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Alloy-disorder-scattering-limited mobility of electrons in a superlattice
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This paper examines the effect of the alloy-disorder scattering on the electron transport in a superlat-
tice along the growth direction. The relaxation time is calculated by using Fermi's golden rule and the
wave functions obtained from both the tight-binding and the Kronig-Penney models. The mobility is
calculated using the Boltzmann transport equation. Numerical values for a GaAs/Al„Gal „As super-
lattice indicate that these two wave functions yield almost the same values of the mobility, which are
substantially higher than the values obtained by other workers for polar-optic-phonon and interface-
roughness scattering.

the miniband is expressed by the following transcendental
equation considering the effective-mass mismatch be-
tween the well and the barrier layers
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In the above 2a is the well width, 2b is the barrier width,
L is the SL period, m ~~&~ is the effective mass of the elec-
trons in the well (barrier) layer, k, is the z component of
the electron wave vector, Vo is the barrier height at the
heterointerface, and E is the electron energy.

We have expressed the miniband dispersion relation in
the following phenomenological form:
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where m~~ is the electron mass along the layer planes, 2h
is the miniband width obtained from Eq. (1), and ki is the
in-plane component of the electron wave vector.

The SL envelope function is obtained in several ways.
Dharssi and Butcher ' have used the TB approximation

Electronic properties of multilayered semiconductor
structures such as multiple quantutn wells (MQW's) and
superlattices (SL's) have been investigated by tnany work-
ers over the past few decades. ' Previously, the emphasis
was mainly on the study of electron transport along the
layer planes. In recent years, more attention has been
directed toward investigation of the transport properties
along the direction of growth of the layers. Recent
stlldies indicate that. jransyort tastes. y!acezaainly due to-
the miniband conduction and not by hopping, as had
been conjectured earlier. ' Attempts have been made to
explain the experimental results on electron mobility by
considering scattering due to deformation-potential
acoustic phonons, longitudinal polar-optic (LO) phonons
(both bulklike and confined ), and interface roughness
(IFR). The last mechanism is thought to be the most im-
portant in reducing the difference between the experimen-
tal and the theoretical values.

The SL structures are made of alternate layers of a
binary- and a ternary-alloy semiconductor, and the elec-
trons are therefore subject to alloy-disorder scattering. '

This mechanism has been studied in the bulk' and in the
heterojunctions, " ' and has been found to play an im-
portant role under certain situations. However, the effect
of this scattering mechanism on the miniband conduction
in a SL has not been studied to date. In the present work
we report the results of such an investigation for a
GaAs/Al„Ga, „As SL. The expressions for the relaxa-
tion times due to alloy-disorder scattering are derived by
using the analytic wave functions obtained from both the
tight-binding (TB) and the Kronig-Penney (KP) mod-
els. ' ' The expressions are given in Sec. II and the
method of calculation of the mobility is also outlined
there. The numerical values for a GaAs/Al Ga& „As
SL are presented in Sec. III and are compared with the
values for other scattering mechanisms.

II. THEORY
A. Wave functions

The SL potential is assumed to be of the simple KP
type, ' ' as shown in Fig. 1. The dispersion relation for

2b == 2a

FIG. 1. The potential profile in a superlattice. The well and
the barrier are made of GaAs and Al„Ga, „As, respectively.

45 9169



9170 PARTHA RAY AND P. K. BASU 45

to write the envelope function as

P„=(LIV) exp(ikll p)
N /2

X g P(z —nL)exp(ik, nL),
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Pa=a, sin(k, L)—b, cos(k, L) .

B. Scattering probability

the normalization constant being determined from

P(z nL—)P(z m—L)=5„P (z nL)—,

where P(z) is the normalized eigenfunction for an isolated
QW. We have employed in our calculation this TB wave
function as well as the following analytical envelope func-
tion obtained by Aitelhabti, Vasilopoulos, and Currie'
from the KP model:
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The normalization constant N, obtained by normalizing
the wave function in the interval

(n —l)L+a &z &nL+a,

may be expressed as

N= A sin (k,L )
—(2A/3o+B)sin(k, L)+C,

where A =L —P+D,

B =2hz((2b PD )cos(2k, a)—
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where J, is the Bessel function of the first kind and of or-
der 1.' For this form of potential the matrix element for
transition from a state k to another state k' becomes

(k'IV;Ik)= f d r f '
dzg„, g„2vrbE
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Since r, ql «1, J&(x)=x/2 is valid. ' In the integration
over z, the wave function is assumed to be constant over
the small interval and is taken outside the integral. Con-
sidering all the alloy sites to be randomly distributed in
the ratio x:(1—x), one gets for the squared matrix ele-
ment
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I

= ( —
3m ra bE) (L /V)Nox (1—x)

