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Coulomb-blockade oscillations in disordered quantum wires
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The conductance of narrow wires, defined by a split-gate technique in the two-dimensional elec-
tron gas in a modulation-doped GaAs-Al Ga& As heterostructure, is studied experimentally as a
function of gate voltage, temperature, and magnetic field. Both intentionally (Be doped) and unin-
tentionally disordered wires are investigated. Periodic conductance oscillations as a function of gate
voltage are found in both systems, in the regime where only a few hundred electrons are present in
the wire. The dominant oscillations are very regularly spaced, with a period that is quite insensitive
to a strong magnetic field, and persist up to a few kelvin. A strong magnetic field is found to enhance
the amplitude of the oscillations up to values approaching e /h. The experimental data are analyzed
in terms of a theory for Coulomb-blockade oscillations in the conductance of a quantum dot in the
regime of comparable level spacing AE and charging energy e /t, based on the assumed presence of
a conductance-limiting segment in the wire. Good agreement with the experiment is obtained for the
temperature dependence of the oscillations, using physically reasonable parameter values. At low

temperatures, a crossover from the classical regime k&T & AE to the quantum regime k&T & AE is
found. The appearance of additional periodicities and the onset of irregular oscillations at very low
temperatures in some of the wires are attributed to the presence of multiple segments. No magne-
toconductance oscillations are observed, in support of the recently predicted Coulomb blockade of
the Aharonov-Bohm eR'ect.

I. INTRODUCTION

The phenomenon investigated experimentally in this

paper was first obser ved by Scot t-Thomas et at. They
discovered that at low temperatures a narrow disordered
channel in a Si inversion layer may exhibit strikingly reg-
ular conductance oscillations as a function of the voltage
on the gates used to define the channel. This is in con-
trast to the aperiodic conductance fluctuations usually
observed in such structures. The period of the oscilla-
tions differed from device to device, and did not cor-
relate with the channel length. Based on estimates of
the sample parameters, it was concluded that each pe-
riod corresponds to the addition of a single electron to
a conductance-limiting segment in the narrow channel.
In order to explain their observations, Scott-Thomas et
al. originally suggested that a charge-density wave or
"Wigner crystal" was formed. From a model due to
Larkin and Lee, and Lee and Rice," they inferred that
this would lead to a thermally activated conductance be-
cause of the pinning of the charge-density wave by impu-
rities in the narrow channel. The activation energy would
be determined by the most strongly pinned segment of
the cryst, al, and periodic oscillations in the conductance
as a function of gate voltage or electron density would
reflect the condition that an integer number of electrons
is contained between the two impurities delimiting that
specific segment.

As an alternative explanation, two of us have proposed

that the effect is a manifestation of Cou(omb blockade -os-
cillotions in a semiconductor nanostructure. 5 In the dis-
cussion of our experimental results, we limit ourselves
to a comparison with the Coulomb-blockade model, for
which the theory has now been worked out. A discus-
sion of the Wigner-crystal model has been given in Refs.
9 and 10. The conclusion reached in the present paper is
that the Coulomb-blockade model does provide an ade-
quate and consistent description of our experiments. In
a low-density quantum wire with weak disorder (no tun-
nel barriers), however, a Wigner-crystal may well be an
appropriate description of the ground state.

The Wigner crystal is a manifestation of long-range
order neglected in the theory of Coulomb-blockade oscil-
lations. However, both the Coulomb blockade and the
signer-crystal models have in corrunon that electron-
electron interactions play a central role. In contrast,
some authors have argued that resonant tunneling of non-
interacting electrons can explain the periodicity of the
observed conductance oscillations. One cannot eas-
ily discriminate between these models on the basis of the
periodicity of the oscillations. Conductance oscillations
due to resonant tunneling through nondegenerate levels
as well as Coulomb-blockade oscillations both have a peri-
odicity corresponding to the addition of a single electron
to the confined region. Other considerations are neces-
sary to demonstrate the inadequacy of a model based
on resonant tunneling of noninteracting electrons. The
most important of these are the large activation energy
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of the minima (exceeding the average single-electron level

spacing EE), the absence of spin splitting of the peaks
in a magnetic field, and the absence of magnetoconduc-
tance oscillations. These considerations will be discussed
in detail in this paper.

Our experimental work has consisted of a study of the
conductance of disordered quantum wires defined by a
split-gate technique in the two-dimensional electron gas
(2DEG) of a GaAs-Al Gaq As heterostructure. We
have investigated the effects of temperature and mag-
netic field on the conductance as a function of gate volt-

age, as well as the magnetoconductance and the Hall re-
sistance in a cross-shaped narrow channel geometry. In
addition, we have varied the channel length, and the de-

gree of disorder. Some of our results have been pub-
lished previously. ~4 It is the purpose of this paper to give
a more complete account of our experimental work, and
to present a quantitative comparison with the theory
for Coulomb-blockade oscillations in the size-quantized
regime characteristic of semiconductor nanostructures.

Other observations of the effect have recently been re-
ported by Field ef al in a. narrow channel in a 2D hole
gas in Si, by Meirav et al. ~s in a narrow electron gas
channel in an inverted GaAs-Al Gaq As heterostruc-
ture, and by De Graaf ef at. ~ in a very short split-gate
channel (or point contact) in a Si inversion layer. In
addition, Coulomb-blockade oscillations have been ob-
served in the conductance of a quantum dot by several
groups. This work has been reviewed recently, and
will not be discussed here.

This paper is organized as follows. The split-gate
quantum wires used in our study are described in Sec. II.
An overview of the experimental results is given in Sec.
III. We find a rich and complex behavior, with variations
from device to device, reflecting the mesoscopic nature of
disordered quantum wires. The most characteristic as-
pects of our observations, however, are representative of
all devices that show the conductance oscillations. The
period of the oscillations as a function of gate voltage
is explained in terms of a theory for Coulomb-blockade
oscillations in Sec. IV A, using an equivalent circuit to
model the electrostatics of the problem. We can account
for the temperature dependence of the line shape of the
oscillations as well, as is discussed in Sec. IVB. The ef-

fects of multiple segments in the wire are discussed in
Sec. IVC. Finally, we discuss in Sec. V those aspects of
the experimental results that are less well understood,
and conclude.

II. SPLIT-GATE C}UANTUM WIRES

TABLE I. Channel length and period of the conductance
oscillations.

Channel~'~

D1
D2
D3
U1
U2
U3

Length

(pm)

44
6.2
6.3
0.5
6.2

16.7

Period'
(mV)

2.7
2.1
2.2

1.0
2.3

close to zero). In the regime of interest, which is that
close to pinch off, both the electron concentration per
unit length and the channel width vary approximately
linearly with gate voltage. 24

Starting point for the fabrication of our samples is a
GaAs-Al Gaq As heterostructure, which consists of a
sequence of layers grown on top of a semi-insulating GaAs
substrate by molecular-beam epitaxy. The first layer is
a thick buffer layer of pure GaAs. The 2DEG is formed
at the interface of this layer with an A1Q 33Gao s7As layer
grown on top of it. The latter consists of a 20-nm-thick
spacer layer of pure Ala 33Gap s7As, which serves to sep-
arate the electrons from their parent donors in order to
increase their mobility, and a 40-nm-thick Alo 33Gao s7As
layer doped with Si at a concentration of 1.33 x 10~

cm . Finally, the heterostructure is capped by a 20-
nm-thick undoped GaAs layer.

