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In this work, x-ray scattering was used to study regularly spaced steps on Si(001) surfaces. Staircases
of steps were obtained after molecular-beam epitaxy of silicon onto atomically flat Si(001) surfaces with a
small residual miscut (~0.05°), and subsequent annealing at high temperature. Crystal-truncation-rod
intensities are shown to be strongly affected by the macroscopic miscut. Detailed statistical information,
such as the average terrace width and terrace-width disorder, were derived by analysis of the
truncation-rod intensity distribution. The excellent resolution of the synchrotron experiment enabled us
to show that, in some cases, the width of the diffraction peaks is very small, which is shown to arise from
long-range correlations between successive terrace widths. A simple model is derived to analyze the
peak intensity distribution without relying on the common assumption of statistical independence be-
tween neighboring terrace widths. By comparison with an unannealed sample, we show that annealing

at high temperature favors the step ordering.

I. INTRODUCTION

Steps strongly affect several fundamental properties of
surfaces, including electronic surface states, sticking
coefficient, and surface reconstructions.! They are in-
volved in surface critical phenomena and roughening
transitions and play a dominant role in the processes of
thin-film epitaxial growth.? Although crystal-growth
morphology and kinetics are strongly affected by the
substrate-surface step topography, these steps are, in
turn, strongly dependent on the precise surface-
preparation procedures. In particular, the step height
and step ordering caused by molecular-beam-epitaxy
(MBE) growth may differ from the equilibrium state. Re-
cent scanning-tunneling-microscopy (STM) studies of
Si(001) surfaces grown by MBE (Ref. 3) have dealt with
the preparation of single-domain dimer-reconstructed
surfaces, where the steps between adjacent terraces are
even number of monolayers high, by selective growth at
one of the two nonequivalent types of uneven-height step
edges.* Biatomic steps have been observed mostly on vi-
cinal surfaces, a fact that is well understood by present
theories.! However, several recent studies on well-
oriented substrates have shown, after annealing at ~1273
K, the existence of a single-domain surface implying the
presence of bilayer steps.’ The orientation of the step
edges with respect to the [110] and [110] directions is be-
lieved to play a role in this latter case.""® Determination
of the size distribution of terraces is a prerequisite to any
quantitative investigation of the fundamental physical
processes involved in stepped surfaces.

We present here grazing-incidence x-ray-scattering
(GIXS) studies of regularly spaced steps on epitaxially
grown Si(001) surfaces. The sample preparation will be
described first, followed by a brief description of the tech-
nique and of the experimental conditions. The magni-
tude and in-plane orientation of the small residual miscut
are next precisely determined. A detailed analysis of the
mean terrace width and terrace-width disorder is per-
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formed, and the existence, in some cases, of long-range
terrace-width correlations is shown. The effects of high-
temperature annealing, oxidation, and residual stress are
illustrated by comparing several samples.

II. EXPERIMENTAL DESCRIPTION
AND PARAMETERS

The initial 4-in. silicon wafers were precisely cut paral-
lel (to within ~0.05°) to the (001) atomic planes, and
prepared by a free-floating polishing process.” Pieces
measuring 4X4 cm? were cut from these wafers and
mounted in a MBE chamber. The preparation conditions
for the three samples described in this paper are summa-
rized in Table I. After heating to 1173 K to desorb the
oxide obtained by standard procedures, a buffer layer of
2500 A of silicon was grown on them by MBE at 873 or
1023 K to enhance the surface perfection. Two samples
were then annealed at high temperature for 20 min. Such
an anneal has recently been found to yield nearly single-
domain surfaces, even on samples with a small miscut.’
Indeed, on sample 1, the 2 X 1 fractional-order reflections
of the reflection high-energy electron-diffraction
(RHEED) pattern corresponding to the dimer reconstruc-
tion® were much more intense than the 1X 2 reflections at
that stage of the process. We conclude that bilayer steps
(or pairs of monolayer-high steps very close to each oth-
er) were present on a large area of sample 1. Sample 3
was not annealed at high temperature, but instead cooled
down directly to room temperature. On samples 2 and 3
the resulting RHEED pattern clearly displayed both
types of dimer-reconstruction peaks with comparable in-
tensities, which implies that a large number of
monolayer-high steps were present. The specimens were
next oxidized in dry oxygen at atmospheric pressure for 4
h at room temperature in the MBE chamber load-lock
system, and then oxidized respectively for another 8 h
(samples 1 and 2) and another week (sample 3) at room
temperature in air.
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TABLE I. Summary of the sample-preparation conditions. Also shown are the different parameters
relative to the miscut determined in this study: in-plane orientation, value of the miscut, and mean ter-
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race width.
Growth Miscut Miscut Mean unit
Sample temperature Anneal RHEED Oxidation m orientation ¢ widtoh w
No. (K) at high T symmetry in air (deg) (deg) (A)
1 873 YES (1273 K) 2X1 8 h 0.047 16.5 3300
2 1023 YES (1223 K) 2X1 and 1X2 8 h 0.031 46 5000
3 873 NO 2X1 and 1X2 1 week 0.060 38 2600

The GIXS measurements’ were performed at beam line
X16A at the National Synchrotron Light Source at
Brookhaven National Laboratory, which delivered a
monochromatic (8925-eV) photon flux of ~5X10'"
photons/sec mm>. The samples were mounted in an
ultrahigh-vacuum (UHV) chamber coupled to a 5-circle
diffractometer designed specifically for GIXS measure-
ments.'” The incident and scattered wave vectors were
set slightly above the critical angle for total external
reflection.

