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Basic hydrodynamic equations describing the adsorbatg dynamics in the presence of adsorbate—host-
solid dynamical interactions are derived with use of a combined density-functional and canonical formu-
lation of fluid mechanics. A new dissipative term in the hydrodynamic equations resulting from these in-
teractions is derived. The main emphasis is put on the relation between this term and diffusion in the ad-
sorbate. It is shown that the diffusion coefficient depends in a nontrivial way both on the single-particle
interactions between an adparticle and the excitations in the host solid and on the interactions between
the adparticles modified by the presence of these excitations. The basic physical assumptions in the
model are discussed and suggestions for further developments of the theory, for example, inclusion of
desorption, are given. The differences and similarities between our approach and those in the literature

are pointed out.

I. INTRODUCTION

One of the key problems in surface physics is the
description of the dynamical phenomena in an adsorbate
when its density becomes sufficiently large to make the
collective effects important. If the dense phase of an ad-
sorbate is formed on the solid surface, the interaction be-
tween the adsorbate and the host solid particles deter-
mines not only the static-equilibrium properties of the ad-
sorbate but also influences its dynamical properties.! 3
Since the static parameters of the adsorbate phase, for ex-
ample its static correlation functions, are affected by the
interaction with the solid, so are all the ingredients of the
dynamics which depend on the values of the equilibrium
state properties. Even more important, however, is that
the interaction with the host solid leads to a different type
of the adsorbate collective behavior. Those changes in
the adsorbate dynamics show up already in the long-
wavelength and low-frequency behavior of the adsorbate,
i.e., in its hydrodynamics.

The equilibrium properties of the thin layer of a fluid
in contact with the solid wall have attracted a lot of at-
tention in view of its relevance to wetting transition phe-
nomena, and considerable progress was achieved in a mi-
croscopic theoretical description of the wetting layer stat-
ics.*> The analysis of the wetting layer dynamics relies
on the hydrodynamic approach®” utilizing the functional
density method for nonuniform media.?

The important point in these analyses is that the
thin—often thought as strictly two-dimensional—Ilayer
of a fluid interacts strongly with the underlying medium.
This fact is crucial in the dynamical approach because of
the well-known nonexistence of hydrodynamics of strictly
two-dimensional fluids (e.g., divergence of transport
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coefficients like shear viscosity, etc.).” To overcome this
difficulty in the hydrodynamical description of an adsor-
bate, Ramaswamy and Mazenko'® have suggested supple-
menting the Navier-Stokes equations by a single-particle
friction term resulting from interactions between the fluid
and the host solid. It was later argued!! that a similar
modification to the hydrodynamic equations should re-
sult from allowing for desorption of the adsorbate, and
that the latter effect should be the more important of the
two for noble-gas adsorbates on solid surfaces. The main
theoretical gain here was that such a single-particle-like
term removes the infrared divergences in the dynamic
density correlation function and results in convergent ex-
pressions for d =2 transport coefficients.

One of the most important dynamical processes in ad-
sorbed layers is diffusion. Without diffusion, and related
atomic migration processes on solid surfaces, the descrip-
tion of the adsorbate layers would be incomplete.
Description of the adsorbate diffusion is nowadays at-
tracting much of the attention but full theoretical under-
standing of these phenomena has not yet been
achieved.>!> Most of the theoretical and numerical
works on these problems use models in which the surface
diffusion is fashioned as a random-walk-like
phenomenon.!® It has been shown recently that the 1/¢2
behavior of the dynamical structure factor, typical of
diffusivelike decay of density fluctuations, is modified in
more realistic models of hoppinglike diffusion in an ad-
sorbate if desorption is permitted and/or if the host solid
surface contains more than one adsorption site per sur-
face unit cell.* The master equation based models, like
that of Ref. 14, assume a certain form of the transition
probabilities for atomic jumps from one allowed site to
another and it is generally believed that those jumps are
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caused by the interaction between adatoms and the host
solid. Calculation of those rates requires considerable
efforts and involves detailed analysis of the phonon medi-
ated transitions between different adsorption sites. Al-
though similar theory for desorption transition probabili-
ties is well developed the intersite transitions are poorly
understood. Banavar, Cohen, and Gomer'® have ana-
lyzed the surface diffusion problem using the Fokker-
Planck equation and they were able to relate the diffusion
coefficient to the changes in the system free energy due to
the presence of a single adsorbate particle. Their model
neglects all possible correlations between adatoms and
this approximation was also used in the Fokker-Planck
equation analysis of diffusion in d =2 periodic poten-
tials.!® Similar in spirit, but a more advanced approach
to the analysis of the single-particle adsorbate diffusion
was the model proposed by Wahnstrom,!” who used the
Mori memory-function formalism, and that by Ying, and
Ala-Nissila and Ying,'® who employed a similar tech-
nique. In all these approaches, many-body effects in the
adsorbate behavior were not taken into account. On the
other hand, surface diffusion in an adsorbate was ana-
lyzed by Kreuzer and co-workers,'® who used a general-
ized lattice-gas model in which many-body effects were
taken into account by the introduction of a nonlinear
master equation. Attractive as it is, the lattice-gas model
and its variants—for example, the Potts-model
approach?® —suffer from an essential difficulty in that
they have no intrinsic dynamics and, therefore, the
dynamical correlations in them are entirely ‘static”
driven.?!

