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The response of modulation-doped semiconductor quantum wells to a band-gap light field is discussed
with special attention paid to excitons and screening. Absorption and luminescence spectra are calculat-
ed in a mean-field approximation, taking into account the confinement and finite mass of the particles,
finite temperatures, and external magnetic fields. Bound excitonic states are found to dominate the low-
temperature luminescence spectra for densities up to =~10'' cm™2. At higher densities the excitonic state
can be recovered by applying a magnetic field. The reappearance of the excitonic state is accompanied
by an abrupt blueshift and increased oscillator strength of the luminescence. An efficient method to
solve the zero-field Bethe-Salpeter integral equation in two dimensions is based on the application of a

small auxiliary magnetic field.

I. INTRODUCTION

Traditionally the two-dimensional (2D) electron gas
has been investigated mainly by transport experiments,
which led to the discovery of the integer and fractional
quantum Hall effect.! Optical spectroscopy can still yield
additional and complementary information. Recent at-
tempts to learn about the nature of the ground state in
the regimes of the fractional quantum Hall effect and
Wigner crystal by magnetoluminescence spectroscopy
have attracted a lot of interest."> Theory has not been
able to follow suit, however, and a satisfactory descrip-
tion of the optical properties of this strongly correlated
electron system does not yet exist.> The difficulties are
caused by the electron-hole correlations, i.e., the exciton-
ic vertex correction, not to mention hole relaxation dy-
namics and related problems. Here it is assumed that the
electron gas can be described by an ensemble of single
determinants, taking into account many-electron effects
only by renormalizing the single-particle energies and
screening the electron-hole interaction, thus from the
outset discarding any effects due to fractional quantiza-
tion. Even in this simple approximation a theoretical
prediction of the optical properties is by no means a trivi-
al task. Conversely, it can be tricky to draw conclusions
about the ground state of the system from the experimen-
tal luminescence and absorption spectra. The present
study is partly motivated by the belief that a better un-
derstanding of the optical processes at zero magnetic
fields and in the integer quantum Hall regime will be
helpful in disentangling the effects of strong electron
correlations on optical spectra.

In the limit of an infinite hole mass the problem be-
comes similar to that of x-ray core-hole spectra, which
have been studied thoroughly in the past.* With a static,
separable model potential for the screened electron-hole
interaction “exact” solutions have been found.* These re-
sults are directly relevant for quantum wells in which the
hole is localized.” Most calculations with realistic in-
teractions have been carried out in the ladder approxima-
tion of the vertex correction® [Fig. 1(a)], which is accu-
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rate when the interaction potential is sufficiently small
compared to the Fermi energy. Mahan’s® seminal work
on highly doped bulk semiconductors has been extended
to modulation-doped quantum wells,’ to obtain the
luminescence spectrum of a strictly 2D system and a lo-
calized hole,® and absorption spectra for 2D (Ref. 9) and
quasi-2D (Ref. 10) systems. The main results are
enhancements of the oscillator strength at the absorption
edge, often referred to as ‘“Fermi-edge singularity.”

The effects of free carriers on bound excitonic states in
quantum wells have been discussed in the low-density
limit by Schmitt-Rink, Chemla, and Miller.” Exciton
effects on the luminescence energy have been shown to be
quenched at sufficiently high densities when the hole is al-
lowed to recoil.!! In other mean-field theories for high
doping densities®~'° bound states were discarded in order
to simplify the numerical treatment of the problem. A
computational method for a mean-field treatment of
bound and scattering states on equal footing is desirable,
since the former are expected to play important roles at
lower electron densities.

In spite of the experimental efforts directed at the
effects of magnetic fields on the optical properties,”?
theorists have maintained a rather low profile. Employ-
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FIG. 1. Representative diagrams of the mean-field or ladder
approximation in the present theory: (a) electron-hole Green’s
function, (b) thermodynamic potential, and (c) hole Green’s
function as used for the normalization of the luminescence in-
tensity. The full and dashed lines denote the electron and hole
single-particle Green’s functions, respectively, and the wavy
lines represent the screened Coulomb interaction.
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ing the magnetic-field-dependent self-energy of the quasi-
2D electron gas proposed by Ando and Uemura,'? Ka-
tayama and Ando,'’ and Uenoyama and Sham!* ex-
plained oscillations of the luminescence energy as a func-
tion of magnetic field'> as a modulation of the band-gap
renormalization. Two recent papers attempt to general-
ize the theory for the core-hole spectra to include the
effects of the finite mass of the hole in semiconduc-
tors,'®!7 although the appeal of being “exact” treatments
of the electron-hole correlations had to be sacrificed.

