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Method for observing Bloch oscillations in the time domain
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We suggest an experimental method which should, at least in principle, be capable of measuring Bloch
oscillations directly in the time domain. The method consists of measuring the spontaneous photon-
echo signal in a time-resolved four-wave-mixing experiment on a semiconductor superlattice. We calcu-
late the third-order nonlinear polarization of an idealized superlattice in the presence of a homogeneous
electric field applied along the growth direction. In the limits of both vanishing and infinite fields, the
echo signal produced by the nonlinear polarization should be independent of the delay time 7 between
the exciting pulses, if irreversible dephasing processes are disregarded. For finite fields, the echo signal
should exhibit a modulation periodic in 7, with the periodicity of the Bloch oscillations. If observed ex-
perimentally, this would represent a direct manifestation of Bloch oscillations in the time domain.

I. INTRODUCTION

The dynamics of Bloch electrons in the presence of a
homogeneous electric field is one of the fundamental
problems of the quantum theory of solids. In 1928,
Bloch! stated that, in the presence of an applied homo-
geneous field F a wave packet composed of a superposi-
tion of Bloch states and peaked about some quasimomen-
tum 7k moves in k space, changing its quasimomentum
at a time rate proportional to F. Moreover, it can be
shown that each individual Bloch state changes its wave
vector according to the so-called acceleration theorem?~>

k=e¢F/# . (1)

Thus, in the absence of interband tunneling and scatter-
ing processes, a Bloch electron subjected to a homogene-
ous electric field moves at a constant velocity in k space
and executes a periodic motion in the reduced-zone
scheme (a so-called “Bloch oscillation”) by undergoing a
Bragg reflection between each two traversals of the Bril-
louin zone. There are two mechanisms impeding a fully
periodic motion: interband tunneling and scattering pro-
cesses. Interband tunneling is an intricate problem and
still at the center of a continuing debate (see Ref. 6, and
references therein). It is only during the last decade that
upper boundaries for the interband tunneling probability
have been established at a rigorous level,” which show
that an electron may execute a number of Bloch oscilla-
tions before tunneling out of the band. The second mech-
anism impeding a fully periodic motion is scattering off
phonons, impurities, etc. This results in lifetimes shorter
than the period of the oscillatory motion Ty, for all
reasonable values of the electric field, so that Bloch oscil-
lations should not be observable in conventional solids.
In superlattices, however, the situation is more favorable
because of the smaller Ty, times resulting from the
small width of the mini-Brillouin zone in one direction.
In fact, the stationary-state counterparts of the Bloch os-
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cillations, the Wannier-Stark states, have been observed
in semiconductor superlattices.®°

A direct time-resolved experimental detection of Bloch
oscillations, however, is still lacking. In this paper, we
would, therefore, like to suggest an experimental method
which should, at least in principle, be capable of measur-
ing Bloch oscillations directly in the time domain. It
consists of measuring the spontaneous photon-echo signal
in a time-resolved degenerate four-wave-mixing (DFWM)
experiment on a semiconductor superlattice. In a
theoretical investigation of photon echo in bulk semicon-
ductors, Zakharov and Manykin!® found that, for high
enough fields, the echo signal should exhibit a charac-
teristic temporal modulation with the periodicity of the
Bloch oscillations. Our suggestion is that such a signal
modulation should be observable in semiconductor super-
lattices already at moderate fields, and could thus be used
to detect Bloch oscillations in the time domain.

This paper is organized as follows: In Sec. II we will
give a description of Bloch oscillations in a one-
dimensional lattice. Section III contains a brief summary
of some general features of DFWM in the spontaneous
photon-echo configuration. In Sec. IV we calculate the
photon-echo amplitude of an idealized superlattice in the
presence of an electric field applied along the growth
direction. In Sec. V we will illustrate our results by
means of a simple tight-binding model. Finally, Sec. VI
contains a brief discussion of the assumptions made in
our analysis, followed by the conclusions.

