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Interface phonons of quantum wires
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We have used the continuum dielectric approach to study the optical-interface-phonon modes of a
quantum-wire structure consisting of one material buried within another. Wires with a number of
cross-sectional shapes have been studied. Analytical results are presented for wires with elliptical cross
sections, of which the circular cross section is a special case. Numerical results using an integral-
equation approach are given for wires with arbitrary cross-sectional shapes including rectangles having
rounded corners. The dependence of the modes on the wire cross sections and their relation to the vibra-
tional modes of planar quantum wells are discussed. For large wave vectors parallel to the wire or
around the wire circumference, the modes are found to approach those of the planar interface. Modes
are found to be 1ocalized in the corners of the wires or regions of high curvature, and the degree of local-
ization is found to increase with the increasing sharpness of the corners.

I. INTRODUCTION

Recent advances in growth and microfabrication tech-
niques have made it possible to obtain quasi-ohe-
dimensional wirelike structures of one polar semiconduc-
tor material within another. Some of the most interesting
work of this kind involves epitaxially grown buried wire
structures such as those grown on vicinal surfaces by
migration-enhanced molecular-beam epitaxy. ' In addi-
tion, there are a variety of structures which can be pro-
duced by etching or lithography techniques. Such
methods have produced wires having cross-sectional
areas ranging from a few atoms to square micrometers or
more. Their cross sections exhibit a variety of shapes,
and they have been constructed from a number of semi-
conductor materials, particularly the III-V's. The semi-
conductor wire structures are beginning to attract in-
creased attention from both experimental and theoretical
points of view. Such research is expected to lead to a
better understanding of the effects of confinement and de-
creased dimensionality on the electronic, optical, and
transport properties of semiconductor systems, potential-
ly forming the basis for novel technological applications.

Semiconductor quantum-well systems, which consist of
a layer of one material such as GaAs within another ma-
terial such as Al„Gal „As, have been studied extensively
in recent years. In such systems both the electrons and
the phonons have been found to be strongly affected by
confinemen. The effects of confinement on LO phonons
and the resulting modification of the electron-phonon in-
teraction have attracted particular attention. Phonons
in these structures have been detected experimentally,
especially by Raman scattering. ' In systems such as
GaAs/A1As the LO-phonon dispersions of the two bulk
materials do not overlap in frequency, and as a result the
phonons are localized strongly in the respective layers.
The LO phonons which are eonfined within each layer
are often referred to as "bulk" confined phonons. There
are also optical phonons which are localized in the vicini-

ty of the interfaces. ' These interface modes are the ana-
logs of the classical surface phonons and plasmons which
have been examined extensively over the years. In the
case of semiconductor quantum-well systems, the inter-
face modes have been found to play a dominant role in
electron relaxation and electron scattering as the well
width becomes small. By analogy to the quantum-well
case, one expects the phonons in quantum-wire structures
to be affected strongly by confinement, giving rise to both
interface modes and confined modes. We expect that in-
terface modes may play an important role in electron-
phonon coupling, electron relaxation, and electron
scattering.

Phonons in quantum-well systems have been studied
theoretically using both lattice-dynamics approaches
and dielectric continuum approaches. ' ' Continuum ap-
proaches play an important role in these studies because
they provide analytic results for the phonon eigenfunc-
tions from which the electron-phonon coupling can be
obtained conveniently. The continuum approach also
provides analytical results for phonon frequencies which
are expected to be valid for vibrations with wavelengths
considerably longer than the interatomic spacing. To
date relatively little work has been done on the phonons
of quasi-one-dimensional wire structures. A recent
Raman-scattering experiment has detected an interface
phonon for an array of GaAs wires. " Lattice-dynamical
calculations for some particular wire arrays have been
made recently. ' ' Constantinou and Ridley' have used
a hydrodynamical continuum approach to study phonons
in wires of circular cross section. It should be noted that
their approach differs from the commonly used dielectric
continuum approach. Ruppin and Englman' have used
the dielectric continuum approach to give results for the
interface anodes of a ey1indriea1 wire. Stroseio has cal-
culated results for the bulk confined modes of a wire of
square cross section based on the continuum model.
Stroscio et al. ' also have given results for the interface
modes of this system, but their treatment did not proper-
ly include the boundary conditions. Here our calculation
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correctly incorporates the boundary conditions, and we
present results that differ qualitatively from those of Ref.
17.

