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We present theoretical studies of the electronic and optical properties of free-standing Si quan-
tum wires which exist in porous Si. We use a second-neighbor empirical tight-binding model which

includes d orbitals and spin-orbit interaction. The excitonic effects are included within the effective-
mass approximation. We found that for narrow quantum wires with widths around 8 A, the averaged
exciton oscillator strength is comparable to that of bulk GaAs. However, the average exciton os-
cillator strength decreases dramatically (fa.ster than 1/L ) as the quantum-wire width L increases.
The radiative lifetimes of excitons in quantum wires are estimated and we find that the liftime of
the shortest-lived exciton ranges from 57 ns to 170 ys for wire widths from 7.7 to 31 A. We have

also calculated the absorption spectra and found strong polarization dependence.

conduction bands, and they are excluded in our model
for simplicity. The s' orbital, as originally introduced by
Vogel, Hjalmarson, and Dow, 4 is added to improve the
description of higher conduction bands.

The conduction-band states of interest are mostly de-
rived from the X valleys and their confinement energies
are governed by the X-valley transverse effective mass.
It is thus important to include the second-neighbor inter-
actions, because in a nearest-neighbor model, the trans-
verse effective mass at the X point would become infinite.
Hamiltonian matrix elements between sp d s' orbitals
are obtained by fitting our tight-binding bands to the
electronic band structure that results from an empirical
pseudopotential methods (EPM) for bulk Si.

The best-fit Koster-Slater matrix elements for silicon
are listed in Table I for our sp d s' model. We use
four on-site matrix elements for s, p, d, and s* atomic
orbitals plus fourteen independent first- and second-
neighbor two-center integrals giving us a total of 32 pa-
rameters. Our fit to silicon bulk bands is shown in Fig.
1. The solid curves are obtained from the EPM calcu-
lation, while the dotted curves are obtained from our
tight-binding model with optimum parameters.

In fitting the bands, a lot of weight was given to the
valence-band maximum at I' and the conduction-band
minima at +0.85(2x/a) along the ( 100 ) directions.
The confinement energy of the quantum-wire conduction
bands will be largely determined by the transverse mass
of the X-valley minima, and special weight was given to
the band curvatures at these points in order to obtain a
realistic transverse mass. The transverse mass we get is
0.172rno which is close to the observed value of 0.19mo.
In the energy range of interest, which covers up to the
fourth conduction band, our model closely matches the
EPM results throughout the Brillouin zone. In particu-
lar, the valence-band maximum at I and the conduction-
band minimum at X are adequately described.

I. INTRODUCTION

Free-standing silicon quantum wires have recently been
fabricated using an approach based on electrochemical
etching of bulk silicon wafers in HF acid. This pro-
cess is used to define a network of isolated free-standing
silicon wires out of bulk wafers without resort to epitax-
ial deposition or lithography. The wires are observed to
be evenly spaced with large height-to-width ratios. Typ-
ically, the heights are on the order of micrometers while
the widths are on the order of nanometers, giving aspect
ratios of about 1000:1. When silicon quantum wires are
optically excited with green light from an argon laser, the
resulting electron-hole pairs recombine across the band
gap to produce red light. The ability of silicon quantum
wires to emit visible light, coupled with their relative
ease of fabrication, may lead to cheap silicon-based opto-
electronics. In this paper, we present theoretical studies
of the electronic and optical properties of free-standing
silicon quantum wires.

II. THEORETICAL MODEL

We use a second-neighbor empirical tight-binding
Koster-Slater model which includes seven atomic orbitals
per site with symmetry types s, z, y, z, d~, d2, and s*,
where dq

—(z~ —y~)/y 2 and dq —(3z —r2)/~6 We.
refer to our tight-binding basis as the sp d s* basis. Bulk
silicon has Op point group symmetry. The d-like orbitals,
which transform according to the D(2) representation
of the rotational group, decompose into two d orbitals,
which transform according to the E representation of O~,
plus three d orbitals, which transform according to the
T2 representation of OI, . The d orbitals have the same
symmetry as the p orbitals under OA. Thus, their role
can be taken by the p orbitals for describing the low-lying

45 9202 1992 The American Physical Society



45 THEORY OF OPTICAL PROPERTIES OF QUANTUM WIRES IN. . . 9203

TABLE I. Koster-Slater Hamiltonian matrix elements for Si in a second-neighbor sp d s'
tight-binding model in units of eV.