II. BLOCH OSCILLATIONS
IN A ONE-DIMENSIONAL LATTICE

In the following analysis, we will restrict ourselves to
the study of a one-dimensional infinite lattice with nonde-
generate bands. The lattice is assumed to be regular, i.e.,
there is no static disorder. Our treatment is based on the
one-particle approximation, so both Coulombic effects
and quasiparticle interactions are neglected.
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In the zero-field case, the eigenvalues of the electronic
Hamiltonian are given by the familiar band structure,
€,(k), with band index n and wave number k. The eigen-
states are the usual Bloch states, |n,k ), with spatial rep-
resentation

(x|nk)=e®u,  (x), wu,, (x +d)=u,, (x), ()
where d is the lattice period. The time evolution of an
electron prepared at time ¢ =0 in a state from the nth
band can then be calculated using the time-evolution
operator
O.(=[ """ dk e nk Y nk| . 3

0= [ 7 dicexp ekl @)

—ie,,(k)t

#i

In the case of nonzero field F70 the situation is much

J
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F: —
|n,v) .

where ef(k) is a real function of k with periodicity 27 /d,
tending smoothly to g, (k) as F—0, and
Fo d

En = 2T

T (kydk (5)
—7/d
The energies of the Wannier-Stark states of each band
subspace form a discrete, ladderlike spectrum, the well-
known Wannier-Stark ladder

EF =%l +veFd . (6)

The first step in our treatment of the Bloch oscillations is
to write down an approximative time-evolution operator
for the nth band, using the above Wannier-Stark states:

EF NI LEEC RIS (7)

Eexp

ﬁnF (t) is a good approximation for the time evolution of
states of the nth band in a time interval which is deter-
mined by the lifetime of the Wannier-Stark states. Since
finite lifetime effects due to field-induced interband tun-
neling will be of importance only for very strong fields,
we will disregard them in the following.

We will now write the time-evolution operator of Eq.

(7) in a more instructive way. Inserting Egs. (4)—(6) into
Eq. (7) we obtain, after a short calculation,
F +m/d t p eF , ,
= - + = t
Ofr) f " dk exp ﬁfos,, k+5or |d l
nk+£ﬁ5z> Fn,kl| . ®)

Note that Of(¢) tends to U, (¢) smoothly as F—0.

i fk
eF v —n/d
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more involved due to the perturbation caused by the ap-
plied field. This perturbation leads to coupling between k
subspaces corresponding to different bands of the zero-
field Hamiltonian. However, this difficulty is removed in
the treatment given in Ref. 11, in which the zero-field
band subspaces are slightly ‘“deformed” to field-
dependent band subspaces in such a way that coupling
between different bands is minimized. Within each of
these field-dependent band subspaces, there exist quasi-
stationary states, which are exponentially localized. We
will call these states “Wannier-Stark states” and denote
them by |n,v)¥, where v=0,%1,%2,.... The lifetime of
these quasibound states is limited by interband tunneling
due to the field-induced coupling between different bands.
The Wannier-Stark states of each band subspace can be
expressed as linear superpositions of Bloch states from
the same band subspace |n,k )F:

(ef(k")—eb1dk’ |In,k ), v=0,%1,%2,..., 4

We will now use 0 ) to calculate the time evolution
of an electron in the nth band. Suppose that at ¢t =0, the
electron is in a state |1,) composed of a superposition of
Bloch states of the nth band. Its state will evolve in time
according to

dt’ l

Fn, kg 9)

lw(2))=0F(0)|yy)

_ f +1r/d
—1r/d

nk+—

£
>

We see that the wave packet representing |¢(z)) moves
in k space within the nth band, each k component acquir-
ing a dynamical phase

dt’ ] .

After a time Tp., =27#/eFd, the electron reaches an
equivalent point in k space and, due to the conservation
of the band index n and the periodicity of €/ (k), the ini-
tial state |¢,) is restored except for a possxble overall
phase factor, which is of no importance. In the reduced-
zone scheme, the electron has thus executed a Bloch os-
cillation.

In the particular case of an electron prepared in a
Bloch state, say |n,k, )¥, Eq. (9) yields immediately

k+<Ep

exp 7

i t
—Lfrer
#iJo
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it eF , 1.,
OF(t)|n,ky)F=exp _Zfosf k0+7t dt

X

F
n,k0+i£t> , (10)

which repeats the statement made in the acceleration
theorem, Eq. (1).