The dynamical theory of the adsorbate layer which
would take properly into account both intra-adsorbate in-
teractions and correlations as well as realistic models for
interaction with the host solid lattice is quite complex;
progress is most likely to be obtained by generalizing a
memory-function-like approach for a single adsorbate
particle as given in Refs. 17 and 18. In this paper we
would like to present a simpler analysis of such a system
based on a hydrodynamical model for the adsorbate lay-
er. We shall treat the interactions between the adsorbate
constituent particles within the simple hydrodynamic ex-
tension of the density-functional model?? and account for
the coupling with the host solid, the latter being treated
within the harmonic approximation for semi-infinite crys-
tals. In this way, we shall address some dynamical as-
pects of this system, mostly related to its hydrodynamic
(long-wavelength and low-frequency) behavior. We shall
develop a formulation which permits us to analyze
diffusion processes in dense adsorbates when the mutual
interparticle interactions between the adsorbate particles
(intra-adsorbate interactions) are as important as the in-
teractions between the adsorbate particles and the host
solid. We will also look into the possibilities of incor-
porating desorption into this description, again trying to
understand how it affects the collective behavior of the
adsorbate.

The plan of our paper is then as follows. In Sec. IT we
formulate the model and discuss the underlying essential
physical assumptions. In Sec. III, we derive the equa-
tions of motion for our dynamical model and show how
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they generalize previously postulated equations for adsor-
bate hydrodynamics. In Sec. IV we will discuss our re-
sults. Final comments and conclusions will be presented
in Sec. V.

II. MODEL

When a freshly cleaved surface of a crystal is exposed
to an ambient gas atmosphere, the gas particles begin to
interact with it, and, after some initial period of time, a
certain amount of gas particle settles down on the solid
surface, forming an adsorbate.

If the intra-adsorbate correlations are neglected, the
particle dynamics on the surface can be deduced from the
laws governing jumps (hopping) between several isolated
sites on the solid surface (adsorption sites) and from the
laws describing desorption. The desorption phenomena
are well understood”® and hopping diffusion can also be
relatively well described by various master equation
based models, even if the adsorption sites form a nontrivi-
al lattice.! As the adsorbate density increases, one ex-
pects the adsorbate to develop many dynamical features
similar to those of dense gases and fluids, though
modified by its interaction with the host solid. This in-
teraction is responsible for creating the adsorbate density
profile in the direction normal to the solid surface. We
shall assume that we can describe static properties of the
adsorbate using the free-energy-density functional akin to
that used in the studies of the interfacial phenom-
ena.?>®® The dynamics of the adsorbate is then de-
scribed by supplementing this free-energy functional by
the kinetic-energy part and using the canonical fluid dy-
namics formulation in which this functional plays the
role of the Hamiltonian of the fluid.?2%*

The state of the adsorbate is described in this approach
by the adsorbate density n(r,?) and velocity u(r,?) fields.
The vector r denotes the Eulerian position within the ad-
sorbate. As we shall see in what follows the adsorbate
density field changes rapidly in a direction normal to the
solid surface and vanishes outside a thin layer distributed
evenly on the solid surface. In the hydrodynamic limit
we are interested only in long-wavelength and low-
frequency variations of n(r,?) and. u(r,?); therefore, the
dynamics of the adsorbate layer will be essentially two di-
mensional. The free-energy functional for the adsorbate
consist now of two parts, the kinetic and the potential
one, and can be written as

F{n,u}=Fy,{n,u}+F{n}, 2.1

where

ka{n,u}=%fdrn(r,t)[u(r,t)]2 , (2.2)
with m denoting the adsorbate particle mass. The
potential-energy part of the free-energy functional,
Foo {1}, depends on the adsorbate density only and con-
tains both the part responsible for the short-range repul-
sion between the adsorbate particles and that describing
long-range attractive interaction.?® For example, it can
be written as
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Fpot{n}=fdrfo(n)+%fdrfdr’n(r,t)V(r—r')

Xn(r',t) . (2.3)

In Eq. (2.3), V(r—r') denotes the attractive interaction
between the adsorbate particles. We shall see that this in-
teraction is further modified by the coupling to the exci-
tations of the host solid.

