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We study electrical transport in a dual-gate metal-oxide-semiconductor field-effect transistor. The
bottom gate is a grating which allows the inversion-layer geometry to be controlled electrostatically.
We compare the magnetoconductance of many parallel narrow-inversion channels, a modulated po-
tential, and a uniform two-dimensional electron gas all formed in the same Si crystal. Electron
weak localization becomes much more pronounced as the device is electrostatically pinched from a
two-dimensional inversion layer into many narrow wires in parallel, proving that the wire width can
be reduced below the electron phase coherence length. For magnetic fields greater than 1 T normal
to the sample surface there is a large drop in the current, which persists to room temperature, as
electrons are added to the device so that it opens electrostatically from many narrow inversion layers
in parallel into a two-dimensional electron gas. This large negative transconductance results from
electrostatically changing the dominant boundary condition on the classical Drude magnetoconduc-
tance tensor from that of a long and narrow to a short and wide conductor. Quantum edge states
form at high magnetic fields, giving a high-field magnetoconductance of opposite sign for the parallel
wires and wide electron gas. Thus, the evolution from Shubnikov —de Haas oscillations tc the quan-
tum Hall effect depends strongly and qualitatively on the device aspect ratio. At a magnetic field
of 30 T the two-terminal conductance versus gate voltage of the narrow wires evolves into quantum
Hall steps having a height of 2e /h multiplied by the number of wires in parallel. In contrast to a
wide device the conduction-band valley degeneracy is not resolved, giving rise to Hall steps of twice
the expected size.

I. INTRODUCTION

The confinement of electrons to narrow Si inversion
channels can be achieved by means of dual gates in-
corporated into a metal-oxide-semiconductor field-effect
transistor (MOSFET). Varying the two gate voltages
controls both the electron density and the width of
the narrow channel. A variety of conductance Auctua-
tion phenomena, weak localization, Shubnikov —de
Haas oscillations and their evolution into the quantum
Iiall effect, and possible electron charging effects
have been demonstrated in narrow Si inversion lay-
ers. Although the mean free path in Si inversion lay-
ers is much shorter than in an electron gas formed at a
GaAs/Al Gar As heterojunction, electrostatic control
of the Si inversion-layer geometry is much easier using

a MOS field-effect capacitor. We exploit field-effect con-
trol of the Si inversion-layer geometry to study in a single
device the electrical conductance of an array of narrow
wires, a modulated potential, and a two-dimensional elec-
tron gas as a function of electron density, magnetic field,
and temperature.

Our device geometry is the dual gate MOSFET shown
in Fig. 1. The bottom gate is a W grating gate having a
200-nm period, and is separated from the inversion chan-
nel by a 20-nm-thick Si02 insulating layer. All the grat-
ing lines are electrically connected at the bottom-gate
contact pad. A further 500 nm of Sio separates the
grating gate from a second continuous Al gate electrode.
Standard MOSFET devices made with a continuous W
gate on the same wafer had a mobility of 5000 cm /Vs
at a temperature of 4.2 K. The device fabrication tech-
nology is described elsewhere.
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II. DEVICE CHARACTERISTICS
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FIG. 1. "Grating gate" MOSFET geometry. pThe s lit
gates permit con ro ot l f the inversion-layer geometry via the
field efFect. A narrow inversion layer can fo

~ ~

can form either a un-
derneath the grating lines or (b) in the gap betvreen the grat-

odulated electronl A wide inversion layer having a mo u a eing ines. wi e i
density can also be created by appropriately augus ing e
gate voltages. The complete inversion-layer geometry gui ing
the current flow, inc u ing el d the device contacts and the direc-
tion of the applied magnetic field, is shown in (c).

We measure the rms ac drain curren t I of the
MOSFET device of Fig. 1 at low rms ac drain volt-
age, VDs —25 pV, using standard lock-in amplifier tech-

T & 50 mK, in a dilution refrigerator, the conductance
G = I

&
U versus gate voltage in Fig. 2 is obtained.Ds/ Ds ve

In Fig. 2 the top-gate voltage V~G is swept rom—
& U & 20 V holding the grating gate voltage VBG fixed~G
at different values.