Accurate knowledge of the in-plane resolution function
is essential to the analysis of the data described in the fol-
lowing. We estimate the shape of the resolution function
for a given scattering configuration from Ewald’s con-
struction (Fig. 1). The resolution function is approximat-
ed by a highly asymmetric parallelepiped, which is tilted
by an angle (260)/2 with respect to the momentum-
transfer direction. The length Aq; and width Agy of the
resolution function are related to the incoming, Aa, and
outgoing, AB, beam divergences by Agq, =(2m/A)AB
~2%X1072 A" and Agup=Q27/AMAa~6X10"* A7,
where A is the wavelength of the monochromatic x-ray
beam. The longitudinal resolution is given by
Ag,=Agqy cos[1/2(260)], whereas the transverse effective
resolution Agr=2Agqy sin[1/2(20)] if the peak width is

FIG. 1. Ewald’s construction for the grazing-incidence x-
ray-scattering configuration. The scattering plane, which is
close to the surface plane, is represented. 26 is the in-plane an-
gle between the incident beam, of wave vector k,, and the scat-
tered beam, of wave vector k;; q is the scattering vector (or
momentum transfer: q=k;—kq). The in-plane resolution func-
tion that results from these beam divergences is enlarged on the
right. It is asymmetric because of the wide in-plane opening of
detector slits. It is tangent to Eqald’s sphere. The angle be-
tween the scattering vector q and the resolution function is the
scattering angle 6.

comparable to Aqy,. In Fig. 1 the angle between q and
the resolution function is negative, which was checked by
mapping the intensity measured around the bulk (220)
reflection. The experimental width and length were con-
sistent with those calculated above. The width of this
resolution function varies according to the
measurement’s location in reciprocal space. From the
widths of the {220} peaks and those of {110} peaks to be
described later, the coherence length of the x-ray beam is
~1.6 um at {220} reflections and ~4.6 um at {110}
reflections.

III. DETERMINATION OF THE SURFACE MISCUT

Figure 2 shows rocking scans through some of the
{110} and {310} reflections for sample 1. These
reflections are forbidden in an infinite diamond structure
and arise here'! from crystal-truncation rods (CTR’s),!?
which are due to the abrupt termination of the bulk sub-
strate by the surface. The evolution of the CTR’s in-
tegrated intensity with perpendicular momentum transfer
g, was measured and fitted with usual models;'? it indi-
cated atomically smooth surfaces for the three samples.

For this study, the most important feature of the trun-
cation rods is their splitting. Each CTR consists of two
distinct peaks showing the existence of a regular array of
steps, arising from a small miscut in one direction.!> An
intuitive understanding of this phenomenon, schematical-
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FIG. 2. Rocking scans at different in-plane truncation-rod
locations of the type {110} and {310} for sample 1, as a func-
tion of the azimuthal rotation of the sample, ¢. Note the
different peak separations as a function of the integer-order po-
sition in the reciprocal plane of the interface.
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FIG. 3. Schematic representation of the reciprocal lattice of
the Si(001) surface with a small miscut. The truncation rods are
tilted with respect to the [001] direction of the reciprocal lattice
in the direction of the miscut, by an angle equal to the miscut.
At in-plane integer-order positions, two truncation rods are
present, one arising from a bulk Bragg peak located below the
surface reciprocal plane (defined here as the / =0 plane), the
other arising from a Bragg peak located above the surface plane.
At {110} and {310} in-plane integer-order positions, the height
of the Bragg peaks producing the truncation rods measured in
plane is /=1 RLU (RLU denotes reciprocal-lattice units),
whereas it is double (/=2 RLU’) at {200}-type in-plane
integer-order reflections.

ly displayed in Fig. 3 can be achieved by considering
that, since the CTR’s arise from the Fourier transforma-
tion of the macroscopic truncation of the bulk lattice,
they are orthogonal to the macroscopic surface (or inter-
face), not to the crystallographic planes. This is true if
the coherence length of the x-ray beam is much larger
than the terrace width. Thus, the CTR’s are displaced in
the surface reciprocal plane from the exact integer posi-
tion in the direction of the miscut m by an amount of
momentum transfer AQ =ml2m /d for the present case of
a cubic lattice with parameter d, where [ is the height of
the Bragg peak in reciprocal-lattice units (RLU’s).

The measured peak separation during a rocking scan is
related to both the miscut and the path of the resolution
function across the two peaks in reciprocal space (Fig. 4).
It is related to the true peak separation AQ by

Ag=T(q)AQ with I'(q)= |sin|¢|+cos|y| tan%g ,

(1)
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FIG. 4. Schematic representation of the way the resolution
function crosses the two truncation rods (or, which is
equivalent, of the way the reciprocal lattice crosses Ewald’s
sphere) during a rocking scan at an integer-order position.
These peaks are separated by AQ along the miscut direction,
and produce the two measured peaks separated by Ag, along the
scan direction. 1 is the in-plane angle between the momentum
transfer, q, of the reflection considered and the in-plane miscut
direction.

where ¢ is the angle between q and the in-plane miscut
orientation. The values of the measured peak splitting
Ag are reported in Table II for sample 1 for most {110},
{200}, and {310} positions.