We have used two sets of samples. In one set (des-
ignated by D in Table I), a planar doping layer of Be
impurities with a sheet concentration of 2 x 10'0 cm z

was incorporated in the buffer layer during growth, at
25 A below the heterointerface. This was done in order
to introduce strongly repulsive scattering centers in the
2DEG (Be is an acceptor in GaAs). Such scattering cen-
ters may act as tunnel barriers in a narrow channel in the
2DEG.s The other set of samples (designated by U) was

undoped, but was nevertheless disordered as well, due
to random fluctuations in the distribution of the ionized
donors in the Al Gaq sAs layer. 25

In the wide regions, the Be-doped samples had an elas-
tic mean free path l, 0.7 pm, deduced from the con-
ductivity at T = 4.2 K and the electron sheet density
n, = 2.9 x 10~t cm z. For the undoped samples these
values were I, = 3.9 pm and n, = 3.0 x 10~~ cm z. This
mean free path does not describe the transport in the
quantum wires near pinch off, when the conductance is
limited by a small number of accidentally strong scat-
tering centers. These are due to negatively charged Be

Our experimental results for the conductance of quasi-
one-dimensional channels have been obtained using nar-
row wires, defined by a split-gate technique in the 2DEG
in a modulation doped GaAs-Al Ga~ As heterostruc-
ture. By adjusting the negative gate voltage (applied
between the gate on top of the heterostructure and an
Ohmic contact to the 2DEG), the channel width W can
be controlled in a range from definition (where W
W~;tg, the lithographic width) to pinch off (where W is

The D channels are intentionally disordered by means of
a planar doping layer of Be near the heterointerface in the
GaAs layer. The U channels are unintentionally disordered.

Channel D1 is the right section and channel D3 is the middle
section of a miniature Hall bar [see Fig. 1(b)].' The period of the oscillations is given for T = 1.5 K and
B = 0, except for channel U2 (T = 50 mK and B = 0) and
for channel D3 (T = 50 mk and B = 5 T). No oscillations
were observed in the shortest channel Ul.
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acceptors close to the 2DEG, and due to statistical fluc-
tuations in the distribution of the remote ionized donors
in the Al~Gap ~As layer. The resulting variations in the
electrostatic potential are enhanced in a narrow chan-
nel because of the reduced screening. Near pinch off,
the channel breaks up into a small number of segments
separated by potential barriers formed by such scatter-
ing centers. This is inferred from our experimental re-
sults, and is supported by model calculations of Nixon
and Davies, in which the random positions of the re-
mote ionized donors are taken into account.

The fabrication of the samples proceeds as follows.
First, the heterostructure is mesa-etched into a rectangu-
lar shape, and twelve alloyed Au-Ge-Ni Ohmic contacts
are formed along its edges. Then, a pattern of six Ti-
Au gate electrodes is defined in a two-step process, us-
ing optical lithography for the coarse parts and electron-
beam lithography for the fine details. These gates can be
controlled independently. Figure 1 shows scanning elec-
tron micrographs of the two narrow-channel geometries
studied. When negatively biased, the gates (light lines)
subdivide the 2DEG into six wide regions (underneath
the dark areas), which are connected by narrow chan-
nels. Two Ohmic contacts are attached to each of these
wide regions. The first geometry [Fig. 1(a)] consists of
a set of five narrow channels on a single sample (each of

10

(b)

which can be measured independently), while the second
[Fig. 1(b)] consists of a miniature Hall bar. At the deple-
tion threshold of the 2DEG directly underneath the gates
(about —0.3 V), the narrow channels have approximately
the lithographic width Wj;t-, h ——0.5 pm. Close to pinch
oK the channel width W is reduced to about 0.1 pm, and
the electron density n, is reduced by about a factor of
2. (The estimate for W is based on typical lateral de-
pletion widths of 0.2 pm/V, i52~ ~5 and that for n, on
an extrapolation of the periodicity of the Shubnikov —de
Haas oscillations, measured at several gate voltage val-
ues. ) The length L of the channels varies (see Table I).

One Be-doped sample (not included in Table I), having
channels of width 6'~;&h —— 1 pm, was studied as well.
The results obtained with these channels were similar to
those obtained with the narrower channels, except for the
pinch-off voltage, which was about twice as large. The
periodicity of the dominant oscillations was within the
range of values we found in the narrower wires.

III. EXPERIMENTAL RESULTS

Primarily, we have performed measurements of the
conductance as a function of gate voltage, for a number
of quantum wires of diA'erent length. The experiments
were done over a range of temperatures and magnetic
fields. In addition, we have measured the conductance
and Hall resistance as a function of magnetic field, at
fixed gate voltage. The samples were mounted in the
mixing chamber of a dilution refrigerator with a base
temperature of 50 mK. We employed a magnet capable
of generating magnetic fields up to 8 T perpendicular
to the 2DEG. A conventional ac lock-in technique was
used to measure the conductance, while the gate volt-
age (or magnetic field) was swept slowly. In order to
ensure linear response, the excitation voltage was kept
below krrT/e We hav. e studied the diA'erential conduc-
tance also, using dc bias voltages up to a few mV, but
in this paper we restrict ourselves to the linear response
regime. Experimental data are presented for channels
Dl, D2, and D3, which are intentionally disordered by a
planar doping layer of Be, and for channels U2 and U3,
which are not intentionally disordered.

A. Conductance versus gate voltage:
Zero xnagnetic field

10

FIG. 1. Scanning electron micrographs of the two split-
gate geometries that we have used. The first (a) defines five
narrow channels of increasing length, L = 0.5, 2.1, 6.2, 6.2,
and 16.7 pm, respectively. The second (b) defines a miniature
Hall bar, with section lengths L = 4.4, 6.3, and 2.4 pm and
side probes having a width of 0.5 p, m. For both geometries,
the lithographic channel width is WI;&h ——0.5 pm.

In Fig. 2 the conductance near pinch oA' is shown for
two Be-doped quantum wires, D1 and D2. At T = 1.5
K both channels exhibit well-resolved conductance os-
cillations, which are periodic in the gate voltage. The
oscillations appear to be superimposed on a background
conductance of approximately O. le~/Ii, and have a period

Anat, 2.7 mV (Dl) and 2.1 mV (D2). As the gate
voltage is increased the oscillations disappear gradually.
Whereas the two conductance traces are relatively sim-
ilar at T = 1.5 K, this is not the case at T = 50 mI4.
In channel D2 the oscillations become better resolved at
this low temperature, while the period is unchanged and
the value of the conductance at the maxima remains ap-
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FIG. 2. Two-terminal conductance vs gate voltage of two

intentionally disordered narrow channels (Dl and D2) at T =
1.5 K and 50 mK.
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FIG. 3. Two-terminal conductance vs gate voltage of two

unintentionally disordered narrow channels (U2 and U3) at
T = 1.5 K and 100 rnK.

proximately the same. In contrast, the oscillations in
channel Dl are suppressed at 50 mK, and an irregular
pattern of sharp conductance peaks is observed instead.