Figure 2 shows that, for the family of curves where

BG = 2.5 V, 3 V, 4 V, and 5 V there is a clear "break"
or "kink" in the device I-V around V~G 0 V. or
V~G & 0 V on this family of curves the electron gas is
confined only beneath the grating wires as in Fig. 1(a),
while for ~Gf V & 0 V the electron ~as exists everywhereC)

in the c anne. eh 1. Th "break" in the device I-V curves as
the entire channel becomes inverted can be understoo
using a simp e mo e w1 d 1 here conduction both underneat

~ ~ ~

the grating wires and in the gap between grating wires is

different threshold voltages. When the grating gate VBG
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FIG. 2. Static device I-V for zero applied mag
'

d ma netic field.
The five curves on the left show a pronounced "kink" near
zero volts, in ica ing a ran

' 'd' t' t nsition where the inversion layer
opens e ectros a ic yl t t all from an array of narrow channels un-
derneath the grating wires to a two-dimensional electron gas.
The three rightmost curves, where no kin i
cate the electron gas exists only in the gap between grating
lines over the range of voltages shown.

atelis held well above its threshold voltage (approximate y

transistor current on this family of curves. This can only
happen if electrostatic fringing fields around the bottom
gate are signi can, so a'fi t that the field lines from the top
gate can reach around the bottom gate and turn o t e
electron gas.

=1V OV,For the family of bottom-gate voltages VBG =
and —1 V in Fig. 2 there is no "kink" or "break" in the
I-V characteristics. For this family of curves the electron
gas is confined only in the gap between grating lines as in

inverted for this family of curves, as we subsequently
prove y examininb

' '
g the device magnetoconductance. is

~ ~

The current saturates in Fig. u 0ue to the 330-0 resis-
tance of the wires running into the dilution refrigerator
in series wit xe

'
h tl 50-0 device contact resistance. This

same series resistance is presen
' 'g .

~ ~ t in Fi s. 2—5, as the same
device and measurement conditions are used in these fig-
ures.

e to-We now establish an inversion layer by fixing the op-
gate voltage at V~0 ——13 V and gradually pinch the
e ec ron gas ow1 t down into narrow inversion strips using
VBG = 3 V, 1 5 V, 0 V, and —1 25 V (Fig. 3). The mag-
netic field B is swept from —1 T to 8 T. As the electron
gas is pinched into narrow channels the zero-field con-

wever as the bottom-ductance decreases as expecte . owe
gate voltage passes below its threshold from VBG ——1.5 V
to VBG ——0 V, a large weak localization magnetoresis-
tance feature develops around B = 0 T. The development
of this large weak localization feature proves that wires
having a width W smaller than the electron phase coher-
ence length Ly are formed, and is further indication that
narrow inversion channels are present.

Since the electron motion is diffusive, an applied mag-
netic field extinguishes weak localization when a few mag-
netic flux quanta (Po ——h/2e) are enclosed by the average
diffusion path to return to the origin. If this semiclassical



9216 PHILIP F. BAGWELL et al. 45

Family of Voltages (VTG, VaG}70

60
O
co 50

40-
8 30~

20 o (13, 3)
~ (13,1.5)

L 0
~ (13,0)

o 0
0

2

.(13,-1.25)
~ (-7,3)

I

5

Magnetic Field (T)

FIG. 3. A pronounced weak localization minimum devel-
ops around 8 = 0 T as the two-dimensional inversion layer
is pinched into narrow wires, indicating that the wire width
has become smaller than the electron phase coherence length.
A corresponding qualitative change in the background Drude
magnetoconductance also occurs as the device is pinched into
multiple parallel narrow wires, so that the negative magne-
toconductance of a wide electron gas is large but the mag-
netocondnctance of the array of narrow wires is small. (The
voltages Vso and VTo are given in volts. )

diffusion path is constrained by a boun. dary, such as the
side of a narrow wire, then the area enclosed by the av-

erage diffusion path is much smaller. Therefore, a higher
magnetic field is needed to turn off the weak localization
in a narrow wire. This critical magnetic field B, is ap-
proximately given by B, $0/(1, ~) in two dimensions,
and increases to B, $0/(WL~) when the wire is nar-
row such that W & I.y. The size of the weak localization
conductance correction is also much larger in one dimen-
sion than in two dimensions. Using the semiclassical one-
dimensional weak localization formula of Al'tshuler and
Aronov, and after correcting for series resistance, we

obtain an electron phase coherence length I ~ 0.6 pm
and a wire width W 350—450 A when VBG = 0 V
and VTG ——13 V in Fig. 3. This wire width W 350—
450 A. agrees with the width one calculates by attributing
the reduction in the zero-field conductance simply to a
reduced cross-sectional area.