In the present work the interface phonon modes of
wires with various cross sections are studied within the
continuum approach. Here we use standard electrostatic
boundary conditions. ' This approach to the study of in-
terface modes has been substantiated by lattice-
dynamical treatments. ' Analytical results are given
here for wires of elliptical cross sections, of which the cy-
lindrical wire is a limitiog case. It is pointed out that the
interface modes of wires of more genera1 cross section, in-
cluding the rectangular case, cannot be obtained analyti-
ca11y, even within the continuum approach. An integra1-
equation method is used here to obtain numerically the
interface modes of wires of arbitrary cross section. These
results are given for wires with rectangular and related
cross sections. A number of interesting features emerge
from these results. In the continuum approach it is
found that, in general, there are an infinite number of in-
terface modes for each wave vector along the wire for all
wire geometries. In the case of wires with rectangularlike
shapes some interface modes are found to be localized in
the corners. As the corners become sharper, these inter-
face modes become increasingly localized at the corners.
The relation of all of these interface modes to those of
quantum wells is discussed.

II. FORMALISM

In the present work the dielectric continuum ap-
proach is used to study the interface phonons of wire
structures. This approach is described briefly now. We
consider a model consisting of a single wire with dielec-
tric function e&(co) embedded in a second material with
dielectric function ez(co) as shown in Fig. l. Each dielec-
tric function is frequency dependent and is assumed to be
isotropic and independent of k. The wire is taken to ex-
tend infinitely in the z direction, and several cross-
sectional shapes in the xy plane are considered. Each
material is takeo to be characterized by dispersionless LO
aod TO phonons, and the dielectric functions are taken
to be"

2 2
. CO N~o;e;(co)=e'„' ', i =1,2 . (2.1)

~~o
There exists no free charge in the system, and thus
7'-D=O everywhere, where D is the displacement field.
This gives e,.(co)V.E=O in each material, where E is the
electric field. The effects of retardation are important
only for phonon wavelengths comparab1e to the infrared
wavelength &@co/c (Ref. 20) and will be neglected here.

From Eq. (2.1) it is seen that the condition e;(co)=0 de-

scribes a (confined) bulk-LO phonon in material i, with

frequency coro, , and that e,.(co)=~ gives a (confined)
bulk-TO phonon in material i. It is straightforward to
show that the condition e,(co)= —ez(co) describes an in-

terface phonon at a single planar boundary. Here we are
interested in the interface modes. For them e,.(co)%0 and
the condition V.D=O gives 7'-E=O in each material.

Because retardation is ignored, the electric field can be
derived from a scalar potential 4 satisfying V' @=0.
From translational invariance along the z direction, the
potential can be written 4(x,y, z) =P(x,y)exp(ikz) where
the reduced potential P(x,y) satisfies

V P(x,y) —k P(x,y) =0 .

Then the electric field can be written as

(2.2)

E(x,y, z) = [E(x,y) —ik zP(x, y) ]exp(ikz),

III. ELLIPTICAL %IRK

First we consider a wire with elliptical cross section
having a major axis R and a minor axis r. An example
with aspect ratio R Ir =2 is shown in Fig 1. For the case
of an elliptical cross section, Eq. (2.2) and the bound-
ary conditions are separab1e in elliptica1 coordinates. '

These coordinates (u, u) are related to Cartesian coor-
dinates (x,y) by x =+R —r coshu cosu and

y =+R z —r2sinhu sinu. Contours of constant u (u) are
ellipses (hyperbolas). The foci of these contours are all
located at (x,y)=(+MR —r, O). The ellipse specified

FIG. 1. Drawings of the cross sections of four wires dis-
cussed in Secs. III—V. The elliptical cross section discussed in
Sec. III is indicated by the long-dashed line. The short-dashed
line indicates the example ("oval"} studied in Sec. IV. The solid
and dotted lines are rectangles with rounded corners and so are
approximations to a rectangular wire as discussed in Sec. V.
The radius of curvature (a} at the corners of the solid line
equals r X 10 ', and that of the dotted line is r X 10 '. The no-
tations r and R are shown in the figure.