In Fig. 3 we show a corresponding set of results for
two undoped channels, U2 and U3. At T = 1.5 K, the
periodic conductance oscillations are observed in channel
U3 only (b,Vs ts 2.3 mV). Channel U2 shows a slow

conductance modulation instead. Both channels show

periodic conductance oscillations as the temperature is
decreased to 100 mK (b, Vs q, 1.0 mV for U2). As
is the case in channel D2 in Fig. 2, the oscillations in
charinel U3 become better resolved on lowering the tem-
perature. In addition, a fine structure develops on these
peaks, indicative of a higher-frequency oscillation.

The conductance oscillations for channel U3 are shown
in more detail in the top panel of Fig. 4, for temperatures
between 1 and 3 I& (the calculated curves in the bottom
panel will be explained in Sec. IVB). Note that both
the minima and maxima of the oscillations increase with
temperature. At T = 2.5 K the oscillations are smeared

0.00
10

~v„„(mv)
20

FIG. 4. Top panel: two-terminal conductance vs gate
voltage of channel U3 for T = 3.2, 2.5, 1.6, and 1 K, from
top to bottom. Bottom panel: conductance calculated from
Eq. (9) for e /C = 0.6 meV, EE = 0.1 meV, a = 0.265,
hFp 0 027pEp and twofold degeneracy.

out, but can still be resolved.
The results shown in Figs. 2—4 are representative of

all the channels we have studied, except for the shortest
channel (Ul, L = 0.5 pm). As evidenced by the conduc-
tance, pinch off is typically reached at —1 & Vsat, , & —0.8
V. Periodic conductance oscillations are observed in most
of the channels at temperatures of 1.5 K or below, with a
period varying between 1 and 3 mV for different channels.
We did not find systematic differences between the Be-
doped channels and the channels which were not inten-
tionally disordered. The period does not correlate with
the length of the channel or the degree of disorder (see
Table I), and changes within this range when the sam-
ple is thermally cycled. The number of successive oscil-
lations observed is between 20 and 50 for most narrow
channels. At very low temperatures (below 100 mK) it is
found often that the regular oscillations are replaced by
an irregular pattern of sharp conductance peaks.

B. Conductance versus gate voltage:
Quantum Hall efFect regime

The various effects of a strong magnetic field on the
conductance as a function of gate voltage are shown in
Figs. 5—9 for channels D1 and D2, and in Fig. 10 for chan-
nel U2. Figure 5 shows the conductance as a function of
gate voltage for channel D2, at four values of the mag-
netic field. We find that the period of the oscillations
is insensitive to the magnetic field, which is illustrated
most clearly by the insets, showing the Fourier spectra
of the conductance traces. Each of these exhibits a sharp
peak at a B-independent frequency of about 450 V ~ (at
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mK, and in the absence of a magnetic field, the periodic
oscillations in channel Dl are suppressed. This is evident
in the zero-field trace in Fig. 6(c) as well, where a pattern
of irregular conductance peaks is visible, with a typical
spacing about five times smaller than the period of the os-
cillations at 1.5 K. The enhancement of the conductance
in fields of intermediate strength is very pronounced at
50 mK, where the conductance near V~t, —0.8 V ap-

0
-1.01 -0.97 -1.01

v„,. (v}
-0.97 -0.93

.„&tl|j.. ~.4)(~
0.5

0.4—

0.3—

FIG. 5. Two-terminal conductance vs gate voltage of
channel D2 at 50 mK in a perpendicular magnetic field. In-
sets: Fourier spectra of the data. The vertical scale of the
Fourier spectra at 8 = 0 and 7.47 T is multiplied by a factor
2.5.
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B = 7.47 T the frequency has increased by a few per-
cent). The amplitude of the oscillations and the average
conductance depend on the magnetic field in a nonmono-
tonic fashion. As the magnetic field is increased, both the
amplitude and average conductance are enhanced above
the zero-field values in magnetic fields of intermediate
strength (2.62 and 5.62 T), followed by a decrease in
still stronger fields (7.47 T). The conductance peaks do
not split, not even in our strongest field of 8 T. In this
particular channel, however, a second peak emerges in
the Fourier spectrum at approximately half the dominant
frequency as the magnetic field is increased. This second
peak is a result of the amplitude modulation of the peaks
in the gate-voltage scan, which is seen most clearly in the
trace at 5.62 T, where high- and low-conductance peaks
alternate in a doubletlike structure. We do not think that
the electron spin is responsible for this effect. Some other
channels were found to exhibit more than two peaks in
the Fourier spectrum. We attribute these multiple peri-
odicities to the presence of more than one segment in the
wire. Finally, we note that with increasing magnetic field
pinch-off is reached at less negative gate voltages, but
that the total number of peaks remains approximately
constant.

Figure 6 gives the conductance of channel Dl at T =
4.2 K (a), 1.5 K (b), and 50 mK (c), at various values
of the magnetic field. At 4.2 K [Fig. 6(a)], the oscilla-
tions are almost smeared out in the absence of a magnetic
field, and the conductance increases monotonically with
gate voltage. Surprisingly, at B = 1.24 T the oscillations
can be observed clearly at this relatively high tempera-
ture. The periodic oscillations can be observed best in
the traces at 1.5 K [Fig. 6(b)]. The magnetic-field de-
pendence is similar to that of channel D2, including the
insensitivity of the period to the magnetic field, the ab-
sence of spin-splitting, and enhancement of the amplitude
and average conductance at intermediate field strengths
(1 T & B & 5 T). In Fig. 2 we have shown that at 50
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FIG. 6. Two-terminal conductance vs gate voltage of
channel D1 in a perpendicular magnetic field. The temper-
atures are (a) 4.2 K, (b) 1.5 K, aud (c) 50 mI&. The curves
have been offset for clarity.
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FIG. 7. Two-terminal conductance vs gate vo gte volta e of
channel D1 at B = 2.52 T, for T = 50 mK and 1.5 K. 0.0
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experiment theory

proaches the first quantized Hall plateau (G = e~/h).
In the trace at B = 5.03 T the step region before the
G = e /Ii plateau exhibits quite pronounced oscillations
with the same periodicity as those at 1.5 K, but with an
amplitude that is almost equal to e /h. At more nega-
tive gate voltages the regularity of the conductance oscil-
lations is lost. This is also the case in stronger magnetic
fields.

In Fig. 7 the conductance of channel Dl is shown over
a wider range of gate voltage, at B = 2.52 T andT=50

K d 1.5 K. At gate voltages below —0.83 V the pe-
in bothriodic conductance oscillations can be observed in o

traces. As the gate voltage is increased beyond —0.8 V,
tl nductance at 50 mK is seen to increase up to a valueie con
close to the second quantized Hall plateau at G = e /
However, a large number of sharp dips in the conduc-
tance are observed in this regime. This structure has van-
ished completely at 1.5 K, and the conductance plateau

~v„,. (mv)

FIG. 9. Single conductance peak of channel Dl at B =
6.66 T. The temperatures are 65, 140, 195, 245, 350, 485 680
and 845 mK, from highest to lowest peak.

at 2e2/h is no longer visible. Instead, there is some evi-
dence of a Hall plateau at G = e /h. In addition, there

1 2is a plateaulike feature near G = 2e ~, reminiscent of
that reported by Timp et al. in a four-terminal mea-
surement. Finally, we note that in the regime where the
dips occur, the conductance at 1.5 K is below the aver-

age conductance at 50 mK, while in the regime of the
periodic conductance peaks at more negative gate volt-
ages the ordering is reversed. As discussed in Sec. V, the
dips in the conductance at 50 mK can be explained by
resonant reflection in the channel.