On-site matrix elements

—5.5616 3.0078 14.2236 17.9210

Vs scr

Nearest-neighbor matrix elements

Vpp~ Vppsr Vsg Vpg Vpg

—2.0791
V

—6.6901 4.6800

3.6670
V

—0.2554

—1.2110
Vs. a6

—0.9166

—3.3462

—0.7618

—3.5553
V...
0.1968

2.2968
Vs

—0.2969

Vs scr Vsper

Second-neighbor matrix elements

Vpp~ Vppn V,g Vpg

0.1216

0.6012

—0.1844
Vaa~

0.2339

0.0073

0.7766

—0.1721
Vs~ d6

—0.0486

0.7639
V,.„
—0.0633

0.3117
Vs s cr

—0.0823

0.3615
V, ,
0.1007

In the absence of spin-orbit coupling, we have

Hpin, k, o &= E„(k)in, k, o &,

the unperturbed states, in, k, o &. Thus,

in, »= ) C„, (k) in, k, o &,

where Hp is the quantum-wire Hamiltonian and E„(k)
and in, k, o & denote energy eigenvalues and eigenstates.
n is the band index and k is the wave number along the
wire direction. o denotes the electron spin (o = 6 z). We
include the spin-orbit interaction term (denoted H, ) as
a perturbat;ion and expand the wave function in terms of

where the expansion coefficients C„(k) satisfy

) [E„(k)S„„S, + & n', k, rr'iHsoin, k, o &]C„~(k)
n, o

= E(k)C„(k). (3)
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FIG. 1. Band structures of bulk Si obtained by an empir-
ical pseudopotential method (solid curve) and by the present
tight-binding method (dotted curve).

In the tight-binding model, the spin-orbit interaction H„
couples atomic orbitals on the same atomic site. In our
model, we retain the spin-orbit interaction between m-,

y-, and z-like atomic orbitals and ignore spin-orbit in-
teractions between ot;her atomic orbitals. The spin-orbit
matrix element & n', k, o'iH, in, k, o & is evaluated be-
tween zeroth-order states using the on-site interactions
given in Table II. Thus, the spin-orbit interaction is
characterized by a single parameter, A. In order to get
the correct spin-orbit splitting (b,) in bulk Si we take
A = b, /3, where b, = 0.044 eV. In evaluating the effects
of spin-orbit interaction, we only include the lowest five
conduction-band and the highest ten valence-band states.

The optical matrix elements are expressed in terms
of sp d2s' orbitals. Derivations of the optical ma-
trix elements between atomic orbitals were given by
Chang and Aspnes. We only keep on-site and nearest-
neighbor optical matrix elements and treat these as ad-
justable parameters. To describe optical matrix elements
in our model, we need eight independent parameters:
Paa, Paa ) Pss ) spy Ppp) Ppp, Ppp» and Ps p The physi-
cal meaning of the first seven parameters is given in Ref.
6, while P, p has the same meaning as P» but involves
the s' orbital. We calculate k-dependent optical ma-
trix elements in bulk silicon and fit them to results ob-
tained from an EPM calculation. The results are shown
in Fig. 2. Contributions from degenerate bands have been
summed. In the figure, HH denotes the two degenerate
heavy-hole bands, LH denotes the light-hole band, Cl
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TABLE II. Spin-orbit interaction in (n, cr) basis; n = x, y, z, a = —,——.

(* ))
(y &)
(» —,)
(* —-')

(y —-)
(z ——,)

~

(* —,')
0
iA
0
0
0
A

(y —,')
—iA
0
0
0
0
iA

(z -', )

0
0
0
—A

—iA
0

0
0
—A

0
—iA
0

(y ——,')
0
0
iA

iA
0
0

(z ——,')
A

—iA
0
0
0
0

26.0)
g) 20.0
E

LLJ

X 15.0

10.0
~~
CL0

s.o

O
V)

0.0
L

26.0
0
C 200
E

UJ

15.0

10.0
~~

O
5.0

tg

CT
M

0.0
L

Y-Polarization

—~

r
Wave Vector k

denotes the first conduction band, C2 denotes the next
doubly-degenerate conduction bands, and C3 denotes the
remaining nondegenerate conduction band which crosses
the doubly-degenerate C2 bands at k (0.2, 0, 0) —, (see
Fig. 1). The fit is fairly good for optical transitions from
the top three valence bands to the lowest four conduction
bands throughout the entire Brillouin zone. The optical
matrix element parameters used are listed in Table III.

We consider an infinitely long Si wire oriented along
[001] with a square cross section whose faces, of width
I, are parallel to the four equivalent (110) planes. The
quantum-wire crystal structure is shown in Fig. 3. The
basic unit (shown in the upper portion of Fig. 3), from
which we construct the quantum wire, contains four sili-

con atoms and has a height, a and width a/y 2, where a
is the lattice constant (a = 5.43 A for Si). The quantum-
wire unit cell (a cross-sectional slab) consists of N x N
such basic units and there are an infinite number of these
slabs stacked on top of each other along the wire axis.
The width of the wire is L = Na/+2.

Silicon dangling bonds at the surface of the wire are
passivated by hydrogen derived from the HF acid used in
fabrication. We neglect surface reconstruction and place
hydrogen atoms a distance d along broken bond direc-
tions. The surface hydrogens contain a single s orbital
and all Hamiltonian and optical matrix elements between
silicon orbitals and hydrogen s states are scaled accord-
ing to the I/dz rule. 7 Total-energy calculations show that
bond distances involving surface atoms can be predicted
on the basis of atomic radii. s Since the radius of H is

much less than the Si radius, we take d to be half the
Si-Si bond length. We find that strong Si-H bonding and
antibonding interactions sweep surface states out of the
fundamental gap.