Consider now the host solid which is thought of as a
semi-infinite crystal. We assume that the harmonic ap-
proximation is adequate for the description of its dynam-
ics. The fact that the solid is semi-infinite affects its exci-
tation spectrum. In addition to the bulk phonon excita-
tions (modified by the presence of the surface) the medi-
um supports distinct surface (Rayleigh) modes. In
several previous analyses of the adsorbate properties, for
example desorption, it has been shown that the use of
these modes does not lead to qualitatively different results
from those based on the simplified model in which the
solid is infinite and harmonic.?® Similar conclusion can
also be drawn from the analysis of a single-particle sur-
face diffusion.”’ In view of this, we adopt for the solid a
model in which the elementary excitations, phonons, will
be labeled by the index J. For an infinite solid, J denotes
both the wave vector q and the polarization A of the pho-
nons propagating in the solid. In a form more appropri-
ate for the surface phenomena description, the index J
denotes the parallel to the surface wave vector q and the
remaining “quantum” numbers which are appropriate for
the solid with a surface. In a model in which the solid is
treated as a semi-infinite elastic medium, these additional
indices are A=(c,o0 ), where c is the apparent sound ve-
locity along the surface and ¢ labels shear horizontal,
Rayleigh, and two P-SV modes.?*»?>26 The results of our
general analysis presented in this paper do not depend on
the particular choice of the solid dynamics we make.
Therefore, for the simplicity of the arguments to follow,
one can think about the elementary excitations of the
solid as being those of the infinite elastic medium. Of
course, in particular applications of our theory aiming at
the actual calculations of the hydrodynamical quantities
of the adsorbate, one must use a proper description of the
solid dynamics with the surface. With all that in mind
the solid Hamiltonian reads

H ({Qy},{I;}) =13 (124?01, (2.4)
3

where wjy denotes the frequency of the Jth mode. The

reality of the Hamiltonian requires that

HJ =H_J, Q;‘ =Q_J, where —J:(—q,}\-) .

The adsorbate particles do interact with the solid via
the central two-body potential W(r, —R;) where r, and
R, denote, respectively, the position of the ath adsorbate
particle and the actual position of the sth particle form-
ing the solid. Writing R, =R%+u, where RY is the equi-
librium position of the sth particle, we can expand the ad-
particle solid interaction in a power series of u’s keeping
the linear terms only. Expanding then displacements u,
into the normal variables Q; we obtain the following
form of the interaction between the solid and the adsor-
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bate:

AH=Hg+8H , 2.5

where Hy denotes the interaction between the rigid solid
and the adsorbate

Hy{n)= [drn(r) 3 W(r—RY)= [drn(n)U,(r) .

(2.6)

Note that this is the term which is usually called the stat-
ic surface potential.?® It is responsible for maintaining
the adsorbate density profile and its range in the direction
normal to the surface is of utmost importance in deter-
mining the profile properties in wetting theories.*> The
second term in Eq. (2.5) is the dynamical part of the in-
teraction which depends on the structure of the solid and
that of its surface and has the following form:

SH{n,Q}=—3 Q;¥l(r,)
J,a

=—3 [drn(n¥ng; . 2.7)
J

The functions Wy(r) carry all the information about the
details of the coupling between the solid excitations and
the adparticle. They also contain all the geometrical in-
formation distinguishing between various modes of the
semi-infinite solid. As already mentioned, the detailed
form of these functions is not essential for our further
analysis. Actually, one can use here their form obtained
for an infinite solid. In this case (and for the Bravais
solid lattice) they assume a simple form:
1

Yir)=——r0 e; VW l‘“RO exp(i 'Ro ’ (2.8

(1) VMN, zs‘, 5 ( s)expliq-Ry) )

where ey is a phonon polarization vector, M is the mass of
the particles forming the solid, and N; is the number of
these particles.
The full Hamiltonian for our system reads now
H=Fyn{n,u}+Fg (n}+H,({Qs},{I;})

pot

+8H {n,Q;} , 2.9)

where FST {n}=F,, {n}+Hpg{n} is the potential part of
the adsorbate free energy with the surface potential in-
cluded.