The analogy between the process of the recombination
of a hole in an electron gas and the annihilation of posi-
trons in a metal should be noted here. The latter has cap-
tured the interest of many-body theorists for quite some
time.!8-20 There are differences concerning the quantities
which are wusually measured, i.e., energy-resolved
luminescence spectrum vs momentum-resolved angular
correlation of the positron annihilation radiation. The
excitonic bound states discussed here correspond to
(quasi)positronium states in low-density metals, the ex-
istence of which is being debated.?’ T am not aware of ex-
perimental studies of positron annihilation in simple met-
als at low enough density to settle the positronium prob-
lem. In quantum wells, on the other hand, the density
can be freely adjusted by the doping level, and theoretical
predictions are open to experimental verification. Also,
because of the enhancement of excitonic effects by the re-
duced dimensionality and the strong temperature and
magnetic-field effects, modulation-doped quantum wells
are better suited for a study of many-body effects.

In the present paper the optical properties of
modulation-doped quantum wells are investigated on a
mean-field level. A realistic Coulomb interaction and a
magnetic-field-dependent screening function are taken
into account in calculating absorption and luminescence
spectra. For the latter, surprising results are found
which are a direct consequence of the bound states and
the finite hole mass. The present paper is a final report of
a project, some results of which have been reported previ-
ously. In Refs. 21-23 magnetoabsorption and lumines-
cence spectra have been obtained in the Hartree-Fock ap-
proximation, i.e., neglecting screening effects. An exciton
instability in the Hartree-Fock theory was reported first
in Ref. 23. Though qualitatively correct, results of
Hartree-Fock theory have subsequently been found to be
strongly modified by screening.’* Since a zero-field
screening function has been used, the results of Ref. 24
were limited to small magnetic fields, however. Some re-
sults obtained with magnetic-field-dependent screening'?
have been presented in Ref. 25. The optical properties of
modulation-doped quantum wells are quite different from
those of highly excited quantum wells containing neutral
electron-hole plasmas, which are discussed else-
where 22:26:27

Expressions for the absorption spectra are given in Sec.
II. They account for the effects of confinement, magnetic
fields, finite temperatures, and excitonic bound states. In
the weak-excitation limit the luminescence intensity van-
ishes with the number of holes and must therefore be
treated with care. As shown in Sec. IIl, the relevant
quantity is the luminescence intensity divided by the
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number of optically active holes. The results of numeri-
cal calculations are presented in Sec. IV. The validity of
the mean-field theory is critically discussed in Sec. V.
The experimental evidence is reviewed in Sec. VI and the
conclusions are summarized in Sec. VII.

II. ABSORPTION SPECTRA
OF MODULATION-DOPED QUANTUM WELLS

The optical properties, i.e., the linear response to a
weak photon probe, can be expressed in terms of the
two-particle electron-hole Green’s function,?®?° which is
determined by the so-called Bethe-Salpeter integral equa-
tion. Here we are interested in the electron-hole Green’s
function for modulation-doped quantum wells, also in the
presence of magnetic fields. Very small fields do not
cause any physical effects, but provide a convenient nu-
merical discretization scheme, which is preferable to a
momentum-space sampling, because Landau levels are
equidistant in energy. One has to pay for these advan-
tages by complicated Coulomb matrix elements. Howev-
er, as shown in the Appendix, these do not cause serious
problems.

Conventional perturbation theory can be applied to
calculate the optical spectra by assuming thermal
quasiequilibrium at given electron and hole densities p,
and p,. Let us consider a quantum well with intersub-
band spacings which are large enough to disregard higher
subbands and apply a magnetic field normal to the inter-
faces. A two-subband model of parabolic bands is adopt-
ed in the following, and the small g factors of electrons
and holes are assumed to be zero; i.e., spin-splittings are
neglected. The theory of the optical spectra of three-
dimensional systems and in the absence of magnetic fields
is reviewed in Ref. 28. By a straightforward generaliza-
tion the absorption spectra for the present system are
found to be proportional to

1o)== Lim S G, (m,n;h0—i8) , (1)
ml?

where [ =#i/eB is the magnetic length and m and n are
Landau-level indices. The electron-hole Green’s function
in the mean-field approximation is conveniently calculat-
ed by making use of a biorthogonal expansion described
by Stolz,?® which has to be modified to include the
confinement and magnetic fields normal to the interfaces.
The matrix elements are related to the exchange integrals
which modify the magnetoplasmon dispersion in the
quasi-2D electron gas.*® The details are tedious, and will
not be spelled out here. The final equations for the opti-
cal spectra at arbitrary particle densities (but in the ab-
sence of electron-hole pairing?®) are summarized below in
a form which is readily computed numerically. The sum
over states in the electron-hole Green’s function becomes

sgn[A; —p, —py ]
fiw — A,

X| 3¢ (mVIFm) >, ()

S G (m,n;fiw)=3

i



45 EXCITONS IN THE QUASI-TWO-DIMENSIONAL ELECTRON GAS

where ¢; (assumed normalized) and A; are the solutions
of the eigenvalue problem

S {E(m)8,,, —sgn[F (m)]V'|F(m)