III. BAND STRUCTURES

TABLE III. Parameters for Si optical matrix elements in

unit of (eV)'

Pl P„ P,p Ppp

In computing quantum-wire band structures, we de-
note the tight-binding orbitals as ia, R, k) where n =
s, z, y, z, di, d2, s' labels the symmetry types of atomic
orbitals, R denotes the atomic position within a
quantum-wire unit cell, and k labels the quantum-wire
wave number. For a quantum wire, the Brillouin zone is
one dimensional with the range of k from —7r/a to z/a.
Note that the primitive unit cell of the quantum wire has
a height a along the [001]wire axis, whereas the primitive
unit cell of bulk Si along the [001] direction has a width
of a/2. Thus the quantum-wire Brillouin zone is twice
as small as the bulk Brillouin zone in the [001] direc-
tion. We solve for the electronic states by diagonalizing
the tight-binding Hamiltonian directly. The dimension
of the tight-binding Hamiltonian matrix is 7 x Ns;+ NH,

FIG. 2. Optical matrix elements of Si for transitions from
the top three valence bands to the lowest four conduction
bands. Contributions from degenerated bands have been
added together. Soild curves, EPM results. Dashed curves,
present tight-binding model.

3.6078

Ppd

—0.5044

0.3893

Pppn

0.1479

0.3700

P, p

—1.2576

—0.3322 —0.4915
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FIG. 3. Crystal structure of a Si quantum wire.

where Ns; and NH are numbers of Si and H atoms in the
quantum-wire unit cell. We have Ns; ——4N(N+ I)+I and

NH = 8N+4. A reduction in the size of the tight-binding
Hamiltonian mat;rix is obtained by exploiting mirror sym-
metry about the perpendicular mirror planes (110) and

(110). Quantum-wire states have definite parity with re-
spect to reflection about the (110) and (110) planes (see
Fig. 3) and we consider symmetrized tight-binding wave
functions labeled by (+,+), (—,+), (+, —), and (—,—).
The two indices label the parity about (110) and (110),
respectively. Using the symmetrized wave functions, the
Hamiltonian is block diagonal with four blocks corre-
sponding to the four symmetry types. In the absence
of spin-orbit splitting, the (+, —) and (—,+) states are
degenerate. The principal qualitative effect of the spin-
orbit interaction is to remove this degeneracy. Thus, we

find that all quantum-wire states, including spin degrees
of freedom, are twofold degenerate.

We have calculated quantum-wire band structures for
several wire widths. The band structures in the absence
of spin-orbit interaction are shown in Fig. 4 for quantum
wires with L = 7.7, 15.4, 23, and 31 A (or N = 2, 4, 6,
and 8). Although bulk Si is indirect, the Si wire is seen to
be direct with an X-like conduction-band minimum and
an I'-like valence-band maximum both occurring at; the
zone center. Note that the indirect band gap obtained
in our model for bulk Si is 1.034 eV, whereas the exper-
imental value is 1.17 eV at 0 K and 1.11 eV at 300 Ik.
Although the difference is insignificant compared to the
global band structure, it is important to take into account
this difference when comparing the calculated transition
energies with experimental values.

The changeover from indirect conduction band in bulk
Si to direct conduction band in a quantum wire can be

qualitatively explained as follows. In bulk Si, the indirect
conduction band consists of six equivalent X valleys with
minima at +0.85—along & 100 & directions. These
valleys are anisotropic ellipsoids with two light trans-
verse masses of 0.19rno and a heavy longitudinal mass
of 0.92mo. In the quantum wire, the projections of four
of these valley minima (oriented along [100] and [010] di-
rections) onto the wire axis are at the zone center and
their energies determined by the effective masses along
the [110] and [110] confinement directions. When pro-
jected onto the [001] wire axis, these states give rise to
the four closely spaced, direct conduction subbands seen
in Fig. 4. Each subband consists of substantial admix-
ture of bulks states derived from the four degenerate X
valleys. Thus, we have a strong intervalley mixing effect
here.

The quantum-wire subbands derived from the two X
valleys along [001] are indirect since the projections of
their valley minima onto the wire axis are near +0.85—
which becomes +0.3- after mapping into the quantum-
wire Brillouin zone. Note that since the quantum-wire
Brillouin zone is twice as small as the bulk Brillouin zone
in the [001] direction, a twofold zone folding should be
considered. The states derived from the two X valleys
along [001]have higher energies than the direct minimum
since the [001] valleys have light transverse masses along
both confinement directions. The indirect minima at I[;

0.3—, are clearly seen in Figs. 4(b)—4(d). In Fig. 4(a), the
band hybridization is too strong for them to be seen.

