.5 and 1.3 a.u.
for s- and p-type angular momenta, respectively. The @-

point sampling has been reduced to a sampling of the I
point. This approximation does not introduce a quasigap
since the set of degenerate levels at the Fermi level is par-
tially occupied.

Without applying a thermostat to the electronic wave
functions, the fictitious kinetic energy of the electronic
wave functions rapidly rises to unacceptable levels, as
shown in Fig. 2. If, however, the temperature of the elec-
trons is controlled according to the description given
above, the dynamics is stable, with the electronic wave
functions remaining close to the Born-Oppenheimer sur-
face throughout the simulation. A qualitatively similar
behavior is expected also for insulators, even though the

rise of the fictitious kinetic energy without temperature
control for the electronic wave functions would be orders
of magnitude smaller. For long simulations, however,
temperature control for the wave functions is mandatory
even for insulators.

In Fig. 3 our calculated pair-correlation function for
molten aluminum is compared with that calculated by
Jacucci et al. ,

' which provides an excellent description
of the experimental data. We also checked that the dy-
namics is not significantly altered through our scheme by
calculating the diffusion constant D from the mean-
square displacement of the ions. Our result is
D =6X 10 cm /sec. Even though there is no measure-
ment of D, theoretical estimates reported by Waseda'
are -SX10 cm /sec. We find the agreement satisfac-
tory, given the semiquantitative nature of the theories on
which the estimates are based.

We are grateful to M. Sprik for useful and interesting
d&scussrons.
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