VS (m,n)VIF(n)]}¢;(n)=N,¢;(m) , (3)

and p, and p, are the (quasi)chemical potentials of elec-
trons and holes. The factors

F(n)=1—f,(n)—f,(n),

eB[Ea(n)_”’a]_'_l ’ kBT

4)

fa(n)=

take account of the phase-space occupation of states with
quasiparticle energies

eB#

a

E,(n)=E"®+ (n+1)+Z,(n) (5)

and

E(n)=E,(n)+E,(n) . (6)

The third term on the righthand side of Eq. (5) is the
self-energy of particle type of a, which is considered here
in two approximations. The quasistatic approxima-
tion?®!* is computationally very convenient, but the self-
energies are not treated on the same footing with the ver-
tex correction,?”’ which leads to a wrong limiting behavior
at high magnetic fields.>! Results will therefore also be
presented in the plasmon-pole approximation to the self-
energy,”!® which is computationally considerably more
involved, but which reduces correctly to the Hartree-
Fock results in the high-magnetic-field limit.?’

The matrix elements of the bare (superscript 0) and
screened (superscript S) Coulomb potential matrix ele-
ments read as follows:

vSin, m)—f—q—q VS @ pm(@)? )

where

Jum (@)=

N 172
—1%¢2/4 M—N
M1 ’ e (lg/2)

XLM~M1%q*/2) 8)

in terms of the associated Laguerre polynomials L'® and
M =max(m,n), N =min(m,n).

2me?

V,?,,(q)— fdz dz'|E,(2)|2]&,(2")|%e ~9lz =7 9)
is the absolute value of the bare Coulomb potential for
quasi-2D systems, where k denotes the static dielectric
constant of the intrinsic bulk semiconductor. The spatial
integrals reflect the softening of the Coulomb interactions
compared to the strictly 2D limit. In general the electron
and hole subband envelope functions £, and &, are
different, and a dielectric screening matrix needs to be in-
troduced:

€.5(q)=8,— V() (q), (10)
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where II,,, denote the static polarizabilities of electron
and hole systems. In terms of the inverse dielectric ma-
trix we finally obtain

V(@)= le U1 V5(q) . (11)

c

The subband envelope functions are chosen to be
Gaussians with half-widths which minimize the total
Hartree energy.!! The form factors can modify the re-
sults qualitatively compared to the strictly 2D system.??
On the other hand, it was found to be a good approxima-
tion to set the form factors F,, and F}, equal to F,
which simplifies computations considerably, e.g., the
dielectric matrix becomes diagonal. In the numerical re-
sults presented here this approximation is in effect. The
evaluation of the integrals in Eq. (7) for Gaussian en-
velopes is discussed in the Appendix.

Finally, the static polarizabilities I1,,, in Eq. (10) have
to be calculated. When the Landau-level spacing is
sufficiently smaller than the single-particle lifetime
broadening, the polarizabilities are not modified from the
zero-field results. The zero-field temperature-dependent
Lindhard screening® is adopted in this case. The singu-
larities in the polarizabilities at finite magnetic fields are
treated according to Ando and Uemura!? by introducing
a small impurity potential. The level broadening is calcu-
lated in the self-consistent Born approximation. Only the
low-temperature limit is considered here, where 1/B is
much smaller than the level broadening. The high-
temperature limit is discussed in Ref. 27. The intra-
Landau-level screening in magnetic fields is obtained at
the cost of an adjustable zero-field broadening parameter
I', which characterizes the quality of the sample. The
magnetic-field-dependent broadening of the Landau levels
is then T3 =1/2eB#l, /m,m. Ty (not T',) is taken to be
identical for electrons and holes, which is consistent with
the neglect of the difference in the form factors.

III. LUMINESCENCE SPECTRA

Formally, the photoluminescence is obtained from the
absorption spectrum Eq. (1) as®®

1™ (i) =I*(Fiw) /("7 e )

—1). (12)
In highly excited semlconductors above the plasma con-
densation temperature, the luminescence spectrum is
easily obtained from the absorption spectra discussed in
the preceding section. In the low excitation limit the
density of the minority carriers (without loss of generality
assumed in the following to be the holes) p, tends to zero,
however. The luminescence intensity becomes vanishing-
ly small relative to the absorption and Eq. (12) cannot be
used straightforwardly. It will be shown below that the
total hole density can be classified as optically active and
inactive:

Ph=Pi" TP (13)

A proper measure of the oscillator strength associated
with a luminescence line is the ratio
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Fi™(fi0)= lim (o) /(r1p}") , (14)
Pp—

which is well behaved, though its evaluation requires ad-
ditional effort.