For the two-dimensional electron gas in Fig. 3, formed
when both gate voltages are large so that VTG

—13 U

and VBG ——3 U, the two-terminal device conductance
decreases with increasing magnetic field. This decreas-
ing two-terminal current with increasing magnetic field
is the same magnetoconductance as in a standard wide

MOSFET device. As our grating gate device is pinched
into long and narrow wires, such as when VTG ——13 V
and VBG ——0 U in Fig. 3, there is almost no dependence of
the background conductance on the magnetic field. All
the curves display Shubnikov —de Haas oscillations, but
the background magnetoconductance changes completely
from a negative magnetoconductance in a wide device
to almost no magnetoconductance in the narrow device.
This difference is still further indication that narrow in-

version channels are actually being formed. The curve

having V~6 ——7 U and UBG ——3 U in Fig. 3, for which
the electrons are confined underneath the grating lines,
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FIG. 4. A large negative transconductance appears near
the kink at UTG ——0 V in an applied perpendicular magnetic
field of B = 8 T as the inversion-layer geometry opens from
the narrow wire array into a two-dimensional electron gas.
The additional carriers added to the inversion layer cannot
overcome the decrease in the two-terminal current required by
the new boundary conditions imposed on the Drude conduc-
tance tensor. The current switches to flow across the device
a.t the Hall angle as the inversion-layer geometry is opened,
resulting in a large drop in the current.

shows a qualitatively similar magnetoconduct;ance to the
two previous curves for which the electrons are confined
in the gap between the grating lines, VTG ——13 U and

VBG ——0 V and —1.25 U in Fig. 3.
The different magnetoconductance of the wide and

narrow MOSFET is manifested in a quite dramatic way
when the magnetic field is held fixed and the inversion-
layer geometry is varied with the two gates as in Fig. 4.
We fix the bottom gate voltage at UBG ——3 U and
vary the inversion-layer geometry with the top gate.
The "break" or "kink" in the static I-U curve around
VTG 0 V becomes quite prominent as the magnetic field
is increased. For VTG & 0 V the current is almost inde-
pendent of magnetic field, consistent with the magneto-
conductance of the array of narrow wires in Fig. 3. How-

ever, when VTG & 0 V, the current drops very strongly
with increasing magnetic field, consistent with the mag-
netoconductance of a standard wide MOSFET device.
The seemingly counterintuitive result in Fig. 4 is that, as
more electrons are added to the device by increasing the
top-gate voltage, the current actually decreases when a
magnetic field is present. The decrease in the current is
not small; a drop of more than two-thirds of the original
current is observed at a magnetic field of 8 T in Fig. 4.

We argue that the region of the curve in Fig. 4 for
which UTG & 0 is where the electron gas is confined into
narrow-inversion channels. The decreasing conductance
with increasing gate voltage occurs when the electron gas
first becomes continuous across the channel with a modu-
lated density, and the conductance continues to decrease
until a minimum conductance occurs near VTG 8 V for
B = 8 T. The conductance minimum should occur when
the gate voltages create an unmodulated two-dimensional
potential. The rising conductance when VTG & 8 V
occurs partially because more carriers are being added
to the inversion layer, but mainly because the combi-
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FIG. 5. For a device I-V curve from Fig. 1 having no

kink, little or no background magnetoconductance is ob-

served. This absence of substantial background magnetocon-
ductance confirms that the electron gas exists only in the gap
between grating lines, so that the inversion-layer geometry
does not qualitatively change as the top-gate voltage is var-
ied. The current path therefore continues to flow parallel to
the side of the device irrespective of the magnetic Geld, pro-
ducing little magnetoconductance.

nation of gate voltages now again produces a modu-
lated potential. s On the rising part of the curve where
V~G & 8 V, the electrostatic potential minimum has now
shifted over by half a grating period to lie in the gap
between grating wires. (When 0 V( UgG ( 8 V on the
falling part of the I-V curve, the electrostatic potential
minimum lies underneath the grating gate wires. ) A large
negative transconductance similar to that in Fig. 4 can
also be observed by fixing the top-gate voltage above its
threshold and sweeping the bottom gate in an applied
perpendicular magnetic field.