The left panel of Fig. 8 shows the temperature depen-
dence of one of the peaks in the conductance of chan-
nel D1 at B = 6.66 T. At the lowest temperatures, this
was one of the most pronounced peaks present in the
conductance trace as a function of gate voltage. The
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FIG. 8. Left panel: single conductance peak of channechannel
Dl at B = 6.66 T. The temperatures are 110, 190, 29290 380
490, 590, 710, and 950 mK, from highest to lowest peak. Right
panel: line shape calculated from Eq. &

meV AE = 0.044 meV, n = 0.265, and hl' '" = 0.065 meV.)
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FIG. 10. Two-terminal conductance vs gate voltage of
channel U2 at T = 1 K, and B = 0 and 3.78 T.
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peak height increases with decreasing temperature, and
reaches a value of 0.6e 2/h at T = 100 mK. Note the op-
posite temperature dependence for channel U3 at B = 0
given in Fig. 4. As discussed in Sec. IVB, the rea-
son for this difference is that the latter data are in the
high-temperature classical regime where kBT exceeds the
average level spacing AE of the conductance-limiting
segment, whereas the data in Fig. 8 are in the low-

temperature quantum regime kI3T & AE. The calculated
traces in Fig. 8, right panel, are discussed in Sec. IV B.

We often find fine structure developing on the conduc-
tance peaks. An example of this behavior is shown in
Fig. 9, for another peak in the conductance of channel
Dl, at B = 6.66 T. For temperatures below 250 mK, the
peak is split into a doublet. The amplitudes of both parts
increase with decreasing temperature, and become bet-
ter resolved as well, due to a reduction in width. We find
that conductance peaks which show such fine structure
typically are smaller than those that do not (note the
difference in vertical scale in Figs. 8 and 9). As discussed
in Sec. IV C, this can be understood from the presence
of multiple segments in the wire.

The conductance oscillations in the samples without
intentional Be doping are enhanced by a magnetic field
similar to those observed in the Be-doped samples. We
give one example, in Fig, 10, for channel U2 at T = 1
K. Only the trace at B = 3.78 T shows rapid periodic
oscillations.

C. Magnetoconductance fluctuations

Whereas the conductance as a function of gate volt-
age at fixed magnetic field shows periodic oscillations, no
such behavior is observed when the magnetic field is var-
ied and the gate voltage is fixed. As shown in Fig. 11,
the duality between variations in the gate voltage and
magnetic field, applicable to the quantum ballistic, adi-
abatic, and diffusive transport regimes breaks down in
our samples. We have studied the four-terminal longitu-
dinal magnetoconductance Gl. , using sample D3, which
has the miniature Hall-bar geometry shown in the inset
of Fig. 11(b) [see also Fig. 1(b)]. As shown in Fig. 11(a),
the four-terminal magnetoconductance at T = 50 mK ex-
hibits essentially random structure, whereas in Fig. 11(b)
it can be seen that the conductance as a function of gate
voltage for the same sample exhibits periodic oscillations.
[The two-terminal magnetoconductance has no periodic
oscillations as a function of the magnetic field either (not
shown). ] The extreme sensitivity of the magnetoconduc-
tance to a small change in the gate voltage is not surpris-
ing, since the measurements were made for gate voltages
in the regime where the conductance oscillates periodi-
cally as a function of V&a«[at least for the top two panels
in Fig. 11(a), cf. Fig. 11(b)]. As we will discuss in Sec. V,
we interpret the absence of periodic magnetoconductance
oscillations as a manifestation of the Coulomb blockade

of the Aharonov Bohm egect-
The magnetoconductance trace shown in the bottom

panel of Fig. 11(a) (note the difference in vertical scale)
was obtained at a gate voltage just outside the regime of

periodic conductance oscillations. The large peaks in the
conductance near 2.5 and 6 T in this trace are resistance
minima, reminiscent of Shubnikov —de IIaas oscillations in
the quantum Hall effect regime. The latter can be identi-
fied quite well as the channel width is increased further,
in which case the resistance at the minima approaches
zero, and QL, acquires very large values. From a set of
measurements of the Shubnikov —de Haas oscillations at
several values of the gate voltage, we found by extrapo-
lation a value of n, 1.5 x 10 cm for the density in
the channel in the regime of periodic conductance oscil-
lations.

D. Ha11 resistance

The Hall resistance can be measured within the narrow
channel using the miniature Hall-bar geometry of Fig. 1.
The results for sample D3 are shown in Fig. 12, for the
same set of gate voltages as in Fig. 11. We find no qual-
itative differences in traces of the Hall resistance versus
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FIG. 11. (a) Four-terminal longitudinal conductance GL,

of channel D3 at T = 50 mK as a function of magnetic field,
for three values of the gate voltage. (b) Gi. as a function of
gate voltage for channel D3 at T = 50 mK, for three values of
the magnetic field. Inset: schematic top view of the miniature
Hall-bar geometry. Contacts 1 and 4 were used as current
contacts, and the voltage was measured across contacts 2 and
3.
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FIG. 12. Hall resistance of channel D3 at T = 50 mK, for
three values of the gate voltage. The Hall resistance cannot
be measured when the conductance of the channel is reduced
to zero, hence the interruptions in the traces around 6 T. The
small channel conductance is also responsible for the poor
signal-to-noise ratio of these experimental traces. Contacts 1

and 4 were used as current contacts, and the Hall voltage was
measured across contacts 3 and 5 [see inset in Fig. 11(b)].

magnetic field in the regime of periodic conductance os-
cillations and traces obtained outside this regime. The
Hall resistance cannot be measured in ranges of the mag-
netic field where the conductance is close to zero (cf. Fig.
11). This is the reason for the missing parts in the traces
at Vgate = 0 82~ and 0.835 V in Fig. 12

In all traces in Fig. 12, the quantum Hall plateau at
2ez/h can be recognized easily, but the plateau at 4e /h
is less pronounced. (The spin-split plateaus at odd multi-
ples of e2/h are not resolved in the narrow channels. ) In
between the plateaus, quasiperiodic oscillations as a func-
tion of magnetic field are found (see, for example, near 3
T in the trace at Vs t, ———0.78 V). We attribute these to
an Aharonov-Bohm effect involving resonant reflection.
(The Coulomb blockade of the Aharonov-Bohm effect
mentioned in Sec. III C refers to the two-terminal con-
ductance, not to the Hall resistance. ) Below 2 T the Hall
resistance shows random oscillations. For Vg~t, ———0.825
and —0.835 V, these are time dependent and not repro-
ducible (the signal-to-noise ratio in this regime is poor,
because of the low conductance of the narrow channel).
To the extent that the fluctuations are reproducible, we
attribute these to quantum interference effects familiar
from other studies of narrow channels.

We also have tried to measure the Hall resistance (at
fixed magnetic field) as a function of gate voltage. In the
regime of periodic conductance oscillations this is very
difficult for the same reason mentioned above: The Hall
resistance cannot be measured when the two-terminal
conductance is reduced to zero. It therefore cannot be
established experimentally whether periodic oscillations
occur in the Hall resistance. One could argue that this
question is meaningless.