The value and in-plane orientation of the miscut, to-
gether with their uncertainties, can be determined from
these measurements (see Table II). For sample 1, for in-
stance, the miscut direction makes an angle ¥y=16.5°+1°
with the [110] direction, towards the [110] direction, and
the value of the miscut [that is, the angle between the
macroscopic surface and the (001) atomic planes] is
m =0.047°%£0.002°. These parameters are summarized in
Table I for the three samples.

Obtaining more precise information about the step ar-
rangement requires more detailed data, such as that
shown in Fig. 5 for (110) rocking-scan data from sample
1. In a quantitative analysis, one should concentrate on
reproducing (i) the peak intensity ratio between the first-
and second-order satellites, (ii) the small width of the two
main peaks, and (iii) the shape of the diffuse component.
Such an analysis will be described in the following sec-
tions, and it will serve to characterize the distribution of
terrace widths and describe long-range correlations be-
tween successive terrace widths.

TABLE II. Measured CTR peak separations Ag (column 4) for sample 1. 4 and k are the in-plane re-
ciprocal indices; / is the height of the Bragg reflections producing the CTRs. Column 5 contains the
values of the peak separations recalculated from the determined orientation and value of the miscut.
Column 6 contains the values of the miscut deduced at each position from the experimental separation,
given the calculated ratio of the measured to actual separation, which is reported in the column 7.

1

1

I Ag (107 A7) Ag (107*A7) Miscut
h k (Bragg) (expt.) (calc.) (deg) Agq/AQ
1 1 1 8.5 8.6 0.0461 0.906
1 —1 1 4.1 4.4 0.0475 0.460
2 0 2 5.0 4.9 0.0478 0.245
3 1 1 4.0 4.1 0.0466 0.429
1 3 1 10.2 10.1 0.0477 1.062
0 2 2 9.6 9.5 0.0473 1.005
—1 3 1 4.7 4.4 0.0483 0.460




45 GRAZING-INCIDENCE X-RAY-SCATTERING STUDY OF . .. 9195
- 1 T T T T T T \
r \
1 04 — \ \
- - \\ N Sa
C | —
z L S - t
) B 1.1\ \
o 10°E B s
O S /\ \
r K t
b A \/\A-N\’\( ﬁSA \
102 L— oy o 0 N B \
-0.2 -0.1 0 0.1 0.2 ® Top-layer atom

¢ (deg)

FIG. 5. Rocking scan at the {110} position for sample 1.
The logarithm of the intensity is reported as a function of the
azimuthal rotation ¢. Note the existence of second-order and
even third-order reflections. Note also the characteristic shape
of the diffuse component and the small width of the two main
peaks. Superposed onto the experimental data (thick line) is a
simulation (thin line) according to the “correlation model,” with
a Gaussian distribution of terrace widths. The parameters of
the model are reported in Table IV. The simulations were con-
voluted with a Gaussian distribution of 0.003° full width at half
maximum (FWHM) to account for experimental resolution. A
constant background of 130 counts was added. Note that this
model does not accurately reproduce the very small width of the
two main peaks.

IV. DIFFRACTION MEASUREMENT
OF STAIRCASES OF STEPS

A. Introduction

A suitable calculation of the measured CTR intensity
distributions must include the discrete nature of the lat-
tice underlying the miscut surface. This miscut sup-
posedly arises from an array of nearly regularly spaced
steps whose edges are nearly straight and orthogonal to
the in-plane miscut orientation (Fig. 6). On the Si(001)
surface, crossing a monolayer-high step results in both
in-plane and out-of-plane translations, plus a 90° rotation
of the lattice with respect to the [110] direction, which
are responsible for a phase shift between the wave scat-
tered by the upper terrace and the wave scattered by the
lower terrace. Depending on the value of the momentum
transfer q, two successive terraces may scatter construc-
tively, destructively, or with any intermediate phase shift.
For in-plane scattering (g, ~0), only the in-plane com-
ponents of the translations participate to the phase shift.
Two kinds of alternating monolayer-high steps have to be
considered, with two different in-plane translations:
t;=1[11] and t,=1[11]. For the present in-plane
scattering configuration, the surface thus consists of a
staircase of basic units made of two adjacent terraces,
with an additional phase shift q-t; introduced between
successive units, where t, =t,+t,. An atom on a given
terrace is related to an atom on a successive terrace by a
translation T=t,,,+t, where t,,, is a translation of the
bulk silicon lattice, and t (either t; or t, or t,) is a nonin-
teger translation.

« Subsurface-layer atom

= [110]

FIG. 6. Left: Schematic representation of the biterrace con-
stituting the basic unit of the staircase of steps. a is a vector in
the direction of the miscut, whose length is equal to the length
of the surface lattice vectors +[110] and [110]; that is, 3.84 A.
W=TI'(q)Ma is the width of the whole unit, and W,=T(q)Ma
and W,=I'(q)M,a are the widths of the two subterraces.
t;=3[11T] and t,=1[1T1] are the lattice translations that
occur when crossing the first and second types of steps, respec-
tively. On an atomic scale, steps are made of portions along the
[110] direction, and portions along the [110] direction, of the
S 4 or Sp types according to Chadi’s notation (Ref. 1). These
portions are separated by kinks. The resulting step-edge rough-
ness has been strongly exaggerated on the drawing for clarity.
Right: Schematic representation of the two kinds of steps con-
sidered, with different noninteger translations t; and t,, both
around a kink, so that both kinds of substeps, of S, and Sy
types, are shown.