The Hamiltonian H, Eq. (2.9), can now be used within
the realm of the canonical description of fluid dynamics
and the equations of motion for all the dynamical degrees
of freedom: n,u,Qy,II;, can be derived by using the Lie-
Poisson brackets for these variables.?*

III. EQUATIONS OF MOTION

The combined fluid adsorbate-solid Hamiltonian, Eq.
(2.9), together with the Lie-Poisson brackets for the fields
n(r,t) and u(r,t),?* listed in the Appendix, and the usual
Poisson brackets for the solid elementary-excitation vari-
ables,

{QJ’H—J’}=SJ,J’ > (3.1)
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leads to the following set of equations of motion: Oy =—wlQ;+ fdr n(r,t)W_y(r) . (3.5)
1

an E;;’t) = Tn‘{"(r 1), H}ypp (3.2a)  Notice that 8F ;‘; /8n plays the role of the local chemical
potential for the adsorbate in perfect agreement with the
du(r,) =—1—[u(r, t),H}pp » (3.2b) meaning of the free-energy functional for the inhomo-
ot m geneous fluid. All the static interactions between the host
30y solid and the adsorbate are already taken care of by that
“ar ={QyH}, (3.2¢)  term. The dynamical coupling between both components
of the adsorbate-solid system is contained in the last

ﬂ ={I1,,H) (3.2d)  terms at the right-hand side of Egs. (3.4) and (3.5).
ot P ' Now, since we are interested in deriving the effective

equation of motion for the adsorbate, we formally solve

Equation (3.2a) is the continuity equation for the adsor- Eq. (3.5) for the solid excitations. We obtain

bate density, Eq. (3.2b) is the Euler equation for the ad-
sorbate flow in the presence of the adsorbate solid in-
teractions, and Egs. (3.2¢) and (3.2d) are the equations of g (;)=Qhom(s)+ ftdt'fdr\lf_l(r)L sin[w;(t —1")]
motion for phonons driven by the same interactions. Ex- 0 oy

plicitly we have

Xn(r,t'), (3.6)
____Bn(r,t) =—V- 3.3) hom
ar [n(r,t)u(r,t)], 3. where Q] ) is the general solution of the homogene-
ous harmomc-oscﬂlator equation. The resulting equa-
ou(r,t) 1 _OF ;gt{n } 1 tions of motion for the adsorbate are the continuity equa-
.  wVu———v sn(r,t)  m 2 9;V(n), tion (3.3) and the integro-differential equations for the ve-
! locity field obtained by inserting the solution (3.6) into
(3.4) Eq. (3.4):
J
du(r,t) _ 1 OFin} 1 hom
ot u-Vu m Sn(r, 1) +m ?QJ (t)V\PJ(r)
+ zf ar’ [ dew ()W) — sinfoy(t—1) (e, e) (3.7)
@y

The third term at the right-hand side of Eq. (3.7) contains the field Q¥°™(¢) which rapidly oscillates on the hydro-
dynamical time scale. Thus, it averages out on the time scales larger than the inverse of a typical Debye frequency
< 10713 sec, and therefore it can be neglected in further analysis.

To proceed further we integrate the last term in Eq. (3.7) by parts in time. We obtain three terms which we shall now
discuss successively. The term < cos(wjt)n(r,t =0) oscillates intime on the same time scale as Q"°™(¢) and can be
neglected. The second term is

——Vz fdr\I/J DV _y(r')n(r, t)=—Vfa’rK(rr)n(r t). (3.8)

This term can be incorporated into the term containing the potential part of the free-energy functional F ;ﬁt{n } result-
ing in

di{n}= F;fgt fdrfdrn r,t )K(r,r'")n(r',t)
= fdr[fo(n ) +n(n,O)U(D]+1 [dr [den(noVie—r)—K(xr,r)n(r,1) (3.9
with the surface potential U,(r) defined in Eq. (2.6). In the remaining term the time derivative of the adsorbate density

can be eliminated by using the continuity equation. This permits the integration by parts in a position space. The equa-
tion of motion, Eq. (3.7), takes then the following form:

du(r,?) _ 1 _ 8®{n 1 o =
) — - ’ ’ o4 VRPEY A l,tl s (3'10)
5 L s S J v fdrn(c, )8 =), r)
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with the nonlocal in space and time memorylike kernel
given by

Er,rit—t)=3 = coslay(t —t) V()@ V¥ _(r')
] W3

=B (Q5(1)Q_5(t'))V¥r)@V'¥_4(r') .
J
(3.11)

The second equality in Eq. (3.11) assumes, valid in the
harmonic solid approximation, an expression for the dis-
placement correlation function. One expects that this ex-
pression will emerge naturally in a more microscopic
analysis.

