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Response and transit times in quantum-well structures
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The response of a biased double-barrier quantum well to a small ac voltage with characteristic time

p and the transit or dwel 1 time v;„„,are calculated using nonequilibrium Green s-function techniques.
The tunneling process is shown to be predominantly sequential for an In Ga& „As/In~A1& ~As struc-
ture due to only well alloy scattering treated in the coherent-potential approximation. The magnitudes
of ~, „and ~„,„,are in close agreement and about the same for either sequential or coherent tunneling.

This paper introduces a technically significant time for
tunneling in a double-barrier quantum well (DBQW),
viewed as a response time ~„, to a weak oscillatory field

applied to a biased structure along any point of its
current-voltage (I-V) characteristic. Its magnitude is cal-
culated using nonequilibrium Green s-function tech-
niques. It is shown to be nearly the same as the transit
time ~„,„, defined and measured by Chemla and co-
workers. ' Furthermore, the paper demonstrates that
sequential tunneling strongly dominates resonant tunnel-
ing ' as a result only of weak III-V alloy scattering,
for example, in the well of a lattice-matched
In„Ga& „As/In Al, As structure described within the
coherent-potential approximation (CPA). The magni-
tude of ~„,p or ~„,„„however, is only weakly dependent
on the details of the tunneling process.

Aside from their intrinsic physical interest, these re-
sults are important since negative-differential-resistance
diodes or DBQW are prototypical circuit components in
cellular automata in which each cell is required to have
high-frequency response and to be "locally interacting, "
i.e., decoupled from all but its nearest neighbors. Decou-
pling can be achieved if wave-function coherence between
adjacent cells is eliminated. The dominance of sequential
tunneling processes, which eliminate coherence, is there-
fore important.

Specifically, ~ cs' is defined as the frequency, co„, , for
which the imaginary part of the conductivity cr(co) is
maximum. This response time, which is appropriate for
high-frequency applications, is physically different from
the transit time ~„,„, defined as the ratio of the charge
density in the well to the current density, p~/jd„at arbi-
trary bias.

The model of a biased symmetric DBQW to be used in
this analysis is shown in Fig. 1. The well having width
d~ is surrounded by two barriers having height As and
width ds where S =L (left) or R (right). The Fermi levels

pL and pz in the leads represent the effect of charge ac-
cumulation in L and depletion in R. The semiconductor
alloys (In„Ga, „As ) in the L,R and well (W) regions are
assumed to be the same, as are those of the barriers
(In Al, «As). The potential drop across the structure is
modeled by a stepwise constant potential energy having
values NL =e Vd„where Vd, is the voltage drop,

for a symmetric DBQW, and 4z =0. The
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FIG. l. Model of biased DBQW structure. Barrier and well
dimensions defined in text; alloy well resonance level E; Fermi
level pL, p&, tunneling amplitudes h~L, hz~. Inset: Arrange-
ment of random molecular chains having n =5 AC (open) or
BC (closed) molecules for ( A„B

& „)C well alloy.

tunneling matrix element through the barrier, hs~, is
given within the WKB approximation. The well is as-
sumed to contain only one resonant level Ep in the ab-
sence of alloying effects. Ep represents the edge of a two-
dimensional conduction band (CB) with energy
4 gr +Ep +Ek where k

II
are associated with the two-

II

dimensional continuum perpendicular to the growth axis
and. „=~2k~', /2m .

II

The Hamiltonian is given as a sum of terms Hs unper-
turbed by barrier tunneling and well scattering and oth-
ers, Hse and H~", describ»g the remain»g eff~~ts. Ex
plicitly, in terms of appropriately labeled creation and an-
nihilation operators,

g(ek+4s)cskcsg, S=L,R
k

Hs= '

g(Eo+ek +4'w)cwt cd, S = W, (I)
II II

II

where k=(kl, k, ) refers to the L and R regions and
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a&=A k /2m*. Further G ( Wk~~, Wk~~, E)= P—w(E)[G "( II k~~, Wkii E)

and

Hws= g (hwsc cst+H. c. )
IIk, kII

(2) G'( Wk~~, Wk~~;E)]

=2vripw(E) A

(klan,

E) (6)

Hw g(sR Eo—)cwz cwz (3)

in a representation using two-dimensional %annier
creation operators ewe . As indicated in the inset of Fig.