A closeup view of the band structures near the funda-
mental band gap with the inclusion of spin-orbit interac-
tion is shown in Fig. 5 for quantum wires with I = 7.7,
15.4, and 23 A (or N = 2, 4, and 6). In the absence
of spin-orbit splitting, the subbands have symmetries
labeled by (—,—), (+, —), (—,+), and (+, +) with the
(+, —) and (—,+) states being degenerate. When the
spin-orbit interaction is included, the degenerate (+, —)
and (—,+) states are replaced by spin-split linear combi-
nations and they are mixed with the (+, +) and (—,—)
states slightly. Similar to the bulk X-like states, the
quantum-wire conduction bands are spin-split. For the
quantum wires shown in Fig. 5, the spin-orbit splittings
of the (+, —) and (—,+) conduction bands are about 3—7
meV. The ordering of states varies with the wire width
in a complicated way. This is due to the intervalley mix-
ing effect known to exist in indirect materials. A similar
effect was found in Si quantum wells, in which the sym-
metry of the lowest conduction band changes with well
width in an oscillatory fashion. The intervalley mixing is
even more complicated here because of the participation
of four valleys instead of two valleys as in the quantum-
well case.

The valence bands are I'-like. At k = 0, the highest-
lying state (or the top valence band) has (+,+) symme-
try. There is a pair of valence bands labeled by (—,+)
and (+, —) which are spin-split states derived primarily
from the (+, —) and (—,+) states. The magnitude of the
spin-orbit splitting of this pair is around 20 —35 meV.
By examining the wave functions we can relate our re-
sults to those for a particle in a two-dimensional box. It
is well known that the wave functions of a particle in a
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two-dimensional box can be written as

f„„„,(z', y') = —sin(nis. z'/L) sin(nqxy'/L),

0(~', y'(I,
where ni and np are the two principal quantum numbers.
Throughout the paper, the z, y, and z axes are chosen

along the [100], [010], and [001] directions, respectively,
and we define z' = (z + y)/v 2 and y' = (y —z)/~2
to be coordinates along [110] and [110] directions. All
three subbands mentioned above are found to have an
envelope function which corresponds to (nl, nq) = (1, 1).
The (+,+) state consists of predominantly z-like atomic
orbitals, whereas the (—,+) and (+, —) states consist of
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FIG. 4. Band structures of Si quantum wires without spin-orbit interaction. (a) L = 7.7 A, (b) L = 15.4 A, (c) L = 23 A,

(d) L= 31 A.
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TABLE IV. EfFective masses of the four lowest conduction
and four highest valence subbands of Si quantum wires (in
units of ms, the free-electron mass).

State

C1
C2
C3
C4
V1
V2
V3
V4

0.53
0.52
0.53
0.62

13.98
0.41

—2.91
—2.68

15.4 A

0.29
0.31
0.31
0.33

36.45
4.06
0.30
9.30

0.23
0.24
0.24
0.24

10.21
3.98
0.26

26.50

0.20
0.20
0.20
0.20
4.34
3.74
0.24

17.62

IV. EXCITON STATES

Excitons in silicon quantum wires are studied using
a two-band effective-mass model with parabolic elec-
tron and hole bands obtained from fits to our computed
quantum-wire band structure. Since we are dealing with
free-standing silicon wires, the confining potential for
electrons and holes is equal to the work function which
we take to be infinite.

We assume the exciton wave function may be written
as a product of electron and hole wave functions describ-
ing the motion in the z-y plane and an exciton envelope
function G(z) describing the relative motion of electron
and hole along the wire axis (z direction). The exciton
wave function is given by

mainly z'- and y'-like atomic orbitals. Note that here
the quantization axes are z' and y'; thus, the states con-
sisting of z-like atomic orbitals are considered "heavy"
for both quantization axes, whereas the states consist-
ing of z' or y' orbitals are considered "light" at least for
one quantization axis. Consequently, the (+, +) state lies
higher in energy.

There is another state labeled (—,—) which consists of
mainly z'- and y'-like atomic orbitals and has an enve-
lope function corresponding to (ni, nq) = (1,2) for the
z' component and (ni, nz) = (2, 1) for the y' component.
The dispersion of the (—,—) subband is much larger than
the above three subbands. At some finite k [e.g. , k near
0.07 —, in Fig. 5(c)], we observe an anticrossing of the
(—,—) subband and one of the (—,+) and (+, —) sub-
bands. In the absence of spin-orbit coupling, these states
have different symmetries and they do not mix. The fifth
subband also has (—,—) symmetry, but corresponds to
different (ni, n2) quantum numbers.

As the silicon quantum wire is made smaller, the size
of the direct gap increases as can be seen in Fig. 5. Zone-
center effective masses for quantum-wire subbands may
be obtained by fitting parabolas to the valence and con-
duction bands. Zone-center effective masses for the four
lowest-lying conduction subbands (labeled Cl —C4) and
four highest-lying valence subbands (labeled Vl —V4) are
given in Table IV for L = 7.7, 15.4, 23, and 31 A. Note
that the V3 and V4 subbands for the 7.7-A. quantum
wire have negative effective masses. This will lead to
large reduced masses for excitons derived from these two
subbands and hence large exciton binding energies.