Equation (3.10) is a new equation of motion for the ad-
sorbate fluid which generalizes those used in Refs. 10 and
11. Note that in addition to the usual terms present in
the Euler equations of motion for inviscid fluid, it con-
tains a dissipative term < {-u. If we would like to gen-
eralize our fluid description by equipping the adsorbate
with its internal shear and bulk viscosities we should now
follow Ref. 24 and replace the Lie-Poisson brackets for
fluid degrees of freedom with the full metriplectic brack-
ets.?” It would result in adding to the right-hand side of
Eq. (3.10) the usual Navier-Stokes terms, viz., Egs.
(A4)-(A6). Adding these terms is not essential for our
further analysis. In the following section we shall discuss
the properties of Eq. (3.10).

IV. RESULTS AND DISCUSSION

In addition to a new dissipative term < Ein Eq. (3.10)
the seemingly standard term describing Eulerian pressure
deserves some attention. Indeed, the functional ®{n} is
a natural extension of the free-energy functional used in
the theory of inhomogeneous liquids.>*?? Note that it
contains contributions from the internal adsorbate in-
teractions [short-range repulsion and long-range attrac-
tion, viz., Eq. (2.3)], static surface potential, Eq. (2.6), and
the phonon induced intra-adsorbate interactions de-
scribed by the kernel K(r,r’') in Eq. (3.9). The presence
of the latter term distinguishes our functional ®{n} from
those used in the theory of wetting® where the static at-
traction between the solid wall and the fluid layer is the
only one present. Following standard arguments®® we
can now hypothesize that this functional should have the
following form:

<I>{n}=%fdrn(r)[lnn(r)—1]

—g [arfarnmcErm®), @D

where C(r,r') is the direct correlation function for the
adsorbate with all the interactions taken into account.>?
It might depend functionally on the density profile.

The stationary solution of the adsorbate equations of
motion, Eq. (3.10), which determines the static density
profile ni(r) for the adsorbate,
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V8<D§n} -0

8n(c) ) 4.2)

has the usual form discussed in Refs. 5 and 8. On physi-
cal grounds we expect the solution of Eq. (4.2) to vanish
everywhere except in a thin layer forming the adsorbate.
Along the surface, the equilibrium density is periodic due
to the periodic nature of the surface potential and of the
phonon induced modification to the two-body interac-
tions in ®. Being interested in the variations of the ad-
sorbate density over distances much longer than the typi-
cal lattice constant of the solid we will assume that the
adsorbate is confined to an infinitely thin layer, i.e., that
it is effectively two dimensional and that r is confined to
the (x,y) surface plane. Furthermore, one can show that,
in the long-wavelength limit, the phonon induced interac-
tion K(r,r') is translationally invariant, i.e., it depends
only on the difference r—r’. Any corrections to such a
form are necessarily short range in nature. Since our
main interest in this work is to present a general frame-
work and to show its simple application already leading
to interesting results, we will consequently analyze the
adsorbate fluctuations in the long-wavelength limit. This
implies that the short-range structure in the density
profile 7(r) is not of primary interest. Therefore we as-
sume it to be constant along the solid surface. Should
more detailed analysis be required, for example for sur-
faces of the type studied in Ref. 14, then the exact solu-
tion of Eq. (4.2) should be used leading to convolution-
type rather than algebraic equations for the adsorbate
density and velocity fluctuations.

It is perhaps less interesting to note that the form Eq.
(3.9) of the functional ® can also be obtained by perform-
ing a canonical, polaronlike, transformation of the origi-
nal degrees of freedom in the Hamiltonian, Eq. (2.9),

0;—0;=0;——= [dr¥_y(nin(r,1) @.3)
@y

with the remaining degrees of freedom unchanged. This
transformation decouples the adsorbate Hamiltonian
from that of the solid [i.e., the term 8H disappears from
Eq. (2.9)] at the expense of the modification of the origi-
nal functional F ;ﬁt to the form given in Eq. (3.9) and a
change in the Lie-Poisson brackets between the solid
variables and the hydrodynamical fields. All the dynam-
ics of the system is now ‘“hidden” in the Lie-Poisson
brackets. This is a fairly typical situation in generalized
Hamiltonian dynamics.?’