Alternatively, we may use ﬁ,,p (¢) to calculate the time
evolution of an operator in the Heisenberg picture. In
our further considerations, we will be particularly in-
terested in the time evolution of the electric dipole-
moment operator, P(t). We therefore calculate the ma-
trix element of P(f) between Bloch states of different
bands

Fn' k| B() i, k YE=F(n' k' OF (0POF(1) | m, k )F

=8(k'—k)PF.(k,t), (11)
where
F — _F eF ., F
P, (k,t)=p,, k+7t exp[ —i¢,,(k,t)] . (12)

pE.(k) is the usual interband optical matrix element; the
phase angle ¢7,.(k,1) is given by

F 1 rtl F eF ,
¢nn,(k,t)_ﬁfo e |k+t
—¢F, k+%t' dr' . (13)

In Eq. (11), we have made the standard approximation in
which the photon momentum is neglected so that P(¢)
couples Bloch states of the same k.

Looking at Egs. (11)-(13), we see that the time evolu-
tion of the dipole matrix elements mirrors the dynamics
of the Bloch electron described in Eq. (9), including the
occurrence of Bloch oscillations. The idea of the ex-

fwy (t—

2i AT A%

where p(t) is the density operator, () is the time evolu-
tion operator of the medium, and a configurational
averaging is included. P,(k,,t,7) is an excellent approxi-
mation of P(ks,t,7) except in a time interval around ¢ =0
which is roughly given by the inverse width of the inho-
mogeneous broadening of the optical transition.

If the inhomogeneous broadening is large enough
P,(ky,t,7) will be sharply peaked at 1 =27, and negligible
for all times t27. The time-integrated signal then
shows the following dependence on 7:

J 1 nde < [Py, 1 =27, )2, (18)
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periment suggested in this paper is to detect Bloch oscil-
lations by measuring the dynamical phases
exp[ —idL (k,1)].

III. SOME FEATURES
OF SPONTANEOUS PHOTON ECHO

This part of the paper summarizes some features of
time-resolved DFWM in the spontaneous photon-echo
configuration. In such an experiment a coherent optical
polarization is produced in the sample, say, at a time
t =0, by a short laser pulse with wave vector k;. This
coherent polarization develops in time. After a time de-
lay 7 a second pulse with wave vector k, is applied. In
the case of an inhomogeneously broadened transition, a
spontaneous photon-echo signal is then emitted in the
direction k;=2k,—k; at a time 27. The signal is moni-
tored as a function of the delay time 7.

The following paragraphs provide some equations
which will be needed in the subsequent sections of this
paper. The component of the optical polarization giving
rise to the emitted photon-echo signal may be written as

i(kyr—wt)

Py (r,t,7)=P(ky,t,7)e +c.c. , (14)

where w; is the central frequency of the laser pulses. As-
suming optically thin samples, the intensity of the emit-
ted signal is given by

I(t,7)=|P(ks,t,7)|? . (15)

The computation of I3(k3,t,7) is achieved most easily for
the case of very short laser pulses, idealized as § pulses,
i.e., having amplitudes

E (t)=A4,8(t) and E,(1)= A,8(t —7) . (16)

Making use of the nonlinear response function of Ref. 12,
it can be shown, for a medium characterized by a time-
independent Hamiltonian, that P(k;,t,7) is approximate-
ly given by

T PO(r— )P0 (t —)PO(r)p( — 0)PO(—1)]) e =P, (ks 1,7) an

except in the aforementioned time interval;, in other
words, the time-integrated signal is given by relation (18)
for all delay times 7 greater than the inverse width of the
inhomogenous broadening. We will call P,(k;, t =27, 7)
“echo amplitude.”

IV. SPONTANEOUS PHOTON ECHO IN A
SUPERLATTICE

In this part of the paper, we will apply the results of
the preceding two sections to the study of DFWM in a
semiconductor superlattice in the presence of a static
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electric field applied along the growth direction of the su-
perlattice. We consider an idealized superlattice in which
the component of the electronic quasimomentum perpen-
dicular to the applied field, #k,, is independent of the
field. The problem is then reducible to that of a one-
dimensional lattice, except for a band dispersion in k;
direction, which we may treat as an inhomogeneous
broadening of the transition frequency. In the absence of
band degeneracies, we are free to use the results of Sec. II
for the calculation of the third-order polarization ampli-
tude P,(k;,z,7). The time-integrated DFWM signal can
then be calculated by inserting P,(ks,,7) into relation
(18).