where the overbar represents the projection of a three-
dimensional vector in a direction perpendicular to the
wire. Equation (2.2) is the basic two-dimensional wave
equation describing the interface modes in these systems.
Associated with it are the standard electrostatic bound-
ary conditions imposed at the interface between the
media: continuity of P, which follows from the continui-
ty of the tangential components of E, and continuity of
the normal component of D =eE. ' The condition that
the phonon amplitude vanishes far from the wire specifies
an interface mode.
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by u =uu =——,'ln[(R +r)/(R —r)] gives the surface of the

wire.
Equation (2.2) for tI}=V(v) U(u) is separated in ellipti-

cal coordinates yielding an "angular" equation

d2V + (a —2q cos2v) V =0
dU

and a "radial" equation

2U —(a —2q cosh2u) U =0 .
Q

(3.1}

(3.2)

and

V (u)=ce (u, q),
(3.3)

Ce (u, q)Fek (uo, q) if u &uo
U (u)=.

Ce (uo, q)Fek (u, q) if u )uo,

where m is a nonnegative integer. If m is even (odd) the
solutions are even (odd) in x. From Eq. (3.3) it can be
seen that P(u, u) is everywhere finite and continuous, that
V4 vanishes far from the wire, and that the only discon-
tinuity in the derivative of P occurs at u =uo in the
direction normal to the wire boundary. Continuity in the
normal component of D=e(co)E across this interface
gives

Here the real quantity a represents the separation con-
stant, and q equals k (r R)/4—&0. We begin by look-
ing at Eq. (3.1). Because of periodicity around the wire

[V( v +2m ) = V( v) ], the quantity a is quantized. For a
given q there exist an infinite number of solutions, each of
which is specified by a (nonnegative) integer index m

which plays the role of an azimuthal quantum number.
These solutions fall into four different symmetry classes
depending on whether V(v) is symmetric or antisym-
metric with respect to reflection through each of the x
and y axes. Depending on this symmetry the mth eigen-
value am of Eq. (3.1) is either am or b, and its corre-
sponding eigenfunction is a periodic Mathieu function,
either ce (v) or se (u), respectively. z'~ All of these
quantities are continuous functions of q. When the eigen-
value a (b ) is inserted into Eq. (3.2), the solution of
U(u) is proportional to Ce (u) [Se (u)] for u &uo and
is proportional to Fek (u) [Gek (u)] for u)uo. Of
these four functions (associated Mathieu functions), the
former pair are finite near u =0 but diverge as Q ~00,
and the latter pair diverge as u —+0 but are finite as
Q~OO.

Se (u, q)Gek (uu, q) if u &uo
U (u)=

Se (uo, q)Gek (u, q} if u )uo, (3.5)

where m is a positive integer. In this case if m is even
(odd) the solutions are odd (even) in x. The interface-
mode dispersion relations are obtained from the continui-

ty of the normal component of D:

e (~ } (8/Bu)[lnGek (u, q)])„
(3.6)

e2(co ) (8/Bu')[1n Se (u', q)]~„

At k =0 the solutions simplify considerably. If V(v) is
even in y then a =m, and Vm(u)=cosmv where m is a
nonnegative integer. The radial part of the solution is
then given by

Qo, u&uo, m

u, u ~uo, m=0
3.7m exp( —mu0 }coshrnu, u & uo, m )0

exp( —mu)coshmuo, u uv, m )0

and the dispersion relations are given by

ei(~m) (R r) +(R—+r)
e'2(oem ) (R r) (R—+ r)—

(3.8)

For k =0 and V(u) odd in y,
V (v) = sinrnv and

exp( —
muu )sinhmu,

m exp( —mu }sinhmuu,U u='

&i(~m } (R r) (R +—r)—
) (R —r) +(R +r)

then a =m and

Q +Qo

Q Qo
(3.9)

(3.10)

(3.1 1)

The phonon-dispersion relations co (k) are given by

where m is a positive integer.
A wire with a circular cross section is a special case of

the elliptical cross section, and the interface phonons
have been derived previously for it in Ref. 15 using this
same continuum approach. For a circular cross section
of radius r the solutions are given simply in circular cy-
lindrical coordinates [$(p, 8)—:U(p)V(8}], where (p, 8)
are the radial and angular variables, respectively. The
angular solutions V (8) are either sinrn8 or cosrn 8, and
the radial solutions are expressed as Bessel functions of
imaginary argument (K,Im )

K (kr)I (kp), p & r
U (p)= '

K (kp)I (kr), p & r .