We shall now follow the usual procedure and derive
the expression for the time-dependent density correlation
function using Eq. (3.10). We restrict ourselves here to
the linear analysis. Higher-order corrections can be ana-
lyzed following standard procedure.

In the following discussion of the equilibrium density
profile for the adsorbate we will assume from now on that
Eq. (3.10) holds effectively in two dimensions. Lineariz-
ing now Eq. (3.10) and the continuity equation around
fi(r)=n =const we obtain
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au(rt din t.., 1337 ', ’ ot
ol - V———{——}—Bn (r,0)— - fodt [drEnse—1)ur,e),
(4.4)
on(r,t) =—naV-ul(r,t) .
ot

Note that 82 /872 _is the differential operator which depends on the details of the free-energy functional, Eq. (4.1).
The memory kernel §(r r'’;t) depends, in general, on the details of the surface lattice structure via the coupling func-
tions Wy(r), viz., Eq. (2.8) and (3.11). Applying the arguments identical to those used in the discussion of K (r,1’) we can
assume that the kernel {(r,r’;¢)=_{(r—r’;¢). This approximation is certainly inadequate for models of the surface mi-
gration discussed in Ref. 14 in which several inequivalent adsorption sites per surface unit cell were present. In these
models, short-range correlations are clearly of importance and they will show up in the present model in the kernels

K(r,r') and {(r,r';2).
to get

—izu(k,z)+

n = -
" 5k, z)-u(k,z)

—iz 6ni(k,z)—ink-u(k,z)=06n(k,t=0) ,

where the function R (k) is the Fourier transform of 8® /872
—k,1)8n(k,0)) by eliminating from Egs. (4.5) the velocity field. We ob-

the density correlation function C(k,t)={(&n(
tain
-1

-k

- “«>

Cik,z)= — i T+ L Ek,2)
m

—iz+ L R(K)k-
m

For solid surfaces with sufficiently high point symme-
try (trlangular hexagonal, or quadratic lattices) the ten-

sor ¢ is isotropic, C(k,z)=C(|k|,z)I, and Eq. (4.6)
simplifies to
—1
LR (kK2
Ckl,z)= |—iz+—2 —
i
tz+m§(|kl,z)
XC(lkl, t=0) 4.7)

In the case of no interaction between the host solid and
the adsorbate {(k,z)=0 and we recover from Eq. (4.7)
the usual expression for the density correlation function
for inviscid fluid. The dispersion relation for excitations
in the fluid [determined by the pole of the denominator in
Eq. (4.7)] is given then by the Bogoliubov-like expression
(kD) ="-R(|kk?, 4.8)
m
in which R(|k|) plays the role of the Fourier transform
of the interparticle potential. This is in agreement with
Eq. (4.1), and the asymptotic behavior of the direct corre-
lation function [lim_, ,C(|r])=—BVIr[)]. In case of
the interacting adsorbate-solid system § does not vanish
and we expect that the poles of the correlation function,
Eq. (4.7) behave as z « |[k|2. Thus in the long-wavelength
limit, the dispersion relation for the excitations is given
by the equation

R(|k|)

= KL0)

|k|2=0 (4.9)

We can now perform the Laplace (in time) and Fourier (in position space) transform of Eq. (4.4)

=-r%kR(k)8n(kz)+u( =0),

4.5)

We derive the expression for the Laplace transform of

C(k,t=0) . (4.6)

describing diffusivelike decay of the density fluctuations.
By inspection of Eq. (4.9) we can identify

Ikl

Z(k[,0 =D (4.10)

[k[—0

with the diffusion coefficient in the adsorbate.