&( ~& i) = fn„n&(z'„y,')f„,„,(z'„, y„')G(z, —zI, ),

where f„, „,(z', y') is the wave function of a particle in
a rigid two-dimensional box of area I with principal
quantum numbers (ni, n2). The envelope function G(z)
satisfies an effective one-dimensional Schrodinger equa-
tion

V(z) = I& „,(*'., y!)I'I& „,(z~, y~)l'

x dz, dz&dy, dy&,

where ep is the static dielectric constant (Ep = 11.8 for
Si). We found that V(z) can be fit fairly well by a simple
analytic expression with single adjustable parameter P,

The best-fit P parameters are shown in Table V for var-
ious wire widths.

The exciton binding energies and envelope functions
are obtained variationally by expanding G(z) as a linear
combination of 11 Gaussian functions where the Gaussian
exponents are chosen to cover a broad physical range.
We find that quantum-wire excitons have large binding
energies. The transition energies (hu„„) and binding
energies (E~) for the sixteen lowest-lying excitons for
various wire widths are listed in Table VI.

Figure 6 shows t,he dependence of the quantum-wire
band gap (solid curve) and the lowest exciton transi-
tion energy (dashed curve) on wire size. The theoreti-
cal values have been rigidly shifted by 0.076 eV to take
into account the difference between the calculated indi-
rect band gap for bulk Si and the experimental value at
300 K. Due to the quantum confinement effect, the band
gap decreases monotonically with wire width. For nar-
row quantum wires, the two-dimensional quantum size
effect, can result in emission far above the band gap of
bulk silicon. Canhami reported room-temperature pho-
toluminescence peaks in the range from 1.4 to 1.6 eV
for three different quantum-wire structures. Referring to
Fig. 6 the strong photoluminescence peak at 300 K re-

TABLE V. Parameter P (in units of A ) for describing
effective exciton potentials for various wire widths. (n&, n2)
in the table refers to the principal quantum numbers for the
valence subbands considered. For the conduction subbands,
we only considered (ni, n2) = (1, 1).

Ag i A2

(1,1)
(1,2)

0.5701
0.4851

15.4 A 23 A

0.2879
0.2440

0.1921
0.1636

0.1448
0.1234

0.1162
0.0988

2p dz )d, + V(z) G(z) = E~—G(z),

where E& is the exciton binding energy. The reduced
mass p is obtained from the zone-center effective masses
and the effective Coulomb potential is given by



45 THEORY OF OPTICAL PROPERTIES OF QUANTUM WIRES IN. . . 9209

TABLE VI. 'Aansition energies (in units of eV) of the lowest-lying sixteen excitons of Si quan-
tum wires. The values in parentheses are exciton binding energies in units of meV.

State

V1-C1
V1-C2
V1-C3
V1-C4
V2-C1
V2-C2
V2-C3
V2-C4
V3-C1
V3-C2
V3-C3
V3-C4
V4-C1
V4-C2
V4-C3
V4-C4

3.523 ( 270.9)
3.532 ( 269.3)
3.533 ( 270.6)
3.540 ( 281.8)
3.642 ( 189.9)
3.650 ( 189.3)
3.651 ( 189.7)
3.666 ( 193.8)
3.565 ( 289.8)
3.574 ( 287.8)
3.575 ( 289.3)
3.578 ( 304.0)
3.586 ( 291.3)
3.596 ( 289.3)
3.596 ( 290.1)
3.599 ( 305.8)

15.4 A

2.124 (141.1)
2.134 (144.0)
2.139 (143.5)
2.147 (146.0)
2.136 (138.7)
2.146 (141.4)
2.151 (140.9)
2.160 (143.3)
2.183 (102.8)
2.195 (104.0)
2.200 (103.8)
2.210 (104.8)
2.166 (140.2)
2.176 (143.0)
2.181 (142.5)
2.190 (145.0)

23k
1.629 ( 98.56)
1.631 ( 99.37)
1.634 ( 99.30)
1.635 ( 99.28)
1.635 ( 97.65)
1.637 ( 98.43)
1.641 ( 98.36)
1.641 ( 98.34)
1.672 ( 73.46)
1.675 ( 73.82)
1.678 ( 73.78)
1.679 ( 73.78)
1.669 ( 98.93)
1.671 ( 99.75)
1.675 ( 99.67)
1.676 ( 99.66)

31k
1.396 (76.47)
1.397 (76.84)
1.400 (76.84)
1.400 (76.84)
1.401 (76.33)
1.402 (76.69)
1.404 (76.69)
1.405 (76.69)
1.432 (58.25)
1.433 (58.43)
1.456 (58.43)
1.436 (58.43)
1.437 (77.15)
1.438 (77.53)
1.441 (77.53)
1.441 (77.53)

ported by Canhamt near 1.6 eV would be consistent with
a quantum wire with L 27 A.