X 5„ „ f IP(z)I dz ,
II' ll+ II

(10)

where Xo is the number of alloy sites per unit volume, 5;J.
is the Kronecker 5, and V is the volume of the crystal.
The relaxation time is given by the expression

r '(k) = y IM(k, k') I'(1 —cosa~)5(Eg —Eg), (11}
k'

where 8z is the angle between k and k', and 5(x) is
Dirac's 5 function. The summation over k' may be
transformed into an integral by the following expression:

k'
f d iikIi f d~~ f

The theory of electronic scattering in a QW due to ran-
dom alloy-disorder potential has been reported in a num-
ber of papers. " ' The scattering potential in a ternary
alloy A 8& C under virtual-crystal approximation is
(1 x)bE —and x bE, respectively, at sites A and B. We
assume that the scattering potential V, (r, ,z, ) at a site
( r, , z, ) is a spherically symmetric square well of height
AE and radius ro. The method of calculating the scatter-
ing probability for such a potential has been discussed
earlier. The potential is expanded in the following two-
dimensional (2D}Fourier series as"'

r,J, (r, q, )t

V;(r;,z; ) = y 277 b,E exp[iq~~ (r —r; }],
qII

and

C= A (po+b, )+Bpo,

with
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X sin(2k, a )),
Following Palmier and Balhni we only consider the
non-Urnklapp process, and finally get

'(k)=(4vrro bE) Nox(1 —x)(mt~/A' ) f IP(z)I dz .

(13}

There is a difficulty inherent in the Kp model in that it
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provides no information about the transport in the layer
planes. The effective mass in the layer planes, m~~, is,
therefore, not easy to calculate. To circumvent this
difficulty we use, following Palmier and Chomette, a
mean effective mass m

~~

defined as

mii (am, +bm2)/(a+5) . (14)

This approximation is quite reasonable in this case, where
the effective masses of the well and the barrier layers are
not too different from each other.

C. Calculation of the mobility

In the presence of the electric field g„ the perturbation

g added to the equilibrium distribution function fo may
be written in terms of the relaxation time as

P4
1.2—

E
CO

0.8-
O

LL p.l—
l

I

I

I

p I i I s I i I

I

l

I

I
I

I

I I I I I s

p 1 2 3 4 5 6 7 8 9 10

Distance (nm)

I I I I I I I $ f g I $ $ I I1.
I I

eg, ufo
g(k)= r(k) .

z

The current density is

(15)
FIG. 2. The variation of envelope function in a superlattice,

calculated with TB and KP models for a superlattice period of
10 nm. Curve a is the envelope function penetrating out of the
(n+ 1)th well into the nth barrier.
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and the mobility is
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III. RESULTS AND DISCUSSIONS

We have used the formulas derived earlier to calculate
the mobility of electrons limited by alloy-disorder scatter-
ing in a GaAs/Ala 3GaQ 7As superlattice. The following
values of parameters are chosen for the calculation

where the e and n are, respectively, the charge and the
number density of electrons, and U, is the drift velocity
defined as

the contributions from the nth and the (n+ 1)th wells are
taken together, the TB wave function in the nth barrier
appears to be almost identical with the corresponding KP
wave function.

The values of the mobility limited by alloy-disorder
scattering are presented in Fig. 3 as a function of the SL
period for equal well and barrier widths. As explained
above, the TB and KP wave functions are not much
different; the values of the mobility obtained by using
these two different wave functions are, therefore, almost
identical.

The mobility values using both the TB and KP wave
functions are found to increase slightly with the SL
period, then attain a peak, and finally decrease. This is
due to two mutually opposing factors. As the SL period
or the well width increases, the wave function becomes

m "(GaAs) =0.067mo ',

m '(AI„Ga& „As)=(0.067+0.0735x)mo,

Es(x)=(1.501+1.239x+0.37x ) eV;

ao(x)=(0.5645+0.00078x) nm;ro=0. 44ao,

hE, /EE„=57/43; DE=0.6 eV; V0=231 meV .
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ao is the lattice constant.
The variation of the absolute magnitude of the wave

function in the nth well and in the nth barrier is shown in
Fig. 2 for equal well and barrier widths of 5 nm each. As
may be seen from the figure, the KP model gives an al-
most sinusoidal variation of the wave function with a
nonzero mean indicating a strong interwell coupling.
The nature of the wave function in the barrier, calculated
under the TB approximation, is, as usual, of decaying na-
ture. It should be noted, however, that there is an equal
amount of contribution to the wave function in the nth
barrier from the (n + 1)th well, as shown in Fig. 2. When
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FIG. 3. Mobility of electrons in a GaAs/Al„Ga& „As super-
lattice vs the superlattice period for equal well and barrier
widths. The curves labeled "All" show the alloy-disorder-
scattering-limited mobility obtained in the present work using
TB and KP wave functions. Curves labeled IFR and LO are
due to Dharssi and Butcher (Refs. 6 and 7), using the TB wave
function.
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more confined within the wells, thereby reducing the
probability of scattering in the alloy regions and increas-
ing the mobility. On the other hand, as the SL period or
the barrier width increases, there is less coupling between
the wells, and the miniband width becomes less. There is
a consequent increase in the effective mass and a decrease
in the mobility.

It is also useful to compare the present theoretical
values with the values obtained for IFR and LO-phonon
scatterings. We have included in Fig. 3 the results ob-
tained by Dharssi and Butcher ' using a TB envelope
function for both of these scattering processes. It is
found that the values of the alloy-disorder-scattering-

limited mobility obtained by us are almost an order of
magnitude larger than the values limited by LO-phonon
scattering when the SL period exceeds 8 nm. The mobili-
ties limited by IFR scattering are still lower. It may,
therefore, be concluded that alloy-disorder scattering
makes an insignificant contribution to the rniniband con-
duction in a GaAs/Al Ga, As SL.
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