Comparing now Eq. (4.10) with the standard definition
of the diffusion coefficient in the theory of mixtures,
D =kdu/3dc, where ¢, u, and « are the concentration of a
given specie in the mixture, its chemical potential, and
the particle mobility, respectively, we find that the in-
verse of & is just a generalization of the particle mobility
for our strongly interacting system. Furthermore, notice
that the derivative of the chemical potential is replaced in
our analysis by the functional derivative of the potential
® which contains all the information about the intra-
adsorbate correlations. If one uses the expression for the
free-energy functional @ in which short-range, hard-core,
repulsive interactions of the adsorbate particles are taken
into account, then one accounts already for the effects
due to the blocking factors, discussed in the lattice-gas
approach to surface diffusion.!>!%2% Note also that the
kernels K(r,r’') and &(r,r’;¢) for r=r’ are related to the
excess free energy for the solid due to the presence of a
single adparticle. For more detailed analysis of this point
and its relation to the single adparticle migration consult
Ref. 15. In a somewhat unphysical limit of our model
corresponding to the adsorbate particles interacting only
with the host solid and not among themselves (neither
directly nor due to the phonon induced effects) the only
term remaining in the free-energy functional @ is its en-
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tropic part in Eq. (4.1). Equation (4.10) gives then a sim-
ple relation D=kgzT /(7{) which is the analog of the
Stokes-Einstein relation.” We emphasize again that our
expression for the adsorbate diffusion coefficient, Eq.
(4.10), indicates a complex interplay between the single-
particle effects, embodied in the £ and the collective
effects contained in R(|k|). Indeed, Eq. (4.10) should be
compared and contrasted with the usual parametrization
of the diffusion coefficient D=D,exp(—BAU), where
AU is conventionally referred to as the activation energy
barrier for diffusion and the prefactor D, is rather poorly
understood at the microscopic level. One can now identi-
fy the prefactor Dy=ky T /[7{(0)] and the activation en-
ergy AU=—kyTIn[fiR(0)/kgT], a result compatible
with Eq. (4.1).

The generalized inverse mobility £(|k|,0) should be an

]

Z(r,r’;t)= B

MN, &2

in agreement with the expression given in Ref. 17. Note
that our linearized analysis of the dynamic correlation
function C(k,z) can be improved by resorting to the
mode-mode-coupling-like analysis. In such a case, the in-
verse mobility £, as well as all other transport coefficients,
will become renormalized by the modes interaction and
the mobility will no longer contain only the single adsor-
bate particle—host-solid interactions.

Before closing this section we would like to present a
few comments on a possible generalization of our hydro-
dynamic approach. One of the most intriguing points in
the theory of the adsorbate diffusion is its interrelation
with other nonequilibrium phenomena on the solid sur-
face, for example desorption. It was shown in Refs. 10
and 11 how this aspect can be included in the hydro-
dynamic description of the adsorbate. In Ref. 14 a simple
master equation model was proposed which permits for a
rather detailed analysis of how single-particle, hopping-
like, diffusion on simple and complex surface lattices cou-
ples to desorption. Here, we would like to show that
desorption can be built into our model without essential
changes, at least at a simple phenomenological level.
Indeed, if desorption occurs at the rate a, then the sur-
face coverage decays in time as < exp(—at). One can
include this fact into our description by adding to the
right-hand side of the continuity equation, Eq. (3.3), the
sink term

on(r,t) _

Y (4.12)

—V-n(r,t)u(r,t)—aln(r,t)—ngy],

where an, is proportional to the sticking coefficient.>?
Since each of the desorbing particles carries away not
only its mass but also the transverse (along the surface)
momentum which it had before the act of desorption, we
have to supplement the kinematic term in Eq. (3.4) with
the damping term equal to —au(r,¢). Following then the
same analysis as that leading to Eq. (3.11), but using the

3 3 expliq-(RI—=RI){ Qi (£)Q i (0) X egp- VIV (r—RI)®(e_g; -V )V’ W(r' —RY)

analytic function of the wave vector even in dense adsor-
bates in which a variety of gas-liquid-like phase transfor-
mations are expected.’>?® In such a case we expect
E(lk|,0)=&y—&,lk|?+ - - - . Inspecting Eq. (4.9) and its
straightforward generalization for the case of viscous ad-
sorbate we find that £, adds to the adsorbate bulk viscosi-
ty.
The model presented above permits one to clarify the
meaning of the inverse mobility coefficient £ as intro-
duced in Refs. 10 and 11, and offers a convenient starting
point for its further more microscopic analysis. Work
along that line is in progress. For example, one can im-
mediately find a close relationship between § and the fric-
tion coefficient discussed within the memory-function for-
mulation by Wahnstrom, 17 Indeed, inserting Eq. (2.8)
into the definition of the §, Eq. (3.11), we find