For simplicity, we will restrict ourselves to the case of
zero temperature, where all conduction miniband states
are empty and all valence miniband states are occupied.
The density operator of Eq. (17), p( — =), is then given by
the projection operator upon the latter ones. Inserting
pl— ) and complete sets of Bloch states into Eq. (17),
one obtains for P,(k;,t,7)

~ iw, (t—T
B(kyt,r)=2i AT A2t

+mw/d F _ F
><< Zf_ﬂ/ddk PE(k,—7)PE.(k,0)

cc’

XPE.(k,t—7)
xpfv(k,0)> : (19)

conf
where the sum runs over all valence and conduction mini-
band (summation indices v, v’, ¢, and ¢’, respectively) and
the configurational averaging takes into account the in-
homogeneous broadening due the band dispersion in k
direction; the dipole matrix elements PZ are of the kind
already encountered in Eq. (12).

Before analyzing the case F7<0, it will be instructive to
reconsider some well-known results for the field-free case.
For F =0, the time evolution between the first and
second laser pulse is described by the dipole matrix ele-
ment PL(k,—7) in Eq. (19), with F =0. The phase angle
of the matrix element is given by

ff‘)(k,—r):%fo e, (k) —e, (k)]dt" . (20)
Thus, for each k, the corresponding dipole matrix ele-
ment evolves between times ¢t =0 and 7 with an effective
phase velocity given by —(1/#%)[e.(k)—¢g,(k)], resulting
in a reversible dephasing of the matrix elements associat-
ed with different values of k. The time evolution of the
phase after the second pulse is described by

_ 1 t—7 _ ,
F O(k,t—T)——ﬁ-fo [e,(k)—e,(K)]dt' , 1)

i.e., the corresponding dipole matrix element evolves with
a phase velocity given by +(1/#)[e.(k)—e,(k)]. This
means that the nonlinear interaction with the second
pulse effectively reverses the direction of the phase
motion in the complex plane. Now, for v=v' and ¢ =c’
in Eq. (19), the initial phase will be recovered at t =27 so
that at around ¢ =27, the dipole matrix elements of all k
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move again in phase, giving rise to an echo signal; the
echo amplitude is independent of 7, as can be seen by in-
serting Egs. (20) and (21) into Eq. (19). For v#v’ and/or
¢7c’, in contrast, the magnitudes of the phase velocities
before and after the second pulse will, in general, be
different so that no complete rephasing occurs; the corre-
sponding terms in Eq. (19) will, therefore, not contribute
to the echo amplitude and shall be neglected in the fol-
lowing. Note that, under this condition, the band struc-
ture of the superlattice can be imagined as an ensemble of
noninteracting two-level systems in k space, whose transi-
tion frequencies are inhomogeneously broadened due to
the miniband dispersion. The 7 independence of the echo
amplitude is then easily understood as that characteristic
of any ensemble of noninteracting inhomogeneously
broadened two-level systems.

For F#0, the situation is more involved than in the
field-free case, due to the fact that the integrand in the
phase of the dipole matrix elements is now time depen-
dent. Some insight into the time evolution is obtained
from a Taylor expansion of the phase angles:

F (k, — )= — L [eF(k)—eF (k) ]r

7
+LO ——e-ET 2] , (22a)
eF #
fc(k,t—T)Z-i-%[ef(k)—sf(k)](t—r)
1 eF ’
+—eFO ?( —7) (22b)

It is obvious that for small enough 7, i.e., for 7 << T'go,,
the phase evolution in the time intervals, 0=¢ =7 and
7<=t <27 is characterized by effective phase velocities

—(1/8)[efk)—ef(k)]

and
+(1/8)eflk)—ef(k)] .

Therefore, on this time scale, the evolution of the polar-
ization is, to a good approximation, analogous to that of
the field-free case so that the echo amplitude is at a max-
imum for small 7. However, with increasing time delay
7, the nonlinear terms in the expansions of the phase an-
gles cease to be negligible, resulting in a time evolution
after t =7 which is not simply the reverse evolution of the
time interval between t =0 and 7. Consequently, there
will be no complete phase recovery at ¢t =27. This im-
plies that with increasing 7, the initial maximum of the
echo amplitude should be followed by a decay due to the
field-induced loss of time reversibility in the phase evolu-
tion.