IV. COULOMB-BLOCKADE OSCILLATIONS

A. Periodicity

We model the conductance-limiting segment in the
narrow channel as a quantum dot, which is weakly cou-
pled by tunnel barriers to two leads [see Fig. 13(a)]. The
dot contains a set of energy levels Ez, measured rela-
tive to the bottom of the potential well in the dot. In
the absence of charging effects, a conductance peak due
to resonant tunneling occurs when the Fermi level E~
in the leads lines up with one of the levels in the dot.
To determine the location of the conductance peaks as

EF

(b)

lead dot

Cdpt/2

lead

Cget)e /2

FIG. 13. (a) Schematic conductance band diagram of a.

disordered quantum wire containing a conductance-limiting
segment (a quantum dot with a discrete energy spectrum).
The leads are thought to have a continuous energy spectrum.
(b) Equivalent circuit of quantum wire and split gate. The
mutual capacitance of leads and gate is much larger than that
of dot and gate (Cs~q, ), or dot and leads (Cdo~), and can be
neglected.

In this section we analyze those features of our ex-
perimental results that may be considered to be generic,
rather than sample specific. The most conspicuous are
the conductance oscillations periodic in the gate volt-
age. The value of the period, its insensitivity to a strong
magnetic field, the absence of spin-splitting, and the ab-
sence of magnetoconductance oscillations, can all be un-
derstood on the basis of a general formula expressing the
condition for a conductance peak at T = 0, see Sec. IV A.
The temperature dependence of the amplitude and width
of the oscillations is analyzed in terms of a kinetic theory
for the conductance of a quantum dot in the regime of
comparable charging energy and level spacing. This is
the subject of Sec. IV B. In these two subsections we as-
sume that the Coulomb-blockade oscillations arise from
a single conductance-limiting segment. In Sec. IV C we

briefly consider the effects of multiple segments in series.
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Here C is the capacitance of the dot, and Pext represents
the electrostatic potential difference of the dot and leads
due to external charges (see below). The left-hand side
of Eq. (1) defines a renormalized energy level E&. The
average renormalized level spacing AE* = b, E+ e /C
is enhanced above the average bare level spacing AE by
the charging energy. In the limit e /C « EE, Eq. (1)
is the usual condition for resonant tunneling of noninter-
acting electrons. In the limit e /C )& AE, Eq. (1) is

the condition for a peak for classical Coulomb-blockade
oscillations in the conductance.

Experimentally, we study the Coulomb-blockade oscil-
lations as a function of gate voltage rather than Fermi
energy EF To d. etermine the periodicity from Eq. (1),
we need to know how E~ and the set of levels E& de-

pend on P,„t.The external charges determining P,„tare
supplied by the ionized donors in the doped Al Gaq As

layer and by the gate electrodes (with an electrostatic
potential difference Ps t, between gates and 2DEG). We
have

4'ext = 4'donots + Ct&It'gate
& (2)

where n (as well as C) is a rational function of the ca-

pacitance matrix elements of the system. For split-gate
quantum wires it is reasonable to assume that on average
the electron gas densities in the dot and leads increase
equally fast with gs t„both being affected equally by
the gates. In that case E~ —E~ has approximately the
same value at each conductance peak. The period of the
oscillations now follows from Eqs. (1) and ('2),

e
&4z.te =

nC

To clarify the meaning of the parameters C and a, we

represent the system of the dot, gates, and leads by the
equivalent circuit of Fig. 13(b). The mutual capacitance
of gates and leads does not enter our problem explicitly,
since it is much larger than the mutual capacitances of
the gate and dot (Cs t, ) and the dot and leads (Cd, ).
The capacitance C determining the charging energy (W—
2)e /C is formed by Cs t, and Cd t in parallel,

C = Cg, t-,, + Cd t-, .

The period of the oscillations corresponds to the incre-
ment by e of the charge on the dot with no change in the
voltage across Cd«. This implies b,Ps t, —e/Cs t„or

Cg t,A:
Cg t. +Cdo~

(5)

Thus, in terms of the electrostatic potential difference
between gate and leads, the period of the conductance
oscillations is AP«t, ——e/Cs, t, . Note that this result

a function of gate voltage requires only consideration of
the equilibrium properties of the system. The condition
for the Nth conductance peak is

2

E~ =—E~ + (& ——,')—= EF + e4'ext .

Note that Cd, t does not affect the periodicity.
In the case of a twofold spin degeneracy, the level spac-

ing Ez+i —E& in the dot alternates between 0 and AE,
where AE is the spacing of the degenerate levels. This
leads to a doublet structure in the oscillations as a func-
tion of EF. To determine the peak spacing as a function
of gate voltage we approximate t, he change in EF with

Psete by BEy/0$«te —Cs,teAE/2e. We then obtain
from Eqs. (1), (2), (4), and (5) that the spacing alter-
nates between two values;

(g) e e-"/C

e AE+e /C
'AE+ e -/C

(8)

The average spacing equals e/Cz «, in agreement with

Eq. (3) (derived for nondegenerate levels). To obtain
AV«te one has to replace the term e/Czete in Eqs.
(7) and (8) by e/Cz„, + jttE/2e. If the charging en-

ergy dominates (ez/C &) b,E) one has equal spacing

4Pz t, ——APz „——e/Cz te, as for nondegenerate levels.

In the opposite limit b,E )& e~/C, one finds b, g(erat, = 0,
and AP(ze« ——2e/Cs t, instead. Thus, the period is effec-

tively doubled, corresponding to the addition of two elec-

trons to the dot, instead of one. This is characteristic for
resonant tunneling of noninteracting electrons through
spin-degenerate energy levels. An external magnetic field

resolves the spin degeneracy in this case, leading to a
splitting of the conductance peaks which increases with

the field. This is not observed in our experiments.
We now apply these results to our experimental situa-

tion. We recall that no correlation is found between the
periodicity of the oscillations and the channel length, and
that the conductance oscillations are observed when the
width is reduced below W 0.1 pm, in which case the
electron density is 1.5 x 10 cm 2. A 3-pm-long channel
then contains some 450 electrons.

To calculate Cd t and C t, is a rather complicated
three-dimensional electrostatic problem, hampered fur-

ther by the uncertain dimensions of the conductance-
limiting segment. Experimentally, a typical spacing of
the conductance peaks is AV& t, —2.3 mV, so that from

applies regardless of the relative magnitudes of AE and
e'/C.

The experimental gate voltage is the electrochemical
potential difference V&~t, between gate and leads, i.e. ,

the difference in Fermi levels, rather than the electro-
s/atic potential-difference Pse„, i.e. , the difference in
conduction-band bottoms. In one period, the change
in Fermi energy in the dot and leads (measured relative
to the local conduction-band bottom) is approximately
equal to AE. The change in Fermi energy in the (metal)
gate is negligible, because the density of states in a metal
is much larger than in a 2DEG. We thus find for the os-
cillation period in terms of the electrochemical potential
difference

AE AE e
d V„„=

e
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Eq. (6) we estimate Cs i, 0.7 x 10 is F, ignoring the
contribution of the finite level spacing to the period in
gate voltage (b,E is typically much smaller than e2/Cs «,
see below). The length L of the segment may be esti-
mated from the gate voltage range between channel def-
inition and pinch-off, bV& «en, Wi;ihL/Cs t,„where
n, = 2.9 x 10 cm is the electron density in the chan-
nel at definition. From the above estimate of C t-, and
using bV t-,, 1 V, we estimate L 0.3 pm. The re-
sulting value for the capacitance per unit length Cs „/L
is consistent with what one would expect for the mu-

tual capacitance per unit length of a wire of diameter
running in the middle of a gap of width W~;t-, h in a

metallic plane (the thickness of the Al Gai As layer
between the gate and the 2DEG is small compared to
Wi;rh): Cs,«/L 4m'/2 arccosh(Wi&ih/W) 3 x 10
F/m.