The hole number can be obtained from the hole
(single-particle) Green’s function, which should be calcu-
lated in an approximation that is consistent with the
ladder approximation for the two-particle Green’s func-
tion or equivalently, as the derivative of the thermo-
dynamic potential ) with respect to the hole chemical
potential.’> By cutting a hole line of Q in the ladder ap-
proximation [Fig. 1(b)], a hole Green’s function corrected
to first order by a proper self-energy is obtained [Fig.
1(c)]. Its energy trace is the desired correction to the
free-hole density. The thermodynamic potential in Fig.
1(b) is a sum over contributions from pair states with
different linear and angular momentum K and L. By tak-
ing the derivative of only those terms in Q with
L =K =0, we can select the density of the optically ac-
tive holes:

T =3 | fu(m+~ S [ifiwy, — Ey(n)+pp] 2

n ifio,

X2 n;itw,) | . (15)
3% is a proper self-energy,
32 n;itiw, )=l S G, (n,ifiw,)
ifiw
XK (n,n;ito, +itio,), (16)

where the electron Green’s function (in the quasiparticle
approximation)

G,(n,itiw,)=[itiw,—E,(n)+p,]"" (17)
and the scattering matrix

W,(n)*W,(m)

K(n,m;ifiw)=73, X sgn(A; —p, —y)

; ifiw—A;
—V3(n,m), (18)
W, (n)= V5, VIF(n)é,(n') (19)

n'

have been introduced. Similar expressions for the self-
energy of a positron in a metal have been derived by Ar-
ponen.!”” When the number of holes is sufficiently small
the electron chemical potential will not be affected and
the holes may be treated classically by By, — — «. Us-
ing Egs. (16)—(19) the limiting value of Eq. (15) becomes
after few manipulations

. —BlE, (n)—
lim 7l%pi'=T(e BLEy(m =] _
Buy——= n

—BLE(n)—p,—
e BlE(n)—p, ﬂ},])

F3 e PR 20)
i

which is the central result of this section.”>?* If A, is
used to denote the lowest eigenvalue which does not
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equal any E (n), the hole in the ground state behaves like
a free particle when A, —pu, < E,(0), and is bound other-
wise, for any static interaction potential. At zero temper-
ature and magnetic field (disregarding the state depen-
dence of the self-energy) the exciton is thus occupied
when its binding energy relative to the Fermi edge
exceeds #°k}/2m,, where kj is the Fermi wave vector.
For a discussion of the consequences for the photo-
luminescence spectra, it is convenient to classify the solu-
tions of Eq. (3) as excitonic states (index a) and free pair
states (index ¥), which are defined by the conditions
Vn=A,#E(n) and Eln./ =’}»Y=E(ny ), respectively.
The free pair states only exist at temperatures 1/8 <<p,.
In this case only the first term on the right-hand side con-
tributes in Eq. (20). By taking carefully the low-
temperature limit of Eq. (14) one obtains for the lumines-
cence oscillator strengths of the free pair states with in-
dex 7,

S(fiw—L,) o PEy)
—BE, (n")
e

F‘“‘“(ha))=2 5
" wl >

n

Y, (n,)* 3 do(mVF(m) |
)\' Y

X [1+3

a a

—A
2n

The squared expression is an excitonic enhancement fac-
tor of the luminescence,!! which has an equivalent in the
enhancement factor of the positron annihilation rate in
high-density metals.!® The enhancement factor seems to
be singular since with vanishing field A,—A, may become
infinitesimally small. In positron physics this has often
been interpreted as a breakdown of the ladder approxi-
mation in the low-density limit.2! However, closer in-
spection of the expression Eq. (21) reveals that it is well
behaved. Furthermore, if a bound state becomes occu-
pied, Eq. (21) is not applicable anymore. One should re-
turn to Eq. (14), in which after substituting Eqgs. (12) and
(20) the hole chemical potential can be divided out, and
the limiting procedure does not cause any problems. So
there is a discontinuity, but no divergence, in the
luminescence, which is due to a change of the nature of
the ground state.

IV. COMPUTATIONAL RESULTS

In numerical calculations the number of Landau-level
pair states in Eqgs. (3) and (4) is finite and the convergence
of the expansion must be carefully monitored, especially
in the limit of small magnetic fields. At 0.2 T a basis set
of =600 Landau levels is necessary for accurate results, a
number which decreases rapidly for higher magnetic
fields. It has been checked explicitly that the additional
approximation of replacing the Coulomb matrix elements
in the self-energies V,, and V},;, by V., does not introduce
significant errors. The parameters for GaAs m,=0.067,
m;, =0.3, k=12.5 for well and barrier material and a
valence-band -conduction-band offset ratio of 0.3/0.7 are
used. All results are for a 100-A GaAs/Al, ;Gag ;As
quantum well, since results for other growth parameters
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(in the range of the validity of the present model) have
been found qualitatively the same. Very low densities
have been discussed in Refs. 7 and 22 in Hartree-Fock
theory, and it remains to be investigated whether the
present approximation scheme is a meaningful improve-
ment in that regime. At very high densities, on the other
hand, the excitonic effects appear to be already quite well
understood. Therefore results are presented here for the
intermediate density regime only, although arbitrary den-
sities can be handled by the programs.