4.11)

modified continuity equation, Eq. (4.12), we obtain the
additional terms in Eq. (3.10) equal to

a
- ,t)+— | dt' | dr'Ky(r,0';t—¢' )V n(r',t") .
au(r,t) mf f r'K,(r,r Wn(r',t')

(4.13)

The expression for the kernel K;(r,r’;¢) is similar to that
in Eq. (3.11). This additional term in the hydrodynamic
equation of motion for the adsorbate describes the cou-
pling desorption and the adsorbate fluctuations. It affects
both diffusive and propagating modes in the adsorbate.
Making the same approximations as those in Sec. IV can-
cerning space and time scales on which the adsorbate
density changes appreciably, one can show that the term
given by Eq. (4.13) renormalizes the coefficient R(|k]|),
viz., Eq. (4.5). The presence of this term as well as addi-
tional function —au leads to occurrence of new propaga-
ting modes.!®!?*

V. FINAL COMMENTS

In this paper we have proposed a hydrodynamic
description of dense adsorbate dynamics which takes in-
teractions with the host solid into account on both static
and dynamic levels. Using the generalized density-
functional approach and the canonical formulation of the
many-body dynamics, we have derived the equation of
motion for the fluid adsorbate which contains a friction
term relating the adsorbate diffusion to the collective
properties of the adsorbate. This term automatically ac-
counts also for blocking factors (much discussed in the
literature) due to the hard-core adsorbate particles in-
teractions. Our model permits for the incorporation of
desorption phenomena and modifies the existing phenom-
enological models of diffusion of desorbing adsorbates.
Although we have restricted ourselves to the simple case
of intra-adsorbate Eulerian (nondissipative) motion, there
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-is no difficulty in writing down the full Navier-Stokes
model which produces no essential changes in our con-
clusions. This modification is, of course, necessary when
the issue of divergence of the transport processes is ana-
lyzed in two dimensions.!® We have also observed that
the coefficient £, will then renormalize the bulk viscosity
of the adsorbate. We have discussed the model assuming
the simplest possible situation in which the discrete
translational symmetry of the host solid surface is of no
consequence. It should be clear from our presentation
that no conceptual changes are required to carry out the
generalization to real discrete lattices of adsorption
sites.!* Our model, although aimed at particular adsor-
bate properties, should also be applicable for the descrip-
tion of the dynamical processes in the wetting layer. In
the latter case, the usually discussed dynamical processes
pertain to the motion normal to the solid surface, neces-
sary for the dynamical description of the wetting transi-
tion.>” For thin layers, just before the transition takes
place, the transverse motion will be strongly affected by
the friction term discussed in this paper.
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APPENDIX

In this appendix we recapitulate basic facts from the
canonical fluid dynamics formulation used in Secs. II and
III. Following Ref. 24 we write the Lie-Poisson brackets
between the velocity and density fields as

{n(x,t),n(y,t)} pg=0, (A1)

ZBIGNIEW W. GORTEL AND YUKASZ A. TURSKI 45
a _ d
{n(x,0),u’(y,t)} pp=——,8(x—y), (A2)
ax
{u(x,1),u’y,t)} pp
=_1 eb(VXu(x,1))8(x—y), (A3)
n(x,t)

where €%° is the fully antisymmetric, third-rank Levi-

Civita tensor. It is sometimes convenient to combine the
density and velocity fields into a four-vector j*=(n,u?),
where a=0,1,2,3. The Lie-Poisson brackets (A1)-(A3)
define then the antisymmetric four-by-four matrix kernel
L°3(x,y). The hydrodynamic Euler equations are then
derived from the free energy Eq. (2.1) and have the fol-
lowing form:

9j%(x,t)

Y (A4)

:%fdy[‘aﬁ(x,y)m )

8j8(y)

The use of the density and velocity fields is customary
in hydrodynamics but the density and the particle
current fields can be used as well.?* The equations of
motion are then written in the same form as those in Eq.
(A4) but with different kernel L*A(x,y).

The Navier-Stokes equation describing the dynamics of
viscous fluid can also be derived in a similar fashion by
replacing the Lie-Poisson kernel L“? with the metriplec-
tic one**?” D(x,y)=L(x,y)—D'®P(x,y) where the
kernel D’?? has the form

s |0 0
D=1 _yabxy) | (A5)
where
ve(x,y)= (n,+ /3)—§2~+ §7tv2
2 mn(x) TN dx %x? " x
xX&(x—y), (A6)

with 7 and 7, being shear and bulk viscosities, respective-
ly.
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