The level spacing in the segment is estimated at AE
2xh /mLW 0.'2 meV (for a twofold spin degener-
acy). Since each oscillation corresponds to the addi-
tion of a single electron to the dot, the maximum num-
ber of oscillations following from AE and the Fermi en-

ergy E~ 5 meV when the dot is formed is given
by 2E~/AE 50, consistent with the observations.
From the fact that the oscillations are still observable
at T = 1.5 K, albeit with considerable thermal smearing,
we deduce that in our experiments e~/C+ 6E 1 meV.
Thus, C-2 x 10 "F,C~o, ——C —Cs~«-1.3»0 "
F, and cr = Cs i,/C 0.35. The mutual capacitance of
dot and leads (Cg i) may be approximated by the self-
capacitance of the dot, which should be comparable to
that of a two-dimensional circular disk of diameter L
(which is the largest linear dimension of the elongated
conductance-limiting segment), Cg i 4cL 1.4 x 10
F, consistent with the above estimate.

We conclude that the periodicity of the conductance
as~iLLaii~~~ i~ aux expeziment is. expLained. ~~asi,~tea.t.Ly by
the theory for Coulomb-blockade oscillations, in a regime
where es/C is larger than the bare level-soacing AE by
about a factor of 4. According to Eq. (6), the period is

governed by e/Cs, «, which exceeds AE/e by an order of
magnitude, thus providing part of the explanation of the
regularity of the oscillations. A finite temperature k~T &
AE further regulates the spacing of the oscillations, see
Sec. IV C.

As an alternative explanation of the conductance os-
cillations, resonant tunneling of noninteracting electrons
has been proposed. As mentioned in the Introduc-
tion, there are several compelling arguments for rejecting
this explanation. Firstly, the measured activation en-

ergy of the conductance minima would imply a bare level
spacing AE 1 meV if charging effects would be ab-
sent. Since the Fermi energy E~ is 5 meV or less, such a
large level spacing would restrict the possible total num-
ber of oscillations in a gate voltage scan to a maximum
of 2E~/AE 10, considerably less than the number ob-
served experimentally. Secondly, one would expect a
spin splitting of the oscillations in a strong magnetic field,
which is not observed. Finally, the fact that no oscilla-
tions are found as a function of magnetic field all but
rules out resonant tunneling of noninteracting electrons

as an explanation of the oscillations as a function of gate
voltage.

B. Amplitude and line shape

Equation (1) is sufficient to determine the periodicity
of the conductance oscillations but not their amplitude
and width, which requires the solution of a kinetic equa-
tion. The nonlinear response regime has been studied by
Averin, Korotkov, and Likharev. The linear response
solution of present; interest was obtained by Beenakker, 7

and generalizes earlier results by Kulik and Shekhter
in the classical regime. Results equivalent to Ref. 7 have
been obtained independently by Meir, Wingreen, and
Lee, by a different method. In this subsection we give
the general formula for the conductance and summarize
the underlying assumptions. Using this formula, we cal-
culate the conductance for our experimental conditions,
and compare it to our data.

Reference 7 applies to a quantum dot which is weakly
coupled by tunnel barriers to two electron gas reservoirs.
A continuum of states is assumed in the reservoirs. The
tunnel rates from level p in the quant;um dot to the left
and right reservoirs are denoted by I„'and I'„",respec-
tively. It is assumed that, near the Fermi energy in the
quantum dot, both the level spacing AE and the thermal
energy k~T are much greater than the intrinsic width of
the energy levels hl' = h(I'+ I'"). This assumption al-
lows a characterization of the state of the quantum dot
by a set of occupation numbers, one for each energy level.
It is assumed also that inelastic scattering takes place ex-
clusively in the reservoirs, not in the quantum dot. (The
effects of inelastic scattering in the dot are discussed in
Ref. 7.)

By solving the kinetic equation in linear response, it is
found that

E i. ——2(AE+ e /C) = 2b,E* . (10)

This result holds for equal tunnel rates to two sub-
sequent energy levels. The renormalized level spacing
AE*:—AE + e /C, thus equals twice the activation

r,'I „"
P,q(N, np

—1)

x (1 —f[E„+U(N) —U(N —1)
—E~l) . (9)

Here P,q(N, n&
——1) is the joint probability that the

quantum dot contains N electrons and that level p is oc-
cupied (see the Appendix), f(z)—:[1+exp(z/kBT)j
is the Fermi-Dirac distribution function, and U(N)
(Ne) /2C —Neg, „iis the charging energy. The product
of distribution functions expresses the fact that tunnel-
ing of an electron from an initial state p in the dot to
a final state in the reservoir requires an occupied initial
state and an empty final state.

Limiting cases of Eq. (9) are discussed in Ref. 7 (see
also Ref. 23). The conductance 6;„in the minima of the
oscillations depends exponentially on the temperature,
G;„ocexp( —E ~/k~T), with activation energy
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energy of the conductance minima. The exponential de-
cay of the conductance at the minima of the Coulomb-
blockade oscillations results from the suppression of tun-
neling processes which conserve energy in the interme-
diate state in the quantum dot. Tunneling via a eir-
tua/ intermediate state is not suppressed at low temper-
atures, and becomes important when k~T & hI'. In
the opposite case these virtual tunnel processes can be
neglected.

In Fig. 4 we compare a calculation based on Eq. (9)
with experimental traces for channel D1, discussed in
Sec. III A. To obtain good agreement we assume that the
tunnel rates for successive spin-degenerate levels increase
linearly as I'; = I'," = 0027ib, E/ h, where AE = 0.1

meV is the spacing of these levels, Both the increase
of the tunnel rates with energy and the low number of
electrons assumed to be present in the dot are necessary
for obtaining a good agreement with the experiment. (In
the calculation, the first conductance peak corresponds
to an occupation of the dot by zero or one electron. ) The
capacitances were chosen so that ez /C = 0.6 meV and
e = 0.265. These values are consistent with the estimates
given above. The Fermi energy in the leads was assumed
to increase with gate voltage such that it is on average
equal to the energy of the highest occupied level in the
dot at T = 0 (cf. Sec. IV A). The data in Fig. 4 are in the
classical regime (k~T & b.E), where the peak height is

roughly independent of temperature, whereas the width
of the peaks increases with T. This is reproduced by our
calculations.

On lowering the temperature, we enter the resonant
tunneling regime k~T ( AE. As long as kBT & hI',
the width of the peaks is proportional to T and the peak
height is proportional to 1/T. The peak height thus in-

creases on lowering the temperature, up to a value of
order e2/h, reached when k&T is of order hI'. A theory
for the regime k~T ( hI' is not available presently, but
we surmise that the maximum peak height is e2/h, for
the case of equal tunnel barriers. This is consistent with
our experimental observations, which do not show con-
ductance peaks exceeding this value. [The largest con-
ductance peaks found experimentally approach e2 jh, see
Fig. 6(c) (channel Dl, at 5 T).]