A. Zero magnetic field

The luminescence spectra of a 100-A quantum well are
plotted in Figs. 2—4 as a function of density and tempera-
ture in the regime where the transition from bound to
free hole occurs. Figure 2 clearly illustrates the counter-
intuitive result that the photoluminescence at very low
temperatures can be dominated by the exciton, even
when the actual band gap is smaller than the exciton en-
ergy.?>?* A discontinuous (at zero temperature) appear-
ance of a Stokes shift between absorption and lumines-
cence is found at a critical density p, ~10'"' cm™2. The
sudden redshift of the luminescence reflects the transition
from exciton to free-particle-like behavior discussed
above. At a slightly higher temperature (Fig. 3) two
peaks appear, one from the recombination of the ground
state and one from the excited state, which is a conse-
quence of thermal population as well as the thermally in-
duced Coulombic matrix elements between these states.
The ground and excited states are bound and free, respec-
tively, at densities lower than p., vice versa for densities
higher than p,. At helium temperature (Fig. 4) the tran-

01K

FIG. 2. Perspective view of the calculated photolumines-
cence oscillator strengths F as defined in Sec. III for a 100-A
GaAs/Alj 3Gag ;As symmetrically modulation-doped quantum
well at 0.1 K. F [Eq. (14)] is expressed in percent of the oscilla-
tor strength of the strictly 2D ground-state exciton
Fy=16/(ma}), where ap is the exciton Bohr radius. A
Lorentzian broadening parameter §=0.45 meV has been intro-
duced.
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FIG. 3. As Fig. 1, but for a temperature of 0.5 K.

sition density region is increased and the two peaks are
much less pronounced. At even higher temperatures it
does not make sense anymore to talk about an unbinding
transition at all. The absorption spectra (not shown) do
not display any such discontinuity. The exciton binding
energy relative to the absorption edge and the exciton os-
cillator strength decreases with increasing density,?* in
accordance with earlier studies.’

B. Magnetic-field effects

For a density slightly above the exciton unbinding dis-
cussed above, the magnetic-field and filling factor
v=2ml?%p, dependence of absorption and luminescence
spectra is plotted in Figs. 5 and 6. The zero-field
broadening parameter I',, which moderates the singular
screening, has been chosen rather arbitrarily to be 0.1
meV, corresponding to a high-mobility sample. The re-

42K

FIG. 4. As Fig. 1, but for a temperature of 4.2 K.
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FIG. 5. Magnetoabsorptlon (full dots) and luminescence
(open circles) spectra of a 100-A quantum well with a density of
1.5X10'"' cm ™% at 0.1 K as a function of filling factor v. The os-
cillator strengths are proportional to the dot size. Due to the
neglect of spin splittings, the Landau levels are completely filled
at even filling factors. The self-energies are calculated in the
quasistatic approximation.

sults are seen to be quite different from those in Ref. 24,
where the magnetic-field dependence of the screening was
not taken into account. The upward cusps of the single-
particle Landau-level transitions are due mainly to the
hole self-energy, which becomes less negative when the
screening is reduced at even filling factors, as has been
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FIG. 6. As Fig. 5, but self-energies are calculated in the
plasmon-pole approximation.
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discussed in detail in Refs. 13 and 14. But the lumines-
cence does not follow the band gap.?® At even filling fac-
tors the increased Coulomb attraction stabilizes the exci-
tonic ground state, which decays by emitting light which
is blueshifted relative to the band gap by the electron Fer-
mi energy. The density of states at the Fermi energy be-
comes large even for small deviations from completely
filled levels. The Coulomb interaction is strongly
screened and the exciton effectively quenched. Conse-
quently recombination from the band gap involving the
free hole takes over. The results for the same parameters,
but in the plasmon-pole approximation to the self-
energies, are presented in Fig. 6. The state dependence of
the self-energy is larger and the total renormalization
smaller than in the quasistatic approximation, but quali-
tatively the same effects are seen. It is concluded that at
not too high magnetic fields the quasistatic approxima-
tion does not introduce gross errors in spite of its simpli-
city.

V. LIMITS OF THE PRESENT THEORY

A faithful model for the quantum-well structure and
the nonlocal and magnetic-field-dependent screened in-
teraction render an exact calculation of the optical spec-
tra impossible. The question thus arises if the predictions
of the mean-field approximation can be trusted. In the
following, several complications are discussed which
could invalidate mean-field theory in its present form.

A. Lifetime broadening and screening

The imaginary part of the single-particle self-energies,
i.e., the lifetime broadening due to many-body effects, has
been disregarded here.?®3* Impurity scattering also
broadens the energy levels, and has been taken into ac-
count only by its effects on the screening. The total
broadening has been treated here simply by replacing & in
Eq. (1) by a phenomenological parameter. Extremely
narrow linewidths have been observed in doped systems
with very high mobilities.>>~*® Since impurity scattering
is very small in these systems, it may be concluded that
the broadening due to many-body processes also can be
very small.