If our interpretation of Fig. 2 is correct, that the
"breaks" in the device I-U curve correspond to an open-
ing of the parallel narrow-inversion channels into a wide
two-dimensional electron gas, then there should be very
little magnetoconductance for bottom-gate voltages be-
low threshold, VBG ——1 V, 0 V, and —1 V, where there
is no break in the static I-V. This is indeed the case as
shown in Fig. 5, confirming that for this family of I-V
curves the electron gas exists only in strips between the
grating gate wires.

III. TEMPERATURE DEPENDENCE

To understand whether the large negative transcon-
ductance in Fig. 4 is a classical or a quantum-mechanical
effect, we study its temperature dependence. Figure 6(a)
shows the current on a different device when VBG ——3.5 V.
We sweep the top-gate voltage for temperatures T = 4.2
K, 20 K, 50 K, 100 K, 200 K, and 280 K. The total series
resistance is 120 0 in Fig. 6, since different measurement
equipment is now being used. This different device and
measurement setup is used in Figs. 6—9. Although fring-
ing fields are able to shut off the device when T = 4.2 K,
we see that by the time the device is at room temperature
(280 K) the fringing fields are much less effective. We do
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FIG. 6. Temperature dependence of the device current
shown for T = 4.2 K, 20 K, 50 K, 100 K, 200 K, and 280 K.
The magnetic field is (a) B = 0 T and (b) B = 15 T normal
to the sample surface. The large negative transconductance
in (b) persists to room temperature, confirming its classical
origin.

not understand this difference in detail. The decrease in
conductance with increasing temperature is presumably
due to an increase in electron-phonon scattering with in-

creasing temperatures.
The effect of a 15-T magnetic field normal to the Si-

SiO2 interface on these curves is shown in Fig. 6(b). The
T = 4.2 K curve for B = 0 is also shown for compar-
ison (dashed line). At T = 4.2 K and B = 15 T, a
single Shubnikov —de Haas oscillation is observable over
the range of gate voltages sho~n. By T = 20 K the
Shubnikov —de Haas oscillation is no longer present, in-
dicating that the Landau-level structure has completely
deteriorated. Yet the large negative transconductance
seen in Fig. 6(b) persists even to room temperature. We
conclude that the effect is completely classical.

This classical magnetoconductance effect does not
arise from confinement of the electrons to dimensions
smaller than the cyclotron radius or mean free path.
In this sample a generous estimate of the mean free
path which enters the Drude conductance is roughly
600 A when T = 4.2 K. Thus, the mean free path can be
greater than the wire width at low temperature, but this
does not seem possible at room temperature when the
mean free path is 5—10 times smaller. Also, at a mag-
netic field of B = 15 T, the cyclotron radius in (100)
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Si is less than 100 A, which is much smaller than the
wire width, yet the observed negative transconductance
becomes larger, not smaller, as the magnetic field is in-
creased.

The correct explanation for the behavior of the mag-
netoconductance as the inversion layer geometry changes
was provided by Park. Assume the magnetoconduc-
tance is described by the Drude conductance tensor. This
assumption is appropriate if the device is not in the quan-
tum Hall limit so that local resistances can still be de-
fined. One must obtain the two-terminal device conduc-
tance using the Drude tensor, by calculating the current
consistent with the boundary conditions on the current
and voltage. The boundary conditions are (1) that no
current can flow through the side of the device, and (2)
that the voltage at the source terminal be zero and at the
drain terminal be VDS, since the device contacts are heav-

ily doped and can thus be approximated as an equipo-
tential surface.

In a long and narrow geometry for which L && W, and
well away from the device ends, the current distribution
along the channel from one differential slice of the device
to the next must be the same, as shown in Fig. 7(a).
Therefore, the current mostly flows parallel to the edge
of the device and the electric field is pointed away from
the current path by the Hall angle. Since the current
distribution is known, one can integrate

R2y Lp /W.

This result makes sense, as it is just the standard argu-
ment for measuring p ~ in a Hall bar geometry. To make

LONG AND
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FIG. 7. To obtain the two-terminal conductance from the

Drude conductance tensor, we apply boundary conditions on

the current and electric field appropriate to the inversion-layer

geometry. For (a) a long and narrow conductor, the current

must continue to flow parallel to the side of the device even

at moderate magnetic fields. If the conductor is (b) short and

wide, the electric field points directly from source to drain

and the current flows across the device at the Hall angle.