V. OPTICAL PROPERTIES

The imaginary part of the dielectric function, ez(her),
due to band-to-band transitions in a quantum wire is

given by Fermi's golden rule, ~o

4x2e2
~z(h(u) = ) ) le P„„'(k)l

x b (E„'(k) —E„(k)—h~),

where V is the volume of the quantum wire, e is the
polarization vector, P„„.(k) is the momentum matrix el-
ement between valence band n and conduction band n'
at wave number k, E„I(k) and E„(k) are conduction-
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Wire Size L (A )
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Photon Energy (eV)
4.5 5.0

FIG. 6. Fundamental band gap (solid curve) and lowest
exciton transition energy (dashed curve) of Si quantum wires
at 300 K as function of the wire size L.

FIG. 7. Imaginary part of dielectric function (e2 of Si
quantum wires) with (a) L = 7.7 L and (b) L = 15.4 A.
Solid curve, 2: polarization. Dashed curve, z polarization.
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TABLE VII. Oscillator strengths of the lowest-lying sixteen excitons of Si quantum wires. The first value in each entry is
for z(y) polarization and the value in parentheses is for z polarization. The numbers in each column are to be multiplied by
the power given in parentheses in the first row.

State

V1-C1
V1-C2
V1-C3
V1-C4
V2-C1
V2-C2
V2-C3
V2-C4
V3-C1
V3-C2
V3-C3
V3-C4
V4-C1
V4-C2
V4-C3
V4-C4

7.7 A(xlo s)

o.v22(1.5v)
0.652(0.000)
0.188(0.000)
0.950(1.13)

26.7(0.000)
26.2(4.24)
0.363(274.0)
0.001(0.000)
0.004(0.000)
0.036(70.2)
6.23(2.02)

37.8(0.000)
o.o36(vo. 6)
0.208(0.000)
6.44(0.000)

34.2(0.010)

15.4 A(x 10 )

0.737(0.000)
0.059(0.099)
0.065(0.000)
2.23(18.5)
3.81(0.000)
0.001(0.000)
0.000(0.392)

12.2(0.000)
o.oo1(o.664)
5.52 (0.001)

550(0.001)
0.001(0.000)
2.32(o.ooo)
0.027(0.484)
0.019(0.000)

10.5(3.86)

23 A(xlo )

0.527(0.000)
o.34o(o.ov6)
0.333(0.000)
0.024(7.57)
2.12(0.000)
o.ooo(o.ooo)
0.000(0.196)
0.085(0.000)
0.000(0.000)
0.062(0.000)
0.062(0.000)
o.ooo(o.ooo)
1.72(0.000)
0.110(0.212)
0.117(0.000)
0.126(2.35)

31 A(x10-')
0.666 (19.2)
0.044 (0.080)
0.103(0.000)
1.11(0.000)
2.59(0.0 00)
o.ooo(o.ooo)
0.063 (0.508)
4.44(0.007)
0.000(0.000)
o.55o(o.ooo)
0.542(0.003)
0.008(0.209)
2.24(6.34)
0.007(0.481)
o.o22(o.ooo)
4.82(0.000)

and valence-band energies, respectively, and h~ is the
photon energy. The momentum matrix elements are ob-
tained from our tight-binding quantum-wire wave func-
tions in terms of optical matrix elements between local-
ized atomic orbitals.

Figure 7 shows the calculated eq(hu) for quantum
wires with L = 7 7 and 15.4 A and for both z
(solid curves) and z (dashed curves) polarizations. A
Lorentzian broadening of half width 0.1 eV has been
used. The spin-orbit interaction is ignored in this cal-
culation, since its effect (of the order of 0.04 eV) is negli-
gible on the large energy scale considered here. We find
that quantum-wire optical spectra are very anisotropic.
Near the band edge, for example, the dielectric function
is larger for z polarization. In contrast, the dielectric
function of bulk Si is independent of polarization. The
integral of u[2&z (u) + eq, (u)j over all energies is con-
served in our model in accordance with a well-known sum
rule. "

A deeper insight is gained by considering the selection
rules for optical transitions in quantum wires. The quan-
tum wire has two mirror planes, normal to the z' and y'
directions, respectively. Note that there is no refiection
symmetry about a plane normal to the z axis. Thus,
optical transitions for z-polarized light are allowed be-
tween valence and conduction states of the same symme-
try while for z'(y')-polarized light allowed optical transi-
tions are between states of opposite parity with respect
to the planes normal to the z'(y') axis. For example, al-
lowed transitions for z' polarization are between (+, +)
and (—,+) states and between (—,—) and (+, —) states.
For z (y) polarization, the symmetry is mixed, and the
transitions between either of the (+,+) or (—,—) states
and either of the (+, —) or (—,+) states are allowed.
Note that transitions between (+,+) and (—,—) states
and between (+,—) and (—,+) states are forbidden for
any polarization.