B. Reduction to one dimension

This problem can be greatly simplified by reducing the
analysis to one dimension. At first, consider only two ad-
jacent terraces. Let us define a reciprocal-lattice vector
b,, along the miscut direction. Using b,,, the intensity
can be calculated as if the momentum-transfer variation
was along the miscut direction, instead of the actual
direction transverse to Q (the momentum transfer corre-
sponding to the exact integer-order position). The
momentum transfer q can be written as

q=Q+2wh,,b, T(q)=Q+27hb,, with h=h, T(q),
2)

where h,, is the reciprocal-lattice-unit variation along the
miscut direction. The phase shift can now be rewritten as

q-T=(Q+27hb,, )-(t,, +t)
=Q-t, +Q-t+2whb,, -t,, +27hb, -t . 3)

Since h is always small, the last term can be neglected.
The first term is a multiple of 27, and can thus be omit-
ted. The second term has a value of either O or 7. The
phase-shift variation along the scan direction is thus con-
tained in the third term. Now consider a one-
dimensional staircase of point scatterers made of lines of
atoms separated by steps, such that, within a line, the lat-
tice parameter is a =2w/b,, =3.84 A, and such that
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steps introduce a phase shift of Q-t. Let & be the reduced
reciprocal-lattice unit along the direction of the lines.
The lattice component, ty,, of the translation between
two lines can be expressed as a multiple of the lattice pa-
rameter a by t;,,=Ma. The phase shift between two lines
will have the above form, where the third term can be ex-
pressed as a function of M by

2whb,, t,,=27hM . (4)

This shows that the problem is analogous to a staircase of
point scatterers along a line parallel to the miscut direc-
tion, with lattice parameter a in this direction, but with
translations between successive terraces arising from the
three-dimensional nature of the problem. The lines of
atoms of this model will be called terraces, and the values
M will be called number of unit cells in a terrace, al-
though this does not have a direct meaning for the two-
dimensional case of interest. The true terrace width W is
related to the calculated one by W =I'(q)Ma. For sim-
plicity, the I'(q) scaling factor will often be omitted in
the following calculations.

To describe the one-dimensional staircase, an origin is
arbitrarily defined at the beginning of one unit, which al-
lows us to assign a subscript / to a particular unit. The
unit / is made of two terraces of respective length M,;a
and M,a, separated by steps yielding respective phase
shifts of Q-t, and Q-t,; its origin is defined by the vector
R[ .

J

0 My —1 My~

S(q)=f(q) ¥ expliq-R;)| 3 expliq-ap)+expliq-R,) > -expliq-ar)
I=—w p=0 r=0
M, —1 M, —1

-

+
+f(q) 3, expliq'R,;)
I=1

p=0

> expliq-ap)+exp(iq-R;;) 3 expliq-ar)
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C. Calculation of the diffraction

In general, there are two possible approaches to calcu-
late the diffraction from a given assembly of atoms: the
correlation-function approach and the direct approach.'*
Each has its specific advantages and drawbacks; both will
be considered.

In the direct-calculation approach, the diffracted inten-
sity is developed as the statistical average of the square of
the scattering amplitude S(q):

1(q@)=C(S(q)S*(q)) , S(q)=f(q)3 expligr), (5)

where Cis a constant; f(q)=g (q)Ccrr(q), where g(q) is
the scattering factor from a row of atoms parallel to the
step edges’ mean direction, and Crg(q) is the contribu-
tion from a column of atoms, in the direction normal to
the terraces ([001]).!? f(q) is the scattering factor of the
corresponding plane of atoms. r represents at atomic po-
sition in the terrace, in the direction of the miscut. We
assume in the following that the step edges are perfectly
straight, i.e., that no kinks are involved. Although this
assumption may seem unrealistic for a general in-plane
orientation of the miscut, since elementary steps are ei-
ther along [110] or along [110], we will show that the de-
tailed structure of step edges is negligible in the present
case. Accordingly, the scattered amplitude is given by

21

r=0
1—1

where R1[=M113+t1 s R2,=M213+t2 , R[: 2 (Mpa+tD) .

M,=M,,+M,, is the total number of unit cells in the p unit.

p=0

For a perfectly regular array of N (N— oo ) units, M,=M,, M,,=M,, and M;=M,+M,=M are constant; the

diffracted intensity is simply given by

sin?[(wMh +Q-tp)N] sin® (mhM,)+sinX(mhM,)~+2 sin(whM ) sin(mhM,)[cos(mMh +Q-t,)+cos(mMh +Q-t;)]
oC

sin?[7Mh +Q-tp ]

where & is such that q-a=2mn +27h, where n is an in-
teger. The second term of the above expression describes
the diffraction within the basic unit, and the first one the
diffraction from the grating. The peak separation (1/M)
yields the whole unit width:

W =MaTl(q) . @)

In practice, this width is more precisely determined from
the miscut value, m, and the height different ointroduced
by a unit (that is, d =a, /2, where a,=5.431 A is the sil-
icon lattice parameter) by W =d /m. The average biter-

’

sinwh

(6)

race unit widths thus determined are reported in Table I
for the three samples.