II

1, a row of atoms along the growth direction is visualized
as an n-membered molecular chain consisting of random-
ly disordered AC and BC molecules constituting the
(A„B& „)Calloy. The position of each chain is defined

by a value of RII as indicated in Fig. 1. The resulting
two-dimensional alloy scattering associated with each of
the randomly distributed chains is the only scattering
effect to be considered here. Even though scattering is
weak for III-V alloys, it causes tunneling to be largely
sequential. The scattering potential due to the
configuration-dependent energy

s~ =s+glp(z, )l (e, —e) (4)

b, =x(1—x)(e„—e~) (dwln) J dzlP(z)l

where the integral extends over the well width dw and
has the value 3/(2dw) for deep wells. The CPA descrip-
tion of Gaussian disorder has been considered previous-
ly

7

A nonequilibrium Green s-function formalism must be
used to calculate the current since inelastic-scattering
processes are neglected here, and are insufficient to
achieve equilibrium in the well region at low T in any
case. The advanced and retarded Green's functions G',
G", and also G are related by Dyson's equations. ' The
quantities of particular physical interest obtained from a
solution of these equations are the matrix elements of the
configuration averaged well Green's functions

and

G "( Wkii, 8% ii, E)=5„„,[E —(E+eg +4w)
II

X (k~t E) X (k~~ E)

XcpA(E)]

for each chain, where i =1,2, . . . , n labels the sequence of
AC and BC molecules with on-site electronic energies
c.z, cz, respectively, is much weaker than the confinement
kinetic energy Eo. Here e=xe„+(1—x)e~ denotes the
virtual crystal CB edge; c, replaces Eo in the alloy case;
c,„—c.z is the CB offset between the AC and BC crystals.

Equation (4) gives the chain energies to first order
in the scattering. P(z; ) is the normalized envelope
function along the growth axis. The c,z are assumed

II

to have a Gaussian distribution with probability
(6&2'.) 'exp[ —(e —e) /2b, ] and a variance

RII

In Eq. (5), XL and Xz are the self-energies associated
with tunneling processes out of the well 8'to L and R,
respectively, and Xcp~ is associated with disorder scatter-
ing in the well. %e shall assume the self-energy shift to
be absorbed in E. The remaining part,

~ Im[XS =L,R ] —i7rlh ws I'g'5(E —e~ —@s)

k

—= —
—,'i I S

and i Im[Xcp~] = ,'i—l —„„describesthe broadening due
to tunneling and scattering, respectively. I z is the reso-
nant level width associated with the escape time through
the barrier at side S =L,R. I op~ (not defined explicitly
here) is the energy-dependent level width associated with
scattering. It is obtained from a numerical solution of
the CPA equations. The tunneling process through the
DBQW is seen to be largely coherent if I cp~ && I L, I ~
and sequential in the opposite limit.

Equation (6) contains Pw(E), the nonequilibrium dis-
tribution of electrons in the well. This form is analogous
to Go (Sk,Sk;E), the unperturbed function in the L and
R regions, in which Pw(E) is replaced by the equilibrium
Fermi distributions fL(E —4L ) and fz(E). ' A (k~~, E)
is the spectral density associated with the state kll.

The dc current density (per unit area) jd, is obtained by
calculating the S—+ 8' current density jz
=2e(r}/Bt)gvs where Pvs=gzczsczs and expressing the
result in terms of the Green's functions. The well
distribution is obtained from current conservation

JL, w Jw

(E)=[I f (E —4 )+I f„(E)]/(I +I ) . (8)

The remarkably simple formal result is

jd, =
~ f dE gw(E)[fL(E —4 L ) fq(E)], —

r, +r,
(9)

where gw(E) = J A (k),E)d k~~ /(2m ) is the two-

dimensional well density of states. We note that the form
of Eqs. (8) and (9) is that expected when the tunneling is

purely sequential. The same formal result is obtained by
considering the purely coherent tunneling limit obtained
by setting Xcp~=0. The bias dependence of this non-

linear I-V dependence is indicated explicitly. Except for
its dependence on Vd„ the I z may be assumed constant
since the resonance width is & 1 meV, except when Vd, is

such that the well CB edge coincides energetically with
that of the CB on the left (in the negative-resistance re-
gion).

The level broadening associated with tunneling and
scattering is contained entirely in gw(E). The spectral
densities with and without scattering, A (k~~ =O, E), are
compared in Fig. 2 for the state at the well CB edge when
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it lies just above (0.2 meV) the left CB edge in the
absence of scattering for a lattice matched
Ino. 53Ga0.47As/»o. s2Alo 4sAs DBQW with 1~=45 A
and d~=d&=56 A. This illustrative example corre-
sponds to sample A of Ref. 1 which was measured at
10K. We set pL =50 meV. Scattering effects shift the
CB edge by Re[Xcp~] as indicated. To permit compar-
ison, the Lorentzian resonant peak associated with tun-
neling has been shifted by Re[Sop~]. The shape of
A (O, E) including scattering is strongly asymmetric.
This behavior results from the Gaussian distribution of
states that blur the CB edge: The high-energy tail results
from the increasing density of state available for scatter-
ing; the sharp cutoff at low energies is primarily associat-
ed with the energy dependence of Re[Xcp~] ~ Both
widths are small compared to eVd, . Since the fs and I's
in Eq. (9) are weakly dependent on energy when eVd, lies
well within the Ohmic (positive-differential-resistance) re-
gion, the energy integral reduces to fdEg~(E+4~)
and is the same for all reasonable alloy scattering
strengths. As a result jd, in these regions is unaffected by
scattering, " and will be the same regardless of whether
the transport is coherent or sequential. Thus, neither ~„,z
nor ~„,„, will be appreciably affected by the tunneling