Near the band edge, t;he k-dependent optical matrix

TABLE VIII. Radiative lifetimes of the lowest-lying sixteen excitons of Si quantum wires. The units are seconds.

State

V1-C1
V1-C2
Vl-C3
V1-C4
V2-C1
V2-C2
V2-C3
V2-C4
V3-C1
V3-C2
V3-C3
V3-C4
V4-C1
V4-C2
V4-C3
V4-C4

v.v A

9.24 x 10
2.10 x 10
7.33 x 10
9.77 x 10
2.95 x 10
2.76 x 10
5.70 x 10
9.67 x 10
3.57 x 10
4.30 x 10
2.11 x 10
4.43 x 10
4 35 x 10
7.24 x 10
2.37 x 10
4 90 x 10

15.4 A

6.94 x 10
4.84 x 10
7.97 x 10
4.64 x 10
1.29 x 10
3.90 x 10
2.53 x 10 4

4.16 x 10
9.39 x 10
5.71 x 10
5.70 x 10
5.57 x 10
2.09 x 10
1.85 x 10
2.66 x 10
4.07 x 10

5.33 x 10
7.52 x 10
8.49 x 10
7.42 x 10
1.29 x 10
9.21
2.81 x 10
3.23 x 10
5.66 x 10
2.87 x 10
2.86 x 10
1.36
1.57 x 10
1.26 x 10
2.32 x 10
2.08 x 10

31

1.67 x 10
2.05 x 10
1.67 x 10
1.55 x 10
6.55 x 10
1.82
5.37 x 10
3.84 x 10
5.25
2.05 x 10
2.07 x 10
1.00 x 10
3.04 x 10
6.70 x 10
7.46 x 10
3.43 x 10
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elements in a quantum wire are approximately constant
and the subbands are parabolic. Thus, we can integrate
over k analytically to obtain

4+2e~
eg(hcu) =

z ) le P„„(0)lz
m0A~ 2h

h~ —E„„+iyxRel
(hu) —E„„)'+y') '

the four X valleys mentioned above. In a quantum wire
the mixing is provided by surface scattering. This mix-
ing coefficent should be proportional to the amplitude of
the quantum-wire wave function at the surfaces which is
proportional to 1/L, the normalization constant, if we
assume that the shape of the wave function is roughly
independent of I. Thus lP„„ l2 —

l & I'lX ) l 1/L .

16.0

where Re refers to the real part of the complex square
root, A = L is the cross-sectional area of the wire,
P„„~(0) is the momentum matrix element at k = 0, y
is a broadening energy, and p„„I is the reduced mass
given by I/p„„i = 1/m„+ 1/m'„.

The total dielectric function, including the exciton
states is given by

E2(hGJ) = eg(hid) + ) fr~i
4hz z e2 y/z.
mp4/0 hid —h(d~n& + pn, a'

140 L=7.7A
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where eq(hu) is the band-to-band dielectric function de-
scribed above. We have ignored the excitonic effect on
the band-to-band transition. In three dimensions, this
effect is very important as it changes the spectrum near
the threshold from a square-root-of-energy behavior to a
constant. In two dimensions, the spectrum is already
a constant near the threshold without the excitonic ef-
fect, and the excitonic effect gives rise to an enhancement
factor of 2. The enhancement factor is reduced to 1.3—
1.5 for quasi-two-dimensional systems such as quantum
wells. is In one dimension (or quasi-one-dimension), the
spectra is singular near the threshold, and we do not ex-
pect the excitonic effect to change the spectrum appre-
ciably. The oscillator strength f„„lfor an exciton derived
from valence band n and conduction band n' is given by

0.0
3.2

4000.0

3500.0
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500.0

3.4 3.6 3.8
Photon Energy (eV)
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x-polarizatio

4.0

(b)

4.2

(4)

where hu„„~ is the exciton transition energy, G(0) is the
exciton envelope function at z = 0, L is the width of the
square wire cross section, and 0 is the volume of the Si
bulk unit cell which equals to as/4.

The oscillator strengths for the lowest-lying sixteen ex-
citons for a number of quantum wires are listed in Ta-
ble VII. We found that the averaged exciton oscillator
strength decreases slightly faster than 1/Ls for the sizes
considered here. This is due to the fact that lG(0)l is
approximately proportional to 1/L while the optical ma-
trix element lP„„Il2 decreases slightly faster than 1/I
for the quantum wires studied here.