Table III summarizes the values taken by the three
phase shifts Q-t,, Q-t;, and Q-t,, at the different in-plane
integer-order positions where the CTR’s intensities were
measured. At the exact integer-order position (h =0),
the successive units scatter out of phase and the two sub-
terraces scatter in phase for Q={110} and Q={310},
whereas the biterrace units scatter in phase but the two
subterraces of a unit scatter out of phase for Q= {200}.
Figure 7 shows the intensity dependence on the value of
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TABLE III. Values of the three phase shifts, Q-t;, Q-t,, and
Q-tp, at {110} and {200} exact in-plane integer-order positions.

Q (1100~ (170) (3100  (310) (2000  (020)
Q-t; T 0 0 T T T
Q-t, 0 T T 0 T T
Q-tp T T T T 0 0

Q and the ratio between M, and M,, for this ideal case of
perfect order. The intensity distribution at the {110} and
{310} positions depends little on the ratio M, /M,; on
the other hand, at {200}, varying this ratio strongly
affects the intensity. When M,=M,, the intensity is
minimum at the exact {200} position. When M, =0 (i.e.,
only one type of terrace exists) the amplitudes add at the
exact {200} positions (note that the intuitive explanation
fails for this case). When the ratio M, /M, is varied, the
proportion of the terraces that interfere destructively and
constructively varies, and the intensity distribution is in-
termediate. Thus, {200} data are significantly affected by
the unit structure, and the disorder of both kinds of sub-
terraces should be accounted for to simulate these data.
By contrast, {110} and {310} data mainly contain infor-
mation on the repartition of the whole biterrace units.

As shown in Appendix A, since the {110} and {310}
data are nearly insensitive to the precise biterrace unit
configuration, these data can be simulated by assuming a
single terrace whose interterrace translation is t;. This
approach cannot be used to simulate {200} data, since
the disorder within the unit is important for those
reflections. Considering an array of uniform terraces
separated by fictitious bilayer high steps, we introduce
the deviation m; from the mean value M of the number of
unit cells in the / terrace:

M,=M +m, with {(m;)=0. (8)

As shown in Appendix B, all the intensity can be ex-
pressed, within the small-disorder approximation, as a
function of the mean number M, the root-mean-square
(rms) variation of the terrace width U=((m;‘))1/2, and
the correlation parameter between two terraces p and gq

§110} §200}

M,= 0
Nt M, /M,=0.07
M.= M

1 2

FIG. 7. Calculated intensity for a perfectly ordered staircase
of biterrace units, around {110} and {200} in-plane integer-
order positions, for different ratios of the two subterrace widths
I'(q)aM, and T'(q)aM,. The logarithm of the intensity is
shown as a function of the reduced coordinate h (arbitrary
units).
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p#q): (m My ). Hence, the direct calculation allows us
to account for the correlations (mpmq ). Nevertheless,
the small-disorder approximation may not always be val-
id, in which case one has to use a model of the terrace-
width distribution, and thus refer to the “correlation-
function models.”

In the correlation-function approach, a specific form of
the correlation function (the probability that two steps
are separated by a given vector) has to be assumed.!> The
most comprehensive model (referred to as the PLC model
in the following, after Pukite, Lent, and Cohen'®) assumes
statistical independence between neighboring terrace
widths: the probability of finding a terrace of a certain
width, displaced by a certain amount from a neighboring
terrace, is independent of the neighbor’s width; i.e., there
are no correlations between terrace widths. Another lim-
itation is that only a single type of defect is considered;
therefore, again, this model cannot be used to describe
the {200} data, but is well suited to simulate !110} and
{310} data. We refer to the original paper'® for the
derivation of the intensity where the step height D has to
be replaced by the total translation t,.

V. SIMULATION OF THE EXPERIMENTAL DATA

The analysis will be performed in two steps. First, the
{200} data will be used to estimate, from the direct calcu-
lation for a perfectly ordered array, the mean
configuration of the unit; that is, the average ratio of the
two subterraces’ widths. In the second step, the {110}
data will be simulated by replacing the biterrace unit by
only one terrace.

Figure 8 shows the experimental data for the {200}
transverse scans of samples 1 and 2, respectively. These
two scans differ markedly: for sample 1, there is a strong
central peak with weak satellites, showing that one sub-
terrace is narrow. By comparing the experimental
respective intensities of these central and off-centered

(b)
" L
& -
3 10 r
re) L
(8} L
102 ._
| L L C 1 | 1
-0.04 0 0.04 -0.02 0 0.02
¥ (deg) ¥ (deg)