mechanisms. Note also that I-V measurements cannot be
used to distinguish between coherent and sequential tun-
neling.

For a given Vd„ the factor I I I z /(I I + I ~ ) may be
removed from the integral in Eq. (9). Similarly, the
contribution to the current from unscattered electrons
can be shown to be jd, ~ I zl z /(I &+I s+ I „„).The
fraction of coherent tunneling is thus
(I L+ I z )/(I I +I ++I „„).Its value is about 1% for
sample A of Ref. 1.

The transit time, ~„,„,=p~/jd„where

pH
=f "&pw(E)gw(F-) (10)

is the charge density in the well, was measured by Chem-
la and co-workers' using differential absorption spectros-
copy. Figure 3 compares the measured and calculated
7 f s in the Ohmic region as a function of current density
for sample A of Ref. 1. The range of current densities for
the experimental points is larger than that for the calcu-
lations because the experimental maximum current densi-
ty exceeds the calculated value. The factor of 3—4
difference is reasonable in view of the approximations in-
herent in the model, the neglect of other scattering
effects, ' and the exponential dependence of h ~z on input
parameters.

~„,„, may be estimated simply when c, is aligned with
filled states on the left and empty states on the right.
Equations (8)—(10) yield r„,„,-A'/I s =75 ps in the
present case when jd, =100 A/cm, in agreement with
the physical expectation that the transit time is con-
trolled by the effective height of the right barrier.

The importance of the frequency response of a DBQW
operating as a negative-differential-resistance diode
characterized by the response time ~„„„hasalready been
noted. Operationally, the appropriately biased DBQW,
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FICr. 2. Spectral density 2 (k =O, E') for biased DBQW at far
end of negative-differential-resistance regime with (solid curve)
and without {dashed curve) alloy scattering. Resonance is
sharper and located in positive-differential-resistance region for
the case of well lifetime broadening alone (upper dashed curve;
multiplied by 0.1). Shift by Re[Xcp~] and scale change permits
comparison between line shapes. DBQW is indicated schemati-
cally. Dashed region on left occupied by electrons.
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FIG. 3. Theoretical response and transit times vs current
density compared with experiment, sample A, Ref. 1, in
positive-differential-resistance region.
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acted upon by an additional small ac field having frequen-
cy co with Hamiltonian

H„= ,' e V—„(NL N—„)e
responds linearly to that field. For frequencies co)co p,
as defined above, the current is no longer able to follow
H„without phase lag. The upper frequency limit of de-

vice operation is thus given by co„, =r,„.(The frequen-
cy limit is depressed due to circuit capacitance effects and
other scattering mechanisms. )

The derivation of o (co ) is lengthy, since a Bethe-
Salpeter equation must be solved to include vertex
corrections properly. ' The result, valid for the Ohmic
region in which the energy dependence of the I z can be
neglected, ss

(Rco+2i I )I (bf )+(fico+2i r, )r, (bf )
o (co) = dE ga,(E;co)

2A N a~+i(r, +r, )

where

g~(E;co)=( —2ni) '[Fcp~(E+A'co) —Fcp~(E)],

FcpA & 01 GcpA«) l0)

the single-chain diagonal matrix element of the CPA
retarded (advanced) Green's function, and b,fs
=fs(E+A'ro —4S) fs(E —4s—) (S =L,R). Note that
ga,(E;0)=ga,(E), the well density of states in Eq. (9),
and that o (0)=djd, /d Vd, at a given Vd, in the present
case. The applied dc voltage remains even when V„,
which is much smaller than Vd„has vanishing frequency.

The results for T
p

are also shown in Fig. 3. Even
though the physical ingredients in the definitions of ~„,„,
and ~„, are quite different, the numerical values are seen

to be in remarkably close agreement. Calculations for a
typical current of jd, = 100 A/cm in the negative-
differential-resistance region (not indicated in Fig. 3)
show that ~„,„, and v„,~ have values about 60 ps and
differ by only 7 ps, as in the Ohmic region. This result
confirms that the experimentally accessible time defined
and measured in Ref. 1 is, in fact, useful in device appli-
cations of current interest.
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