F =p J +pyJy

from source to drain. The term involving p &
is com-

pletely negligible when L )) W (and ps g 0, i.e. , the
device is not in the quantum Hall limit) so one obtains
the two-terminal resistance R2~ of the device as

an accurate measurement of p~ in a Hall bar geometry
one wishes t,o make a sample very long and narrow, and
keep the Hall probes well away from the ends of the de-
vice. Equation (2) for the two-terminal resistance has
been previously suggested by Syphers and Stiles.

Conversely, in the short and wide geometry of Fig. 7(b)
for which W » I, the edges of the device are far away so
that the current will have to adjust to the boundary con-
dition on the voltage. For the short and wide geometry,
the equipotential surfaces must be the same as one moves
laterally across the channel as in Fig. 7(b). Therefore, the
electric field points directly from source to drain and the
current Qows at the Hall angle across the channel. There
are minor corrections to this picture at the edges of the
device, which are small if W » I. Consequently, since
the electric field is known, the two-terminal current can
be obtained by integrating

from source to drain. One obtains in the limit W »
L and o g 0, where the second term in Eq. (3) is
negligible, that the two-terminal conductance G~p is

G2p Wo /L (4)

Reference 21 has suggested a similar expression for the
two-terminal magnetoconductance of a short and wide
conduct, or.

The classical Eq. (2) and Eq. (4) qualitatively ex-

plain the data in Fig. 4. Since p ~ is independent of
magnetic field, Eq. (2) predicts that in a long and nar-
row device where I &) W there is no magnetoconduc-
tance. Conversely, since o~ varies with magnetic field
as 1/[1+ (pB)2], where p is the electron mobility and
8 the magnetic field, the two-terminal conductance of a
short and wide device where W )& I. decreases as the
magnetic field increases. Fitting the two-terminal con-
ductance from Fig. 3 for VTG ——13 V and VBG —3 V
to the form G = Go/[1+ (pB)~] gives an electron mobil-

ity p 4000 cm /Vs after series resistance correction.
This mobility is the same order of magnitude as the mea-
sured field-effect mobility, and gives additional support
to Eq. (4). To explain completely the data in Fig. 4, such
as the conduct, ance minima occuring at different values of
VTG for different values of the magnetic field, one needs
a theory of classical magnetoconductance in a modulated

potential which is not available at this time. However,

Eqs. (2) and (4) qualitatively explain most of the data.
The large negative transconductance observed in Fig. 4,
and the difference between Eqs. (2) and (4), arises be-
cause the current switches direction to flow across the
device at the Hall angle as the inversion layer geometry
is opened electrostatically.

How Eqs. (2) and (4) relate to more complicated
expressions ' 3 for the two-terminal magnetoconduc-
tance in terms of the conductance tensor elements is not
clear. One would expect to obtain Eqs. (2) and (4) from
Refs. 22 and 23 in the appropriate limits. Park has

constructed a proof using the conformal mapping tech-

nique of Ref. 22 that there is a symmetry between G2y

in the W &) I. limit and R2~ in the I && W limit. As a
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special case, this symmetry implies that, if Eq. (2) holds
in the limit of L » W, then Eq. (4) holds when W » L

IV. HIGH MAGNETIC FIELDS

600
OiI
0
M

c
300
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C0
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-15 -5 5 15 25
Top-Gate Voltage (V)

FIG. 8. Conduction in a large magnetic field having values
B = 0 T, 5 T, 10 T, 15 T, 20 T, and 23 T at a temperature T =
1.2 K. The bottom gate is held at VBG ——3.5 V. For the long
and narrow conductors formed below VTG = 0 V on the left
side of the figure, there is a large increase in the current at the
two highest values of the magnetic field. This large positive
magnetoconductance indicates the formation of quantum edge
states and the approach to the quantum Hall eftect. The
approach to the quantum Hall eR'ect is qualitatively different
when the inversion layer geometry is short and wide (above
VTG = 5 V on the right of the figure), where the high-field
magnetoconductance is negative. This is also explained by
quantum edge-state formation.