Dynamical screening complicates the Bethe-Salpeter
equation enormously,?® and its effects are very difficult to
assess in all generality. In Ref. 28 a phenomenological
reduction of the static screening has been introduced to
model dynamical screening, which would increase exci-
tonic effects even more than reported here. Dynamical
screening has been found to cause effects in highly excited
quantum wells,?”3° but the problem of the static screen-
ing approximation appears to be associated mainly with
the contribution from the hole plasma, which is of no
concern here.

The above calculations may also exaggerate the modu-
lation of the screening. The unavoidable density of states
between the Landau levels is neglected in the self-
consistent Born approximation, and the quenching of the
screening at even filling factors is possibly less efficient
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than assumed here. The reentrant exciton binding
phenomenon will then occur only at somewhat lower
densities than calculated here. If the broadening is of the
order of the Landau-level spacing, the zero-field screen-
ing function as used in Ref. 24 is more appropriate.

B. Excitonic corrections to hole self-energy

A concern at lower densities is the nature of the hole
propagator and the applicability of the quasiparticle ap-
proximation for the hole. A better approximation of the
hole structure is provided by summing the proper self-
energies, which have been taken into account in Fig. 1(c)
only to first order.!® The effect of the finite exciton mass
is small and vanishes for infinite hole mass. If the exciton
dispersion is neglected, the excitonic correction is easilly
calculated using the solutions of the Bethe-Salpeter equa-
tion,

2|, (n)|f.(n)
ifiw, —A,+E,(n)

(it )~— 3 (22)

a,h
The poles of the hole Green’s function A, (n) are solutions
of Dyson’s equation,

Ap(n)—-E,,(n)=2§,"°()»P(n)) . (23)

In terms of the renormalization factors
-1
9= (A)

Zp(n)—— I—T A=Ap(n)’ (24)
the spectral function of the holes becomes

Ah(n,E)zzzp(n)a(E——)»p(n)) . (25)

p

A possible improvement of the present mean-field treat-
ment of the optical spectra is the replacement of the
free-hole propagator in the electron-hole Green’s func-
tion by the renormalized one. Though this program is
not carried out here, an impression of the importance of
such a correction is given by the hole spectral function
A,(0,E +E,(0)) which is plotted in Fig. 7 as a function
of density. At very high and very low electron densities
the exciton effect is small, but at intermediate densities
the situation is more complicated. At 2X10'! cm™2 the
exciton coupling causes a weak high-energy tail to the
quasihole peak, and a small excitonic contribution to the
band-gap renormalization is also observed. With de-
creasing density a sharp peak develops at the high-energy
edge of the tail, which finally takes over all spectral
strength. The results may be interpreted as a mixing of
the free and bound ground states, which did not have ma-
trix elements in the mean-field approximation. This ex-
plicitly demonstrates how the abrupt transition is
smeared out by higher scattering processes. Still a full re-
normalization will not change the mean-field results
drastically. At the critical density of 10! cm™2 the
weight of the high-energy feature is only Z =0.2, and the
jump in the luminescence should survive a full renormal-
ization. Only at lower densities do we have a well-
resolved doublet structure, which might cause observable
effects in the optical spectra. A small effective tempera-
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Hole spectral density

FIG. 7. Spectral density of the hole single-particle Green’s
function as modified by the coupling to the excitonic bound
state [see Egs. (22)-(25)].

ture is expected to cause very similar effects. It is rather
striking that, in spite of the conclusion that a relatively
abrupt unbinding should remain observable, the spectral
function of the hole changes smoothly with density. The
reasons are continuity of the hole Green’s function even
at the mean-field level, and the difference in the way that
the ladders enter the diagrams for one- and two-particle
properties.

C. Other higher-order scattering processes

Another set of higher-order scattering diagrams are
the corrections to the ladder approximation of the vertex
corrections. Typical representatives of these are dia-
grams in which the Coulomb interaction lines cross.
These vanish unless the Fermi sea has been “shaken up”
by the perturbing potential of the hole to create empty
states below the Fermi energy. When the electron-hole
interaction strength is sufficiently small, only the states
close to the Fermi edge are affected. Consequently one
would expect significant contributions from these dia-
grams at energies close to the absorption edge. Outside
this narrow spectral region, crossed and other diagrams
are unlikely to be important. So the conclusion is that,
close to the unbinding transition, the corrections should
be small, but might become important at lower densities.

The higher-order electron-hole scattering terms in a
perturbative treatment can be summed exactly when the
electron-hole interaction is represented by a separable or
contact interaction, and for an infinitely massive (core)
hole.* For such a simplified model it is therefore possible
to test the accuracy of the mean-field (ladder) approxima-
tion directly. Ohtaka and Tanabe found the ladder ap-
proximation to represent exact results faithfully when the
interaction strength is small compared to'the Fermi ener-
gy. According to the criterion derived above, the binding
energy at p, is only a fraction m, /m,, of the Fermi ener-
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gy, which means that the ladder approximation is expect-
ed to be applicable. This conclusion was confirmed by
the good agreement of mean-field spectra®® with those
calculated by Uenoyama and Sham.'® Unfortunately the
regime where bound states become important was not
covered.