FIG. 8. (a) {200} transverse-scan data for sample 1. The log-
arithm of the intensity is reported as a function of the azimuthal
sample-rotation angle ¢. In addition to a strong central com-
ponent, weaker satellites are present. Their relative magnitudes
yield an estimate of the ratio of the two subterrace widths:
M,/M,~0.07 (see Fig. 7). (b) {200} transverse-scan data for
sample 2. In contrast to sample 1, the central component is
weak, and two strong satellites are present. This shows that the
two subterraces have equal mean width: M, ~M,.
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FIG. 9. {110} transverse-scan data for (a) sample 2 and (b)
sample 3. The logarithm of the intensity is reported as a func-
tion of the azimuthal angle ¢. Superposed on the experimental
data (thick lines) are simulations (thin lines) according to the
“correlation model” (Ref. 16), with a Gaussian distribution of
terrace widths. The parameters of the model are reported in
Table IV. The simulations were convoluted with a Gaussian
distribution of 0.003° FWHM to account for experimental reso-
lution, and constant backgrounds of (a) 100 counts and (b) 60
counts, respectively, were added.

peaks to the calculated ones (see Fig. 7), the ratio
M, /M, is found to be ~0.07. This ratio is a rough esti-
mate because disorder has been ignored in the calcula-
tion. Since the miscut determination yielded a whole unit
width of W =T'(q)Ma =3300 A, the mean widths of the
two subterraces can be deduced from this ratio:
W,=T(q)M,a~240 A and W,=TI(q)M,a~3060 A.
Sample 2 has a small central contribution and most of the
intensity is in the satellites. This is clearly a case where
the two subterraces are of equal width (W,
~W,~2500 A). The small central peak presumably
arises from a small amount of disorder within the biter-
race unit.

Because of its simplicity, the “correlation-function”
model described above was first used to simulate the
{110} data. Figures 5 and 9 show the best simulations of
the {110} data obtained with this model for the three
samples while employing a Gaussian distribution of ter-
race widths. Table IV contains the corresponding values
of the rms width variation o. For samples 2 and 3, the
experimental intensity distribution is well accounted for

RENAUD, FUOSS, BEVK, AND FREER 45

COUNTS
=
w
1 Illlllll I_LllJ_lJ.ll L1l

LRRRLL BRI LL B R

-0.2 0.2

0
¥ (deg)

FIG. 10. {110} transverse scans data for sample 1. The loga-
rithm of the intensity is reported as a function of the azimuthal
angle ¢. Superposed on the experimental data (thick line) is a
simulation (thin lines) according to the “direct” model, within
the small-disorder approximation, and with long-range terrace-
width correlations, as described in the text. The parameters of
the model are reported in Table IV. The simulations were not
convoluted, but instead, a limited number of coherently
diffracting steps was considered to account for experimental
resolution. A constant background of 120 counts was added.
The small width of the main two peaks is now well reproduced,
in contrast to previous simulations (Fig. 5), where terrace
widths were supposed to be uncorrelated.

by this model. By contrast, for sample 1, calculated
peaks are much wider than experimental ones. This
discrepancy in peak widths can be explained by including
long-range correlations between successive terrace
widths, using the “direct approach” and the small-
disorder approximation. The functional form chosen for
the correlations is based on the constraint that the overall
miscut remains constant. This requires that if one terrace
is wider than the average, the neighboring terraces are
narrower, but with decreasing amplitude. An exponen-
tial function of the form

(m,m,)=—a’exp[—|(p —q)|/P] 9)

was chosen for its simplicity and since it yields a charac-
teristic length PMaTI'(q) over which the correlations ex-
tend (where P is the corresponding characteristic number
of terraces). Figure 10 shows the best simulations of the
(110) truncation-rod data of sample 1 obtained with this

TABLE IV. Values of the different parameters used for the simulations of the (110) truncation rods
for the three samples. Simulations according to the model of Pukite et al. (Ref. 16) are denoted by
PLC, by contrast with “direct” simulations. Column 4 contains the parameter M, the number of unit
cells in a basic unit, in the one-dimensional analogue to the present two-dimensional problem. Column
5 contains the biterrace unit width deduced from the parameter M. Column 6 contains the rms unit-
width variation given in unit cells for the one-dimensional analogue, and column 7 contains the rms
unit-width variation after rescaling. Columns 8-10 contain the a and P parameters, describing the
terrace-width correlations, and the number N of units scattering coherently within the coherence length

of the x-ray beam for the “direct model.”

Sample I‘(qo)Ma I(q)oa
No. (hkl) Model M o (A) a P N
1 (110 PLC 940 3300 200 700
(110 direct 940 3300 120 420 35 12 10
2 (110) PLC 1500 4800 220 1050
3 (110 PLC 900 2300 350 900
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direct model. In these simulations, the effect of experi-
mental resolution is included by considering only a finite
number of terraces. This simulation accurately repro-
duces the experimental features including the respective
intensities of the first- and second-order peaks, and the
narrow central peaks. The actual peak width corresponds
to a correlation length of P~ 12 steps, with a correlation
parameter a =35 units cells in the miscut direction. This
correlation is large by comparison to the maximum al-
lowed value a,,,, =0 /2=60. The widths of the two main
peaks are resolution limited and are not critically sensi-
tive to variations of P from 9 to 15. Thus, the value of
I'(q)PMa ~4 pm is a lower bound and may be greater
than the coherence length of the x-ray beam for this
reflection of ~4.6 um. The parameter «a is correlated to
the length P and the number of diffracting steps in the ir-
radiated area, N, so that its value is not precisely mean-
ingful; it only suggests the existence of strong terrace-
width correlations extending over several micrometers.