We turn to the behavior of the conductance at large
magnetic fields. Figure 8 shows the conductance (cor-
rected for series resistance) when VnG

——3.5 V and the
top gate is swept between —15 V & VTG & 25 V for afam-
ily of magnetic fields B = 0 T, 5 T, 10 T, 15 T, 20 T, and
23 T at a temperature T = 1.2 K. For top gate voltages
VTG & 5 V, the inversion layer forms a short and wide
conductor (right side of Fig. 8). In this short and wide ge-
ometry, the high-field conductance continues to decrease
with the large applied magnetic field. Thus, neglecting
the appearance of Shubnikov —de Haas oscillations in the
conductance, the high-field magnetoconductance for the
short and wide geometry has the same sign as the clas-
sical Drude magnetoconductance at moderate magnetic
fields. For top gate voltages VTG & 0 V, the inversion-
layer geometry consists of many parallel long and narrow
conductors (left side of Fig. 8). When the electrons are
confined to these long and narrow conductors, the cur-
rent remains roughly constant up to a magnetic field of
15 T as before. Thus, neglecting again the appearance of
Shubnikov —de Haas oscillations, the background magne-
toconductance lies roughly in the classical Drude regime
to about, 15 T. But in contrast to our previous results at
low magnetic fields, for the magnetic field values of 20 T
and 23 T, there is an additional large increase in the cur-
rent in the long and narrow conductors at high magnetic
fields. Thus, the high-field magnetoconductance has an

opposite sign on diferent parts of the same device curve
in Fig. 8, corresponding to either a high- or low-aspect-
ratio conductor.

We claim that this additional increased conductance
in the long and narrow wires is due to edge states form-
ing in the wire array as outlined by Biittiker. Our de-
vice is 60 pm wide and the grating period is 0.2 pm, so
that roughly 300 wires are present in the array. In a
high magnetic field each wire must have a conductance
of 2e /It, the same conductance as that in a quantum
ballistic conductor. ~s Since the wires have many scat-
tering centers, their initial conductance at zero field is
much less than the ballistic value. Therefore the con-
ductance must rise with magnetic field when edge states
begin to be formed in the wire, giving a conductance of
2e~/h times the number of wires in parallel. The con-
ductance of the wide MOSFET will also approach 2e /A'

at large magnetic fields. But since many conduction
channels are initially occupied in the wide MOSFET, so
that its total two-terminal conductance is much larger
than 2e2/h when B = 0, its conductance must continue
to fall at large magnetic fields to approach the quan-
tum Hall conductance limit. Therefore, depending on
whether conduction occurs in many parallel narrow wires
or a two-dimensional MOSFET, the high-field magneto-
conductance must change sign as the device aspect ratio
changes from long and narrow (positive magnetoconduc-
tance) to short and wide (negative magnetoconductance).

To prove that edge-state conduction is occurring, we
measured the conductance of electrons confined in the
gap between grating lines where VBG

——0 V and B = 0
T, 10 T, 20 T, and 30 T. The results are shown in Fig. 9
(corrected for series resistance). For B = 0 T and 10 T,
the current versus top-gate voltage qualitatively resem-
bles Fig. 5, where Shubnikov —de Haas oscillations appear
in the conductance and the background magnetoconduc-
tance is flat. When B = 30 T a well-defined quantum
Hall plateau develops at 1200e2/h, with weaker precur-
sors to quantum Hall plateaus appearing near 600e2/h
and 1800e~/h. Quantum Hall plateaus were reported in
the two-terminal conductance by Fang and Stiles, and
fit nicely with the theory developed by Biittiker. Since
the device has 300 parallel wires, we interpret the Hall
plateau at 1200e2/It as the first filled Landau level with
spin and valley degeneracy, due to the two conduction-
band valleys at a (100) Si surface. Note, however, that
only one of the degeneracies (at 600es/It) is resolved in
the conductance. Following Refs. 11—13 and 27, we in-
terpret this as evidence that the valley degeneracy is re-
stored in the wire.

We feel that the large magnetic field of 30 T required
to observe the quantum Hall effect in this sample is due
partially to a lower sample mobility, but also to the fact
that for such a narrow channel only a single impurity
is required to destroy the quantization. Also, the quan-
tized Hall conductance is more di%cult to observe in a
two-terminal measurement, where electrons must travel
between two highly disordered contacts, than in a stan-
dard Hall bar geometry where they travel only along a
relatively clean sample edge in the region of interest. This
may also help to explain why such a large magnetic field
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FIG. 9. Two-terminal conductance of a narrow wire array
in an applied magnetic field of 8 = 0 T, 10 T, 20 T, and 30 T.
Shubnikov —de Haas oscillations are seen when 8 = 10 T, and
quantum Hall plateaus appear when 8 = 30 T. The wide
Hall plateau at 1200e /lt is formed by the 300 parallel wires

having their lowest fourfold degenerate Landau level filled.