Hawrylak!” went further than Uenoyama and Sham'®
by including a realistic Coulomb potential and consider-
ing bound-state effects. His result that the Fermi-edge
singularity is washed out by a finite hole mass is difficult
to understand and not compatible with the present ones
for the following reasons. For the infinite hole mass it is
well established that the 8-function singularity of the
bound excitonic state is weakened by higher-order pro-
cesses into a power-law behavior. Still, for the infinite
hole mass, there is evidence that the bound state
significantly affects the optical spectra, and only the de-
tails of the line shape are modified by a treatment beyond
mean-field theory.*!® When the finite mass of the hole is
taken into account, the binding energy and oscillator
strength of the bound state decrease, but are still very
significant as shown above. Higher-order scattering pro-
cesses reflect the response of the electron gas to the per-
turbing hole, which is most important for a massive hole
and vanishes with vanishing hole mass. Consequently,
the accuracy of mean-field theory should improve with
decreasing mass of the hole, and the infinite hole mass is
the most stringent test case. In other words, a bound
state found in mean-field theory should remain increas-
ingly intact when the hole mass decreases. These con-
clusions are not reflected by Hawrylak’s results.!” The
effects of the additional approximations introduced in
Ref. 17 to treat the hole recoil are difficult to estimate
and might be responsible for this conundrum.

D. Optically inactive bound states and nonequilibrium

It should be kept in mind that we have derived only the
oscillator strength of the luminescence in thermal equilib-
rium. In actual experiments hole relaxation dynamics
might be important, causing nonequilibrium effects
beyond the present formalism, e.g., different electron and
hole temperatures. Experimental luminescence spectra
should also be divided by the density of optically active
holes to be comparable with the present results, and the
latter might be difficult to estimate. A complication
might arise from the bound states with finite translational
or rotational momentum, which at higher doping densi-
ties can have a lower energy than the optically active s-
type excitons at rest. This effect is rather subtle at zero
magnetic fields, but becomes very obvious in high mag-
netic fields. Take, e.g., one Landau level (n =0) to be
completely occupied. The optically active spherically
symmetric (s-type) exciton state is then associated with
the transition between the second Landau levels (n =1),
but the optically forbidden (p *-type) exciton associated
to the transition from the first hole to the second electron
Landau level has clearly a lower energy. When the tem-
perature is sufficiently high so that allowed states are oc-
cupied and decay channels exist which prevent accumula-
tion of a high hole density in the forbidden states, the
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present results are applicable. If, on the other hand, the
holes are in thermal equilibrium at very low tempera-
tures, the luminescence initially will be zero. The holes
then accumulate until states become occupied which are
allowed to decay. ‘“Nonlinear” effects due to the addi-
tional hole gas could thus be significant.

VI. COMPARISON WITH EXPERIMENTS

At this moment there is no unambiguous experimental
evidence for the exciton (un)binding transition. However,
it should be stressed that most previous optical experi-
ments on modulation-doped quantum wells have been
carried out at high doping densities and temperatures.
Furthermore, the sample quality is generally not
sufficient, since a luminescence linewidth of typically
5 meV would render the subtle many-body effects unob-
servable. From Figs. 2—4 we saw that a carrier tempera-
ture of 1 K and a luminescence linewidth of 1 meV
are required. These conditions are met only by recent ex-
periments on high-mobility samples.’>~3 Especially for
the experiments on high-mobility heterojunctions, tem-
perature and sample quality should not cause any prob-
lems, but unfortunately the complicated structure of spa-
tially separated electrons and holes and a second elec-
tronic confinement state close to the Fermi energy makes
a direct comparison difficult. On the other hand, most
experimental features are well described by a reentrant
exciton (un)binding transition, where the excitonic state
is associated to the second electron subband,? while a
theory*® which takes the second subband into account ex-
plicitly cannot explain the experiments on these high-
quality samples. Since the spin splitting of the electron
states is larger than the Landau-level broadening, the ex-
citon binding is observed at even as well as odd filling fac-
tors.’® The recently resolved quenching of the lower-
energy luminescence line at integer filling factors’’ is im-
portant evidence in support of the exciton unbinding
model. In experiments on narrower quantum wells*® the
present two-band model should be applicable. The
present theory cannot make any statements about the ob-
served modifications of the free-hole luminescence in
these samples at filling factor unity. A search for an exci-
ton unbinding transition should be concentrated on filling
factors v<2 and even smaller densities than considered
in Ref. 38.