We will now consider the polarization for F70 on a
larger time scale, i.e., on the time scale of a full Bloch os-
cillation. From Sec. II, we know that the time evolution
of the dipole matrix elements is periodic in time, with
period Tg..,- Hence, if the delay time 7 is chosen to be
equal to Tg,.,, all matrix elements will regain their ini-
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tial phases at =7, and again at ¢ =27; a maximum in the
echo amplitude should then be observed. Increasing 7
slightly beyond Ty, should again decrease the echo am-
plitude, in complete analogy to the case 7<<Tpg
presented above.

Due to the periodicity of the time evolution, the same
behavior is expected in the more general case that 7 is
chosen to be an integral multiple of Ty ., i-€.,
T=nTpgjoech, # =1,2,. ... The echo amplitude is thus ex-
pected to exhibit a modulation periodic in 7, with peaks
at 7=0and 7=nTg . ">

Note that, for very strong fields, the prefactor of the
nonlinear terms in Eq. (22), 1/eF, is small; the nonlinear
terms will then contribute little to the phase evolution.
Therefore, in this case, the echo amplitude will be only
weakly modulated as a function of 7; in other words, it
will deviate little from its maximum value. This is not
surprising, since for very strong fields, the Wannier-Stark
states of Eq. (4) are completely localized in each well of
the superlattice. The superlattice can then again be re-
garded as consisting of an ensemble of noninteracting in-
homogeneously broadened two-level systems (here, in real
space), with the constant echo amplitude which is charac-
teristic of such ensembles. This is in full analogy to the
case of photon echo in disordered semiconductors, where
strong Anderson localization due to strong disorder gives
rise to an echo amplitude almost independent of 7.'4

In summary, for both F =0 and F — «, the echo am-
plitude should be independent of the delay time 7 be-
tween pulses; for finite fields, it should peak at
7=nTpgoeh, B =0,1,.... According to Eq. (18), this
periodic modulation of the echo amplitude should be ex-
perimentally observable as a periodic modulation of the
time-integrated DFWM signal.'> Since the modulation of
the expected signal is a consequence of the periodic time

P(kyt,1)=2i 4, 42" "p} 7, |

eFd

X <exp

conf

i
_Z(e%—svo)}(t—}r)) )
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evolution of the quantum-mechanical system in the pres-
ence of an applied field, it would, if observed, constitute a
direct experimental manifestation of Bloch oscillations in
the time domain.

V. PHOTON ECHO
IN TIGHT-BINDING MINIBANDS

In this part of the paper, we will illustrate the results
obtained in the preceding section by specializing them to
the model case of simple tight-binding bands. For the
idealized superlattice studied in Sec. IV we make the fol-
lowing additional model assumptions.

(1) The band structure of a particular pair of mini-
bands, say, of indices vy and ¢, respectively, is of the
tight-binding type in the direction parallel to the electric
field; more precisely, the reduced (one-dimensional) mini-
band structure is given by

efo(k)=€fo =°+(Av0/2)cos(kd) , (23a)
e, (k) =%l ""—(A, /2)cos(kd) , (23b)

where A”o’A“o >0 are the zero-field valence and conduc-
tion miniband widths, respectively.
(2) pf(;co (k) is assumed to be independent of k and F.

Note that in assumption (1), we have approximated
efo(k) and Efo (k) by their zero-field values. This seems to

be a good approximation, at least for all qualitative pur-
poses; models with similar miniband structures have been
successfully employed in both optics and transport in su-
perlattices.'®!” By inserting Eq. (23) into Eq. (19), one
obtains for the third-order polarization amplitude of the
single pair of minibands:

172 ]

eFd /
2%

eFd

_2 —_ J—
cos cos 2 (t—271)

(24)

where J, is the Bessel function of index zero. According to relation (18), the time-integrated DFWM signal is given by
the square of the modulus of the echo amplitude.!® In the present case, this is

Au0+Ac0

|P,(k;, =27, 7)|*= “Fi

241 4%}, T

To evaluate Eq. (25), we take A,,O +ACO =70 meV as a typ-

ical value for the sum of the two miniband widths; eFd,
i.e., the energy difference between adjacent “steps” of the
corresponding Wannier-Stark ladder, is the parameter
describing the field strength.