V1. DISCUSSION

We now discuss and compare the analysis of the inten-
sity distribution for the three samples. On sample 3, the
(110) data (Fig. 9) are made up of only two peaks, much
wider than those of the first samples. The unit-width dis-
order is thus large: simulations yield I'(q)ao (;;0)~900 A
(that is, 35% of the mean terrace width of 2600 A). On
this sample, the disorder is too large for the “small-
disorder” approximation to be valid, so that one must
resort to models that neglect terrace-width correlations.
The large step disorder can be attributed either to the
lack of a high-temperature anneal, or to roughening dur-
ing the 1-week-long oxidation at room temperature. We
expect the former effect to be dominant, since significant
roughening is not expected for native oxidation at room
temperature for such a short duration.

For sample 2, which was shown to have a nearly regu-
lar array of monolayer-high steps, three orders of
diffraction were present. The experimental intensity dis-
tribution is accurately reproduced by simulations with
the “correlation-function” model. The rms unit-width
variations deduced from simulations are I'(q)ao )
~700 A (14% of the mean terrace width of 5000 A).

For sample 1, surprisingly, {200} data show that
within the unit, one subterrace is much wider than the
other. Although this could be explained if the sample has
been analyzed after abruptly stopping the MBE step-flow
process, it is not expected for an unstrained sample an-
nealed at high temperature. One possible explanation is
that the sample was under stress during the high-
temperature annealing, or during the subsequent cooling
down to room temperature. In that case, a recent STM
study showed that the ratio of the two subterrace widths
could be drastically affected.!” However, the sample
mounting was designed to minimize such stresses and was
identical for all the samples studied here.

The present data are not precise enough to deduce the
exact form of these long-range correlations between suc-
cessive terrace widths. Several different functions were
used to model these correlations and simulate our data.
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Assuming the proper parameters, they did not yield
significantly different results. However, the requirement
to introduce the correlations in our model was clear and
their amplitude and lateral range were model indepen-
dent. Thus, the present study proves the existence of
correlations, but yields only estimates of their magnitude
and extension. When neglecting these correlations, the
rms disorder deduced from simulations [I’(q)ao ;)
~700 A; that is, 21% of the mean terrace width of 3300
A] is larger than when correlations are introduced
[[(qlao(j10)~420 A; that is, 13% of the mean terrace
width]. The step disorder is similar to that on sample 2,
which may be attributed to nearly identical preparation
conditions, except for possible additional stress on sample
1.

It is important to note that the meaning of the rms dis-
order is not as straightforward as supposed in the model.
We have assumed that the edges are straight, or, in other
words, that the edge roughness is included in the
terrace-width disorder measured here. The disorder ac-
tually arises from two contributions. The first contribu-
tion is the terrace-width distribution around the mean
terrace width M; the second contribution is from the step
roughness.!> In the present experiment, the angles be-
tween the incident or exit beams and the step edges’ mean
direction are neither O nor 7 /2, but instead vary with the
particular reflection considered, so that both kinds of dis-
order are actually measured, with different proportions
according to the azimuthal angle.

VII. CONCLUSIONS

Grazing-incidence x-ray scattering proves to be a
powerful tool with which to study step topography at
surfaces and interfaces, and, in particular, to analyze the
step arrangement and terrace-width distribution on mis-
cut surfaces. It provides information complementary to
that gained by other techniques such as ARLS, low-
energy electron diffraction, or STM. Because of the very
good resolution of the experiment, the diffraction features
obtained are much more sharply defined than with other
techniques. This resolution is critical since it enables us
to show the existence, in some cases, of long-range corre-
lations between the widths of successive terraces, which
are responsible for the preservation of the regular stair-
case over long distances, despite the large distribution of
individual terrace widths.

Three samples of the Si(001)/SiO, interface were stud-
ied, with different amounts of step disorder. On all sam-
ples, the regular staircase of steps was preserved during
the oxidation process. The small miscut values, ~0.05°,
and in-plane orientation have been determined with a
high accuracy. Analyses of the in-plane truncation-rod
data were done assuming diffraction by a disordered
staircase of basic units made of two subterraces separated
by inequivalent steps. {200} data yielded an estimate of
the ratio of the two subterrace widths, while simulation
of {110} truncation-rod data yielded the mean unit width
and the root-mean-square unit-width disorder.

The sample that was not annealed at high temperature
and whose oxidation duration was longer than the others
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displayed the more disordered steps, with a rms width We acknowledge valuable discussions with A. Bourret,
disorder ~30% of the mean terrace width. On the two K. Evans-Lutterodt, A. Ourmazd, I. K. Robinson, and E.
other samples, which were annealed at high temperature Vlieg. We thank P. O. Hahn for providing the substrates
after MBE deposition, and oxidized for a short time, the used for these experiments.

terrace width disorder was smaller: ~15% of the mean
terrace width. On one of these, the basic unit was sym- APPENDIX A
metric, as expected, while on the other, one subterrace
was narrow (~240 A) and the other wide (~3060 A). In this appendix the implications of the approximation
addition to this difference between the two samples, carried out by replacing the biterrace unit with a unique
long-range correlations between terrace widths, extend- terrace are discussed. Two cases will be encountered in
ing over several micrometers, were shown to exist on the this study. The first occurs when the width of one terrace
second sample, but not on the first. A possible explana- is negligible with respect to the second (which is the case
tion for these differences is that the second sample was  of sample 1, as will be shown). In that case, the approxi-
under stress during the preparation process. mation consists of neglecting the small interference be-
tween the first terrace and a band of equal width of the
ACKNOWLEDGMENTS second terrace. The second case occurs when the mean

widths of the two subterraces are equal (which is the case

These experiments were performed on the AT&T Bell  of sample 2). In that case, we further suppose that for