(3/Bu )[ln Fek (u, q)] ~, -„
E2(co ) (8/Ou')[In Ce (u', q)] ~„

(3.4)

By substituting Eq. (2.1) into Eq. (3.4), one obtains the
dispersion relations for the interface eigenmodes co (k).

For V(v) odd in y

e, (co ) (8/Bp)[lnK (kp)) ~

E (co ) (a/ap')[InI (kp')][

[K + i(kr)+K i(kr)]I (kr)

[I +,(kr}+I i(kr)]K (kr)
(3.12)

and

V (u)=se (u, q), For all wire cross sections the interface-mode frequen-
cies co (k) lie in the reststrahlen regions of either one or
the other material; i.e., either coTo, &co (k) &co„o, or
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nero, & ni~(k) & ni+Q p The quantity
7

e, (co )+@2(ni )

e, (co ) —ez(co
(3.13)

to dis lay the interface-mode disper-
hni (k} which is indepenuent o csion relations ~~

e ni, co„o;). For exam-the material parameters (eo, e„,niTo „co„o,
(k) for an elliptical cross section

R / =2 are shown in Fig. 2. The quantityhaving r = a
s onl on k and the wire geometry (R,r, In.&. In order to

h
' f -mode frequencies forto the inter ace-mconvert from k~ h

E . (2.1) into Eq.aterials, one substitutes q.p
13). For instance, A, = 1 correspon s o co

or co, h I,= —1 corresponds to nior co, wnereasTQ, 1 LO, 2

e ualin either coLQ, or coTQ 2 us e
nds to the two reststrahlen regions,

to the four bulklikeits end oints A. =+1 correspond to t e our
mo e

' '
1 . A useful point to note is thatmodes in the two materia s. use u

=co or co=co)F 2 w ere ~»,A, =O corresponds to co=
and co are the (dispersionless} interface-mode requen-

b d ry separating dielectrics 1cies of a single planar ooun ary

e
' ' of the analytical results for

as noted in Sec. II.
A few qualitative aspects of e a

and circular cases are worth noting. irst e e11 ptical a c
we summarize their sim' ' ' . % '

eimilarities. % en ei e
o es localize very strongly to e incomes large the modes

arl vanishing values o in a m
od of fl

cross section can be seen in Figs. 3 a an

x enerated by the modes with (kr, m) equal-
1 . The reason for this be-

1 th becomes so small that t e
5.0 0) and (1.0,8) respective y. e r

hehavio
' r is that the wavelengt ecom

ed b the charge separation is o
~ ~ felectric field generated by t e c

e ivin rise to small coupling wit o ershort range, giving r'

f heir localization near thetions o, the wire. Because o t eir oca
'

d are expected to coupleinterface, momodes for large an m are
ns con ned to the wire interior.only weakly with electrons con ne o

for the ellipse is shown in ig. aThe quantity o
of m. Note that A, (k}~0tion of kr, for low values of m. o e

interesting feature in-m or k. A particu ar y
'

havior of the m =0 interface mode.volves the low-k behavior o t e m =
For ot e cb h th ircular and elliptical cases

k ~0} ap-which corresponds to co o(proaches unity, w
'

k~O the reducedproaching either LQ 2 TQor co,. As ~, e
enerated by the m =0 mo e is con

11 I to th
ar e radial distances p outside the wire,

the field E varies
'
inversel with p. In ec.

s o arbitrary cross sec-ior will be seen to occur for wires o ar i rary
tion.

h
'

lar case are qualitativelyThe solutions for the circu ar ca
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nvalues A, [defined by Eq. (3.13)]FIG. 2. Dependence of eigenvalues
here rr a wire with elliptical cross section w ere r

dk hpelli se shown in Fig. an is
alon the wire. Dotted lines indicate mo es

, d -d h d hns r modes sym-in both x and y, dot- as esymmetric in
d hed lines are modes an-antis rnmetric in y, as e

and s mmetric in y, an so i i
s that are antisymmetric in both x an y. e

jn ices . . {3.6) are indicated on each curve.indices m from Eqs. {3.4) and I . are in
'