The size dependence of the squared optical matrix el-
ement can be understood qualitatively as follows. The
squared optical matrix element is proportional to the
probability of a I'-like bulk state appearing in the
quantum-wire conduction-band state of concern, i.e., the
I'-X mixing coefficient squared, denoted as ) & I'lX ) l .
The quantum-wire states can be viewed as linear combi-
nations of Si bulk states with wave vectors covering the
entire Brillouin zone, with a majority distributed near
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FIG. 8. Absorption spectra of Si quantum wires with (a)
L = 7.7 ~, (b) I = 15.4 A, and (c) L = 23 A. So1id curve, s
polarization. Dashed curve, z polarization.
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o&3
1

2npe~~ f,„ (5)

From the oscillator strength, we can estimate the ra-
diative lifetimes of free excitons in quantum wires. The
relation between the radiative lifetime 7 and the exciton
oscillator strength f« is given by~~

4.0
x10

I

A
2.0

V

3.5

3.0

y/

15—

(x4oo)

Here f,„ is referred to the oscillator strength per exciton
instead of the oscillator strength per molecule as defined
in Eq. (4). A discussion on this issue can be found in
Ref. 13. We have

1.0

0.5
0.0 50.0 100.0 150.0 200.0 250.0 300.0

Temperature ( K )

fex ——faex L'/f~,

where a,„ is the average electron-hole distance in the ex-
citon and f is the oscillator strength defined in Eq. (4)
averaged over all three polarizations. We define

FIG. 9. Temperature dependence of the thermally aver-

aged exciton oscillator strengths of Si quantum wires with
sizes L = 7.7, 15.4, 23, and 31 A. For purposes of better dis-

play, the L = 15.4 A, L = 23 A, and I, = 31 A results have
been multiplied by factors of 20, 400, and 500, respectively.

s s dz, thermally averaged exciton oscillator strength is given by
(only excitons in the ground state are considered)

where G(z) is the exciton envelope function. The calcu-
lated radiative lifetimes for the sixteen lowest-lying exci-
tons are listed in Table VIII. We find that the radiative
lifetime of the shortest-lived exciton ranges from 57 ns to
170 ps for wire widths from 7.7 to 31 A. .

The absorption coefflcient is a(hu) = (u/npc)eg(flld)
where np is the index of refraction (np ——3.44 for silicon).
Figure 8 shows near-band-gap absorption coefIicients as
functions of photon energy for the three wires considered
above. We include excitonic and band-to-band transi-
tions involving the first five conduction bands and the
first ten valence bands. The solid curves correspond to
plane-polarized light with the electric field oriented along

[110] or [110] (z' and y' polarization) while the dotted
curves correspond to plane-polarized light along the [001]
wire axis (z polarization). In all cases, we use 7 = 0.01
eV for the Lorentzian half width.

In Si quantum wires, the absorption spectrum near
the fundamental gap is dominated by excitonic effects.
The absorption coefficient is found to be anisotropic and
this anisotropy is enhanced as the quantum wire becomes
narrower. For L = 7.7 A, the absorption coefficient for z-

polarized light is significantly greater than the absorption
coe%cient for z- or y-polarized light. A unique feature of
Si quantum-wire absorption is that higher-lying excitons
can absorb more strongly than lower-lying excitons. This
is attributed to the intervalley mixing in the quantum-
wire states alluded to earlier.

Luminescence measurements on quantum wires have
been reported. To facilitate comparison with experi-
ments, we have examined the temperature dependence
of luminescence due to excitonic recombination. The lu-

minescence of the quantum wires due to direct recombi-
nation of excitons is proportional to the exciton oscilla-
tor strengths f«~ averaged over the occupied levels. The

n, n' n, n'
(6)

VI. SUMMARY

In summary, we have studied theoretically the opti-
cal properties of free-standing Si quantum wires, using
a realistic empirical tight-binding model. The excitonic
effects are included within the effective-mass approxima-
tion which is found to be appropriate. We show that the
exciton oscillator strengths for quantum wires with small
sizes can be as large as that for a direct semiconductor
such as GaAs. We also show that the thermally average

where k~ is the Boltzmann constant and T is the tem-
perature. Figure 9 shows the thermally averaged exciton
oscillator strength as a function of temperature for quan-

tum wires with widths L = 7.7, 15.4, 23, and 31 A (or
N = 2, 4, 6, and 8). At 0 K, the thermally averaged
oscillator strength increases rapidly as the wire width
is reduced. We found that for the quantum wire with
L = 7.7 A (or N = 2), the averaged exciton oscillator
strength is comparable to the exciton oscillator strength
of bulk GaAs, which is of the order of 7 x 10 . As the
temperature is raised, the oscillator strength varies sub-

stantially as the population of exciton states with differ-

ent oscillator strengths is modified. For the two smaller
sizes L = 7.7 and 15.4 A, ( f ) increases quickly when

the temperature increases from 100 to 300 K. This is due

to the existence of higher-lying exciton states with much

larger oscillator strengths than that of the lowest-lying

exciton state.
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oscillator strength has strong temperature dependence
near room temperature, which is not found in direct semi-
conductors. Our theoretical studies have not included the
effect of phonon-assisted recombinations. This should be
of importance for quantum wires with large sizes, when
the phonon-assisted recombination becomes as strong as
the direct recombination. The processes are quite com-
plicated and certainly deserve further investigations.
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