To test to what extent Eq. (9) can describe our ex-
perimental results in the quantum regime k~T & LE, we

have calculated the peaks shown in the right panel of
Fig. 8. (The data in the left panel of Fig. 8 was ob-
tained in the presence of a magnetic field of 6.66 T, so
that we assume no spin degeneracy in the calculation. )
Equation (9) reproduces the temperature dependence of
the peak height and width quite well, for temperatures
between 190 and 950 mK. The parameter values used
are e /C = 0.53 meV, AE = 0.088 meV, n = 0.265,
and hI' = hI'" = 0.065 meV, which are consistent with
the values used for the calculations shown in the bottom
panel of Fig. 4. The Zeeman spin-splitting energy is not
known, due to uncertainties in the g factor, but is taken
equal to &ATE in the calculations. The resulting set of
equidistant nondegenerate levels is spaced at 0.044 meV.
We note, however, that the parameter values used imply
that kI3T ( hI' for the calculated peaks in Fig. 4, so that

Eq. (9) is strictly not valid, and instead a theory should
be used which takes the finite broadening of the levels in
the quantum dot into account.

The data obtained in the absence of a magnetic field
at very low temperatures [see Figs. 2 and 6(c)] is proba-
bly in the quantum regime as well. An analysis of these
data is hampered by the presence of multiple segments
in the wire, as discussed in Sec. IV C. A strong magnetic
field reduces the backscattering probability in the chan-
nel, which may explain why the conductance at low T is
less affect;ed by their presence. The agreement between
theory and experiment in Figs. 4 and 8, for a reason-
ably consistent set of parameter values, and over a wide
range of temperatures, supports our interpretation of the
conductance oscillations periodic in the gate voltage as
Coulomb-blockade-oscillations in the regime of compara-
ble level spacing and charging energy.

C. Multiple segments

In an attempt to investigate the effects of multiple seg-
ments in the wire, we consider the conductance of two
decoupled quantum dots of different size in series. This
simple model can illustrate some aspects of the experi-
mental data. Among these are the observation of regular
oscillations at relatively high temperatures, which are re-
placed by irregularly spaced peaks at millikelvin temper-
atures, and the splitting exhibited by some of the regular
peaks on decreasing the temperature.

The calculations proceed as follows: Using Eq. (9) we

calculate the conductances Gi and G2 of the two dots
individually. The resulting conductance of the dots in se-
ries is obtained via Ohmic addition (G = Gi + G2 ),
i.e. , it is assumed that the dots are separated by a reser-
voir. The parameter values for the first dot were cho-
sen equal to those used to model the peak in Fig. 8:
e /Ci ——0.53 meV and ni ——0.265, but with twofold-
degenerate levels, randomly spaced within a bandwidth
of 25% around the average spacing AEi —0.088 meV.
The tunnel rates were chosen to vary randomly within
a bandwidth of 50% around the average tunnel rates
hI' = hI'" = 0.065 meV. The parameter values for the
second dot were obtained using a scaling argument. It
is assumed that the relevant capacitances C and Cs i,
are approximately proportional to the length L of the
conductance-limiting segment (see Sec. IV A), while the
average level spacing AE oc 1/I and the parameter a
is independent of L. The second dot was chosen to be
approximately 2.7 times as long as the first dot, and ac-
cordingly we have used e /C2 ——0.097 meV, az ——0.273,
AEz ——0.033 meV, and hI' = hl" = 0.065 meV (the en-

ergy levels and tunnel rates were chosen randomly within
the same bandwidths as for the first dot). The results of
the calculations are shown in Fig. 14.

Figure 14 illustrates several points. At the relatively
high temperature of 1.5 Ik, the conductance oscillations
are very regular. The reason is that at this tempera-
ture the oscillations of the second dot are smeared com-

pletely, because e /Ci & I"~T & e /Cq. Additionally,
since k~T ) AE the period is determined by an average
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FIG. 14. Calculations of the conductance oscillations of
two quantum dots in series, separated by a reservoir. The
temperatures are 1.5 K, 240 mK, and 130 mK. The parameter
values are given in the text.

level spacing and tunnel rate, rather than by a particular
level separation and tunnel rate for each individual peak.
As the temperature is decreased, the quantum regime
k~T ( b,E is entered (in particular for the first dot), and
the oscillations of the second dot become important since
k~T ( ez/Cz. The resulting irregularity in the conduc-
tance as a function of gate voltage is apparent from Fig.
14. In addition, it shows that at low temperatures a split
of the peaks can result from differences in period and ac-
tivation energy of the oscillations in the two dots. As in
the experimental data, peaks exhibiting such a splitting
are smaller than peaks that do not split. In contrast to
the experimental data, however, the split peaks decrease
rather than increase (see Fig. 9) with decreasing temper-
ature. This may be due to the the intrinsic broadening
of the transmission resonances through the dot, which
becomes important for k~T ( hI' and which is not ac-
counted for by the calculations (cf. Sec. IV B).

An alternative model of a large and small quantum dot
which are directly coupled (not via a reservoir, as in our
calculation), has recently been studied by Glazman. s

They find a crossover from periodic Coulomb-blockade
oscillations to aperiodic fluctuations at low temperatures,
when k~T is smaller than the level spacing in both quan-
tum dots. A conductance peak then requires that the
levels in both the quantum dots line up, which occurs at
random.

V. DISCUSSION

In this section we discuss those aspects of the data that
are not so well understood, as well as the connection with
other work. Our disordered quantum wires exhibit peri-
odic conductance oscillations as a function of gate volt-
age. This effect has also been observed in electron and
hole gases in Si (Refs. 1, 9, and 17) and in the electron
gas in GaAs. In contrast, earlier work by Fowler and
co-workers and by Kwasnick et al.3 on narrow inver-

sion and accumulation layers in Si has revealed sharp
but aperiodic conductance peaks. Structure reminiscent
of their results is visible in some of our samples at low
temperature (50 mK), in zero or very strong magnetic
fields [cf. Figs. 2 (lower left panel) and 6(c) (traces for
B = 0 and 7.59 T)]. How can these observations be rec-
onciled' %'e surmise that the explanation is to be found
in differences in strength and spatial scale of the poten-
tial fluctuations in the wires. Coulomb-blockade oscilla-
tions require two large potential spikes, which delimit a
conductance-limiting segment in the quantum wire [Fig.
13(a)], containing a large number of states. The random
conductance fluctuations seen previouslyss ss are thought
instead to be due to variable range hopping between in-
dividual localized states, distributed randomly along the
length of the channel. 4O 4~ As proposed by Glazman
the periodic Coulomb-blockade oscillations of multiple
segments in series can transform into sharp aperiodic
fluctuations at low temperatures. This may explain our
observation (Fig. 2) that periodic oscillations are found at
temperatures around 1 K, whereas irregular structure oc-
curs at millikelvin temperatures. On increasing the Fermi
energy, a transition to the diffusive transport regime oc-
curs eventually, regardless of the type of disorder. Then
both the Coulomb-blockade oscillations and the random
conductance fluctuations due to variable range hopping
are replaced by the "universal" conductance fluctuations
characteristic of the diffusive transport regime. ~

In very short channels (0.5 pm long and 1 pm wide)
Fowler et al.45 have found well-isolated, temperature-
independent (below 100 mK) conductance peaks, which
they attributed to resonant tunneling. At very low tem-
peratures a fine structure was observed, some of which
was time dependent. A numerical simulation4 of the
temporal fluctuations in the distribution of electrons
among the available sites also showed fine structure if
the time scale of the fluctuations is short compared to
the measurement time, but large compared to the tunnel
time. It is possible that a similar mechanism is respon-
sible for some fine structure on the Coulomb-blockade
oscillations in disordered quantum wires as well.