FIG. 3. The reduced potential P(x,y) from . {2.2) generat-
with circular cross section ford b the interface mode of a ware with ce y ein

=Q or b kr =1 and rn =8.{a)kr =S and mode index rn =Q or
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the surface charge density o from the boundary condi-
tion

(4.1)

E,„, and E;„are the electric fields in the plane perpendic-
ular to the wire just outside and just inside the interface,
and n,„& is the unit vector normal to the surface. Con-
versely, knowledge of o. suffices to determine the field
everywhere from

@( ) y
d Acr(A)

/r —r„f
(4.2)

FIG. 4. The reduced potential P(x,y) generated by the m =0,
kr =2 interface mode of a wire with elliptical cross section and
aspect ratio R /r =2.

similar to those of the elliptical case except for a few
features. Careful inspection of Eq. (3.12) reveals that for
the circular case at k =0, only one (the m =0) value of A,

differs from zero. All values of A, (k =0) are nonzero for
an ellipse. Also, for the circular case the two modes with
the same value of m are degenerate owing to rotational
symmetry. They are not degenerate for the ellipse. Fi-
nally, the loss of isotropy allows for the possibility of an-

gular localization. Figure 4 shows that the potential gen-
erated by the m =0 mode for kr =2 is greatly enhanced
near the vertices of the ellipse. The cause of this partial
localization is seen by inspection of Eq. (3.1). If this
equation is interpreted as a Schrodinger equation, then
the minimum of the potential energy occurs at cos2v =1
corresponding to the ellipse vertices. This tendency of in-

terface modes to localize at regions of high curvature
along the boundary will be seen to be more pronounced
for wires with rectangular cross sections, described in
Sec. V.

IU. INTEGRAL EQUATION

For most wire geometries, including the simple case of
a square cross section, Eq. (2.2) and the boundary condi-
tions cannot be separated into two one-dimensional prob-
lems. This necessitates the solution of a scalar wave
equation with appropriate boundary conditions over an
infinite two-dimensional space, which must be done nu-
merically for most geometries. In this section we trans-
form this complicated task into a simpler one, an integral
equation over a finite one-dimensional interval. This pro-
cedure is coxnmonly used to transform a d-dimensional
partial differential equation with boundary conditions
into a (d —1)-dimensional integral equation (see, e.g.,
Sec. 8.1 of Ref. 21 or Sec. 6.1 of Ref. 24}.

Oscillating fields in dielectric systems may be interpret-
ed as being generated by bound charge densities at inter-
faces. Knowledge of the fields is sufficient to determine

E;„(s)=2k

wads'o

(s')p»K&(kp„) 2no (s)n—, ,

E«, (s) =2k fds'o(s')p»K&(kp» )+2mo (s)n, ,

(4.4)

(4.5)

where p„=—~P,
—p, .~, and p„.—=(p, —p, )/p„. . It is easy

to see that Eqs. (4.4) and (4.5) satisfy Eq. (4.1). By requir-
ing continuity in the normal component of D we obtain
the desired integral equation

rt}ds'o (s') A (s,s') =Ao (s), (4.6)

where A. =[@,(co)+e2(co)]/[e, (co)—E2(co)] as before, and
A(s, s')=m 'kK, (kp„)n, p„..

A few points about Eq. (4.6) are worth mentioning.
The diagonal elements of the kernel can be seen to satisfy
the condition A (s,s) =(2m C, )

' where C, equals the ra-
dius of curvature of the boundary at point s. The kernel
is finite everywhere, so the spectrum of eigenvalues is
discrete ' and satisfies the sum rule
=f ds A(s, s)=(t}d (2'.C, ) '=1. Here the mode index
m approximately equals half the number of nodes of
o (s) going around the wire circumference, so m contin-
ues to play the role of an azimuthal quantum number.
For the case (k, m)A(k', m') we have been able to show
that the interface modes are orthogonal in the sense that