As F—0,

1—cos

2
%1‘] l (25)
[
A, +A,
Jo | ——2 1—cos |[—7
0 eFd #
~J A”0+Aco eFd 2
TN 0era | 7| | @6
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i.e., in the limit of vanishing field,
|I~’e(k3, =21, 7)|?

is independent of 7 [Fig. 1(a)], as stated in Sec. IV. Fig-
ure 1(a) also comprises a plot of

|P,(ks, t =27, 7)|?

for eFd =5 meV. In this case, the initial maximum in the
echo amplitude at 7=0 is followed by a decay due to the
field-induced loss of time reversibility in the phase evolu-
tion. The field-induced periodic rephasing of the dipole
matrix elements can be seen as peaks at 7=nTwpy,,
n =1,2,.. ., each peak corresponding to one Bloch oscil-
lation. Varying the applied field results in changing the
time period of the Bloch oscillations; this is illustrated by
a comparison of Fig. 1(a) with Fig.1(b), where eFd =10
meV. Finally, the weak (albeit fast) modulation of

3 eFd =5 mev

26,012 (normalized)

IRulks, t

05 1.0 15
TIME DELAY (ps)

32

= b) eFd =10 meV

E

&1

B

_.I_I

¥y
05 10 15
TIME DELAY (ps)

=)

L7}

N

= c) eFd =160 meV

E

5

c

oL

¥

05 10 15
TIME BELAY (ps)

FIG. 1. Square of the modulus of the calculated echo ampli-
tude (normalized to unity) as a function of the delay time 7 be-
tween pulses, for different strengths of the electric field F ap-

plied along the growth direction of the tight-binding superlat-
tice described in Sec. V.
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?(k3, t =27, 7) predicted in Sec. IV for very strong fields
can be seen in Fig 1(c), where eFd =160 meV.

The important point is that Bloch oscillations can be
seen clearly in the figures and that they follow the behav-
ior qualitatively described in Sec. IV for the more general
case. The analysis within the framework of the simple
tight-binding model presented here thus nicely illustrates
the results of the preceding section.

VI. DISCUSSION AND SUMMARY

The theoretical treatment presented in this paper has a
number of limitations which will be discussed in the fol-
lowing. Some of them are inherent in the one-particle ap-
proximation, on which all studies of the Bloch oscillation
problem are based; in particular, this approximation
disregards Coulombic effects. However ‘‘unrealistic” this
approach may be, it has led to the (correct) prediction of
the existence of Wannier-Stark ladders, in superlattices,
and may, therefore, also correctly predict the existence of
the time-domain counterpart of the Wannier-Stark
ladder, i.e., the Bloch oscillations.

The present analysis of DFWM in a superlattice also
neglects irreversible dephasing due to quasiparticle in-
teractions, disorder, and intersubband tunneling. Al-
though the predicted signal modulation may be some-
what masked by these processes, it should still be observ-
able; actually, a similar signal modulation has been ob-
served in the related case of a DFWM experiment on an
asymmetric double quantum well.'®

Another caveat concerns the use of & pulses in the
present analysis. This is a standard approximation in
photon-echo calculations, which is useful for avoiding the
heavy numerical computation work necessary for con-
sideration of finite pulse widths. Usually, this approxi-
mation is justified if the optical pulses are short on the
time scale of the dynamical evolution of the system. For
the present case, this means that the experimental pulse
widths have to be small in comparison with one Bloch
period. Additional problems may arise if the optical
pulses are spectrally narrow so that they interact reso-
nantly only with part of the states of a given band. We
are presently undertaking work to clarify this matter; our
first results in this direction indicate that taking into ac-
count laser pulses of realistic temporal and spectral
widths will not significantly alter the conclusions of the
present analysis.!®

In summary, it has been the aim of this paper to sug-
gest an experimental method which should, at least in
principle, be capable of measuring Bloch oscillations
directly in the time domain. The experiment suggested
here consists of measuring the spontaneous photon-echo
signal in a time-resolved DFWM expriment on a semi-
conductor superlattice. We started with a description of
the phenomenon of Bloch oscillations, basing our
description on the results obtained by A Nenciu and G.
Nenciu for the problem of Bloch electrons in a static elec-
tric field. We then applied these results to calculate the
third-order nonlinear polarization of an idealized super-
lattice in the presence of a homogeneous electric field ap-
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plied along the growth direction. In the limits F =0 and
F— «, the echo amplitude should be independent of the
delay time 7 between pulses. For finite fields, the DFWM
signal should exhibit echo beats periodic in the time delay
7 between the pulses, with the periodicity of the Bloch os-
cillations. If observed experimentally, they would
represent a direct manifestation of Bloch oscillations in
the time domain.
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