V. CONCLUSION

We originally undertook this study in an effort to see
some manifestation of quasi-one-dimensional subbands
in the device conductance in a diffusive sample.
This was not observed in these particular devices even
though the wire width was shown to be much smaller
than the electron phase coherence length. However, a
variety of magnetoresistance effects were studied. Weak
localization at low values of the magnetic field was found
to become a much stronger effect in the conductance,
and to persist to a much larger value of magnetic field,
when the electron gas is pinched into a wire narrower
than the phase coherence length. This modification to
weak localization is the only magnetoconductance effect
studied here that depends on the extreme narrowness
of the quantum wire. The two other magnetoconduc-
tance effects studied, the different background magneto-
conductance at moderate fields and different approaches
to the quantum Hall effect at high fields, depend primar-

is required to obtain the quantized two-terminal conduc-
tance in Fig. 9.

The magnetic field value 8 = 20 T is an intermedi-
ate case between the Shubnikov —de Haas oscillations and
the quantum Hall effect. This curve, showing the evolu-
tion from Shubnikov —de Haas oscillations to the quantum
Hall effect in a narrow conductor, reproduces qualita-
tively the phenomenology observed by Kastner et al. '
in narrow MOSFET's. The anomalous filling factors in
Ref. 11 have since been explained' in a model which
takes into account how edge states form in the various
thick and thin oxide regions underneath the gate for the
samples in Ref. 11. In our present device the narrow
wire runs straight between the three-dimensional degen-
erately doped source and drain, and not through any two-

dimensional regions or under different gate oxide thick-
nesses.

ily on the aspect ratio of the conductor (long and narow
versus short and wide) and not on the conductor being
narrower than the phase coherence length. The grating
gate enabled us to directly compare the magnetoresis-
tance of a two-dimensional sample with multiple paral-
lel one-dimensional conductors, since the conductance of
both systems are the same order of magnitude and can
be displayed on the same graph.

We also observed that the two-terminal Drude mag-
netoconductance of an inversion layer is strongly deter-
mined by the device aspect ratio (when a local magne-
toconductance tensor description of conduction is appro-
priate). This is in contrast to the two-terminal resistance
of a quantum Hall conductor, in which the resistance is
independent of the size and shape of the conductor. A

long and narrow conductor was found to have very lit-
tle dependence of the two-terminal resistance on mag-
netic field, while a short and wide conductor has a two-
terminal resistance which increases with magnetic field.
This difference is manifested as a large negative transcon-
ductance (a decrease in the current as more electrons are
added to the device) of our grating gate MOSFET when
the magnetic field is held fixed and the device geometry is

opened electrostatically from many narrow wires in par-
allel into a two-dimensional conductor. As the inversion-

layer geometry is opened electrostatically, the current
direction switches from Rowing directly from source to
drain (long and narrow conductor) to flow at the Hall

angle across the device (short and wide conductor), pro-
ducing the large negative transconductance observed in

this study.
Finally, for conduction in very high magnetic fields,

the magnetoconductance was shown to have opposite
sign for the multiple parallel narrow wires and the two-
dimensional MOSFET. Therefore, the evolution from the
Drude magnetoconductance to the Shubnikov —de Haas
oscillations and quantum Hall effect depends strongly
and qualitatively on the device aspect ratio. The long
and narrow wire (with a zero-field conductance much less
than 2e~/h) must suffer an increase in conductance at
high magnetic fields, while the short and wide channel

(with a zero-field conductance much greater than 2e /h)
must become less conductive at high magnetic fields. We
interpret this result in terms of magnetic quantum edge-
state formation in the wire array, as confirmed by the
appearance of quantum Hall plateaus at the highest mag-
netic fields. Again, this result depends primarily on the
device aspect ratio and not the narrowness of the wires.
The observed quantum Hall steps have size 2e /h since
the conduction-band valley degeneracy is not resolved.
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