VII. CONCLUSIONS

In summary, the following picture for the optical prop-
erties of modulation-doped quantum wells emerges. The
absorption spectrum changes undramatically when the
quantum well is increasingly filled by electrons. The
Wannier exciton at zero density develops continuously
into the Mahan exciton (or Fermi-edge singularity) at
high densities. On the other hand the luminescence spec-
tra are affected by a transition from a bound to a free
ground state, which is predicted to occur at densities of
~10'"" cm™2. The abruptness of the transition is des-
troyed by finite temperatures and higher-order scattering
processes, but is believed to remain observable in the
luminescence spectra of high-quality samples at
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sufficiently low temperatures. An unambiguous sign of
the transition is a doublet structure with an energy sepa-
ration of the electron Fermi energy. An oscillatory be-
havior in the magnetoluminescence with abrupt blue-
shifts at even filling factors would be strong evidence of
the (un)binding transition, which can be reentrant with
increasing magnetic field.

In mean-field theory the (un)binding transition should
occur in any dimension. It is quite possible though that
the conditions for an observability are best for quasi-2D
systems. Due to the increase of the exciton binding ener-
gy in quasi-2D, the exciton remains stable in mean-field
theory up to such high densities that higher-order
scattering processes cannot cause much harm anymore.
In three-dimensional systems the transition density is
probably too low to allow clear effects to be observed.
Quasi-one-dimensional confinement, on the other hand,
increases the exciton effect even more, and it may be
found that the transition density cannot be reached in
quantum wires by conventional modulation doping,
which would mean that the unbinding might again not be
observable.
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APPENDIX

In the main text the advantages of solving the Bethe-
Salpeter equations by applying a small magnetic field
have been emphasized. The drawback is a large number
of Coulomb matrix elements, which involve integrals
such as Eq. (7). For small quantum numbers these are
easily obtained analytically by insertion of the Laguerre
polynomials. At low magnetic fields, however, several
hundred Landau levels have to be included into the basis
to obtain converged results. As noted by Chu and
Chang,*! a floating point summation of the expressions
obtained by a power expansion will break down because
of the rounding errors caused by very large positive and
negative terms. The same authors proposed an alterna-
tive double summation of positive coefficients for the ma-
trix elements of the bare potential, which can be evalu-
ated accurately. Unfortunately, this approach appears to
become prohibitively time consuming when screening is
included. On the other hand, with increasing quantum
numbers it becomes attractive to use semiclassical ap-
proximations, where strongly oscillating terms are aver-
aged out. In the present study Titeica’s** semiclassical
approximation of the generalized Fourier transform J,,,
has been found very useful:

Jmn(q)2=';1r"[(m +n+1)gH—(m —n)P—g*1* /4] 12
(A1)
for g €{q,9,}, where

g3 *=2[(m+n+1)+V2m +12n +1)] (A2
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and zero otherwise. A complication is the divergence of
the integrand in Eq. (7) when Eq. (A1) is employed for
m =n and the bare Coulomb potential, or at integer
filling factors where the polarizabilities vanish for vanish-
ing wave vector. In that case a small g expansion of the
integrand in Eq. (7) should be integrated up to a cutoff of
the order of g./ =1/V'2m, which then replaces ¢, as the
lower integration limit in the semiclassical expression.
The accuracy of the semiclassical approximation for the
matrix elements is worst for the diagonal elements, which
are compared with the exact results in Fig. 8. We see
that the agreement is astonishingly good even for m =1.
Due to the rapid variation of the polarization function
close to g =0 at large integer filling factors, the approxi-
mation for the diagonal elements becomes less accurate.
But although the diagonal elements might be off by 20%
in these unusual cases, the effects on the spectra are still
hardly observable.

Other advantages of the expression Eq. (A1) is the pos-
sibility to evaluate infinite summations over the Landau-
level indices, as occurring, e.g., in the calculation of po-
larizabilities in the presence of magnetic fields. The vir-
tual excitations from an occupied Landau levels with in-
dex m to all empty Landau levels with indices larger than
N, (Ref. 12) is approximated by the simple expression

Jum(q)? 1

1
——— (A3)
n—m g Vi%q?/4—2m —1

(=]
2
n=N,

for those values of ¢ which render the square root real. It
is also easy to correct for basis-set limitations by Lowdin
perturbation theory.*® The calculations of the dynamic
Stark effect for strictly 2D systems reported in Ref. 22
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FIG. 8. Diagonal elements of the screened Coulomb interac-
tion matrix Eq. (7) at a density of 2X 10" cm ™2, a temperature
of 0.5 K, and different magnetic fields. The results obtained by
summing the series obtained by inserting the Laguerre polyno-
mials (markers) are compared with the semiclassical approxima-
tion (continuous lines).
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are practically converged for small fields with a basis of
1200 Landau levels, while Stafford, Schmitt-Rink, and
Schifer* report lack of convergence even for a basis of
1700 Landau levels and high magnetic fields. It should
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also be mentioned that the presence of the form factor
improves convergence dramatically, and a few hundred
Landau levels are in general sufficient for fields above 0.2
T.
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