A curious phenomenon that we have found is the ef-
fect of a perpendicular magnetic field on the amplitude
of the periodic conductance oscillations. The height
of the conductance peaks is enhanced for intermediate
field strengths (1 T & B & 5 T), but decreases again
at stronger fields. The largest isolated peaks [found in
channel Dl at 5 T, see Fig. 6(c)] approach a height of
e /h, measured two terminally. A similar enhancement
of the amplitude of the Coulomb-blockade oscillations
by a magnetic field was observed in a quantum dot.
One explanation is that the inelastic scattering rate is re-
duced by a magnetic field. In the low-temperature regime
k~T & hI' this presumably increases the peak height and
decreases the width (see Ref. 7). In disordered quantum
wires the magnetic suppression of backscattering pro-
vides another mechanism for an enhancement of the peak
height because of the resulting reduced series resistance
in the wire. Finally, the strong magnetic field regime in
a wide high-mobility 2DEG is the realm of the fractional
quantum Hall effect and the magnetic-field-induced tran-
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sition to the Wigner crystal. It is possible that the sup-
pression of the Coulomb blockade oscillations for B & 6
T is related in some unknown way to these phenomena.

For noninteracting electrons, one would expect to ob-
serve Aharonov-Bohm oscillations in the conductance of
a quantum dot as a function of magnetic field in the
quantum Hall effect regime. The reason is that such a
dot has effectively a ring geometry if the magnetic length
l~—:(h/eB) ~ is much smaller than the dot radius, due
to the presence of circulating edge states. The Aharonov-
Bohm (AB) eff'ect in such a dot may be interpreted as
resonant tunneling through zero-dimensional states.
In the absence of Coulomb interaction, the period AB
of the AB oscillations for a hard-wall dot of area A is
b, B = h/eA (it may be larger for a soft-wall confining
potential~7). Such oscillations have indeed been observed
in large quantum dots, but in our experiment at
high magnetic fields, no periodic oscillations with the es-
timated AB 0.1 T are found. Our observations are
consistent with the Coulomb blockade of the Aharonov-
Bohm effect. Each AB oscillation corresponds to an in-

crease of the number of electrons in the dot by one. One
can show from Eq. (1) that the period of the AB oscilla-
tions is enhanced due to the charging energy, according
to'

2

DB =AB~ 1+ )
where 4E is the energy level spacing of the circulat-
ing edge states. From our high-field experiments we

have estimated e /CAE 10 (cf. Fig. 8), so that
AB* 10AB 1 T, The rapid AB oscillations in the
magnetoconductance are therefore suppressed, notwith-
standing the fact that oscillations can still be observed
easily in a conductance trace as a function of gate voltage.
The insensitivity of the period of the latter oscillations to
a strong magnetic field is explained by the fact that the
renormalized level spacing AE* —e /C is approximately
B independent.

In one of our channels (Dl, see Fig. 7) we have ob-
served a crossover from resonant transmission at G (
e /h (conductance peaks), to resonant reflection at G &
e /h (conductance dips) at, T = 50 mI& To exp. lain the
difference, we show schematically in Fig. 15 the bound-
aries of the quantum wire (thick lines), with the thin
lines representing the edge channels which are formed in a
strong magnetic field. Electrons can tunnel between the
edge channels when they are close together, as indicated
by the dashed lines. In Fig. 15(a) a conductance-limiting
segment is formed because of the presence of two po-
tential barriers or constrictions, and the conductance ex-
hibits periodic Coulomb-blockade oscillations (Sec. IV).
The temperature scale of these oscillations is set by the
charging energy, which is relatively large. At less negative
gate voltages, the guiding center energy of the edge chan-
nels near the Fermi level may exceed the height of the po-
tential barriers. The edge channels are then transmitted
adiabatically through the wire [Fig. 15(b)]. Backscatter-
ing can now occur due to tunneling between edge chan-
nels at opposite edges. This will happen predominantly
near the potential barriers (dashed lines). The backscat-

(a)

(b)

(c)

FIG. 15. Schematic view of the edge channels (thin lines)
in the quantum wire, with a conductance-limiting segment

(a), and without such a segment (b), (c).

tering can be enhanced resonantly due to constructive
interference among these tunneling paths, leading to dips
in the conductance. The strong temperature dependence
of the conductance dips in Fig. 7 implies a low activa-
tion energy, indicating that charging effects do not affect
the resonant backscattering significantly. Alternatively,
resonant backscattering may occur also due to the pres-
ence of a circulating edge state in the center of the quan-
tum wire, associated with a single potential spike. This
mechanism is illustrated in Fig. 15(c). Experimentally
we cannot discriminate between the two mechanisms.

In summary, we have reported on an experimental
study of the periodic conductance oscillations as a func-
tion of gate voltage in split-gate disordered quantum
wires in the 2DEG in a GaAs-Al Gaq As heterostruc-
ture. From the persistence up to a few kelvin of the
dominant oscillations, and from the insensitivity of the
period to a strong magnet;ic field, it is concluded that
they are Coulomb-blockade oscillations. The appearance
of additional periodicities and the onset of irregular con-
ductance fIuctuations at very low temperatures in some
of the wires is attributed to the presence of multiple
segments in these wires. We have compared the tem-
perature dependence of the periodic conductance oscilla-
tions to a theory for Coulomb-blockade oscillations in the
classical regime k~T ) AE and in the quantum regime
k~T & AE. Good semiquantitative agreement with this
theory is obtained, using physically reasonable param-
eter values, although our lowest temperature data ap-
pear to be in the intrinsically broadened resonance regime
k'&T & hI', for which a theory has not yet been worked
out. The effect of a perpendicular magnetic field on the
oscillations is to enhance their amplitude at intermedi-
ate field strengths (between about 1 T and 5 T), but to
suppress them at stronger fields. This remains to be un-

derstood. In contrast to the traces of the conductance
as a function of gate voltage, the magnetoconductance
traces at constant gate voltage show no periodic oscil-
lations. Since the conductance-limiting segment in our
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wires is essentially a quantum dot, we int;erpret this as
experimental evidence for the Coulomb blockade of the
Aharonov-Bohm eA'ect.
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where (n;) = fnt, n2, . . .) denotes a specific set of occu-
pation numbers of the energy levels in the quantum dot.
(The numbers n; can take on only the values 0 and 1.)
The number of electrons in the dot is N = P,. n;, and Z
is the partition function,

Z= ) exp —
~ ) En;+U(N)

1 (
(~;} - i=1&AT (.

NEF—
I (A2)

APPENDIX

The joint Probability P,q(N, n&
—1) aPPearing in Eq.

(9) is defined in terms of the equilibrium distribution
function of electrons among the energy levels, which is
the Gibbs distribution in the grand canonical ensemble:

Peq(N, np = 1) = ) Peq({n, ))b~ p „,b„
(~ }

(A3)

The joint probability P,q(N, nz ——1) that the quantum
dot contains N electrons and that level p is occupied is
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