Laboratories X16A beam line at the National Synchro-  each biterrace unit /, the two subterraces have equal

tron Light Source of Brookhaven National Laboratory,  widths M, =M, =M,/2. The amplitude scattered by
which is supported by the U.S. Department of Energy. the array of biterraces is then given by

' o w

We restrict this analysis to {110} or {310} data, where h shows that they are nearly identical, after scaling the
either q-t; or q-t, is a multiple of 7 and the other is a former by a factor of 2, except for diffuse components

M /2—1

+
S(q)=f(q) Y expliq'R;) 3 expliq-ap)
=0 p=0

M,
—_'a+t2

2+exp 2

~.

q +exp |iq-

M
—_ t
2 27h

multiple of 27, so that the terms containing t; and t, can- which are more than three orders of magnitude weaker
cel out. The scattered amplitude simplifies to than the main peaks, and hence one order of magnitude
too M, /72—1 weaker than the experimental background.
S(q)=2f(q)Y expliq-R;) 3 expliq-ap) . (A2)
e P APPENDIX B
Comparing this expression with that of S(q) for an ar-
ray of bilayer-high steps separated by the whole unit In this appendix the main steps of the derivation of the
width, we see that the difference is in the last summation, intensity scattered by the disordered staircase of steps
up to M;/2—1 in one case,and M;—1 in the other. A within the small-disorder approximation are summarized,
simple calculation (or application in the case of perfect assuming a single type of (bilayer high) steps. Let us
order) of these two intensity expressions as a function of define
J
i=1-1 i=1—1
> M,a+Iit,=IR+na where R=Ma+t, and n,= Y m; . (B1)

i=0

n,a is the length variation of R, with respect to its average value of /R. By definition, (7, ) =0. For N diffracting steps,
the scattered amplitude can be rewritten as

N—1 M,
S(q)= 3 expliq‘R,) 2 f )exp(iq-as) . (B2)
p=0

A straightforward calculation of the square of this expression leads to
N—1N-1

S(q)S*(q)=f2q) > X exp[l/2iq-a(m,—m,)]expliq-a(n,—n,)]exp[i(p —r)q-R]B,,(q), (B3)
p=—r=0
where
B, (q)=sin[1/2(M +m,)q-a]sin[1/2(M +m,)q-a]———— . (B4)

sin’(1/2q-a)
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B, ,(q) can be developed in second order with respect to m,q-a and m,q-a, in the approximation of small terrace-width

disorder (m,27h <<1and m,2mh <<1):

B (q)z,Bsinz(1/2Mq-a)+1/2/3q-a(mp+m,)sin(1/2Mq-a)cos(1/2Mq-a)+1/4Bmpm,(q-a)zcos(1/2Mq-a), (BS)

254
where
_ 1
p sin’(1/2q-a)
At this point, one should calculate the statistical average:

(exp[1/2iq-a(m,—m,+2n,—2n,)1B,,(q)) .

(B6)

By developing the exponential and keeping only the second-order terms in m,q-a, one finds, with the additional as-

sumption that 27wh (m, —m, +2n,—2n,) <1,

(

.a)2
exp —%)((mp —m,+2n,—2n,)?) |sin*(1/2Mq-a)+;{m,m, exp[iq-a(m,—m,)+2n, —2n,])

Note that the above assumption can only be realized for
small h values, or if strong (negative) correlations are in-
troduced, so that the n, parameters are of order the m,
ones. The first statistical average can be easily calculated
as a function of the terrace-width correlation and rms
disorder parameters according to
i=p—1j=q—1
(B8)n,n, )= 3 3 (mm;)

k=0 j=0
and (B8)
i=qg—1
(m,n, )= (m,m,;) .
k=0
The second statistical average to calculate is
(m,m, exp(1/2iq-a)im,—m, +2n,—2n,)) . (B9)

If p =g, one finds o%. If p#gq, the calculation of this term

X(q-a)?cos’(1/2Mq-a) . (B7)

I

requires further assumptions relative to higher-order
correlations; we have chosen to represent the damping
term by a Debye-Waller-like term of the form

(m,m,) exp[ —(q-a)’¥?] . (B10)
We found that this is not the exact form of the damping
for this diffuse term, but is acceptable for the center of
the spectrum. y was used in the simulations as a variable
parameter. It turned out to be close to the rms length
variation o, and, accordingly, was fixed to this parameter
o, thus avoiding an additional parameter. After whole
development, the intensity was expressed as a function of
the reciprocal-lattice-unit coordinate along the miscut
direction, A, the number of steps, &N, the mean unit width,
M, the root-mean-square variation of the terrace width,
o=({m}))!”%, the phase shifts q-t,, g-t,, and q-tp, and
the correlation parameters between two steps p and g
(p#q), (mpmq ).

*Present address: Centre Etudes Nucleaires, Boite Postale 85X,
38041 Grenoble, France.
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