J d x Ek (x).Ek (x)=0. At k =0 the following physi-
cal argument shows that one of the eigenvalues equals
unity. Consider the charge distribution oo(s) which
would occur if net charge were placed on a conducting
wire of the same shape as the dielectric one considered
here surrounded by vacuum. E;„(s) vanishes for such a

where the integration is over the interface.
Consider a wire of infinite length and arbitrary cross

section. Owing to symmetry along the wire, the surface
charge density can be written in the form
cr(A)=o(s)exp(ikz) where s parametrizes the position
around the wire perimeter. The z integration in Eq. (4.2)
can be performed analytically, yielding

P(p}=2fds o(s)Kc(klp —p, I) (4.3)

where p, is the vector position of a location on the wire
perimeter parametrized by s. The gradient of Eq. (4.3)
can be used to calculate the electric field everywhere ex-
cept at the interface, where the bound surface charge in-
duces discontinuities in the normal component of E.
Careful differentiation of Eq. (4.3) with respect to p yields
the following formulas for the electric fields just inside
and outside the wire:
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charge distribution. To see that o (s) is
of E . (4.6

a ceo s& is an eigenfunction

E. 4.
q. . with eigenvalue 1=1 subst't ts i u e crojsj into

q. ( .4) and take the dot product of the re 1

tion with n . This
c o e resulting equa-

i n, . is eigenvalue A. =1 corresponds to ~
equaling either co or cocoLQ p OI coTQ ] which was seen to be the
case or the k =O, m =0 mode of the elli ti
ar cross sections discussed in the previous section. The

VI.
physical meaning of this mode 11 b d'e wi e iscussed in Sec.

call . Mos
A number of methods exist to solve E . (4.6've q. . j numeri-

y. ost of them involve the diagonal' t' f 1iza iono a arge
rix. e c oose to do this by approximatin th

y sum over N appropriately spaced points
si and solving the matrix eigenvalue problem

N

3; 0. =A,cr.ij j i (4.7}
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FIG. 5. Eigenvalues A. (k) for theor e oval case (wire cross sec-
ion in icated by short-dashed line in Fi . 1). Thig. . e notation is

~ ~

where o;=o(s;) and A; =(s —s A

le a r
,"= s +, —s ) A (s;,sj ). This sim-

p e approach is expected to yield reasonable res

J+1 J'
As an example of the present method w

fl p 3o
'

g o wo at parallel stri s
s y wo alf cylinders. The cr

thi i ("o 1") ' ' d'ov d'
y the short-dashed line inova is indicated b

is system has the same s mm
e so utions to Eq. (4.6) have the same sym-

metries as those described in Sec. III. Th
suits arare found to converge well f ( )

e numerical re-

exceeds max(kr, m) Apl t. f th
or o s when N reatl

p o o t e eigenvalues A, for
g y

oval cross section
'

m or the

the r
es arge, m ( ) approaches zero, which is

t e result for a planar interface. Also
mo e L 0 k j equals unity at k =0 as pr

ously noted. ThThe potential generated by this mode is

FIGIG 6 The reduced potential (xen ia x,y) generated by the m =0
e wire with oval cross section, the sha e ofp which is

zero.
or - as ed line in Fior - d l' Fig. 1. Here kr equals

shown in Fig. 6. Note that (x ) isa & x,y is constant throughout
wire interior, so E isw' ' t ', '

parallel to the wire in this r-
gion. An interestin di8'er

e e ipse and those for the oval are the resen
( o g

cu o 1scern visually in Fi . 5.
«h a q. 2.2) and the boundary conditions are

not simultaneously separabl f hra e or t e latter geometry.

V. RECTANGULAR WIRE

The interface modes of a wire with rectan ul
ot b o1o e so ved analytically. Because of its

~ ~

s arp corners a rectan ular crg c oss section also poses a spe-
cia i culty for the numumerical technique discussed
ec. IV. The dia on

'
gonal element of the kernel of Eq. (4.6} is

in

inversely proportional to the local radius of curvature, so
it diverges at the corners. In
th

n practical physical situations
e wires often will be re rp esented by continuum models

aving rounded corners with curvature r d"a ii a on the or-
'

s is mat ematicalo an atomic radius, which avoid th'

problem. Here we study wires hires w ose cross sections are
rectangles with rounded corner hners aving various values of
corner radius a as shown in Fig. 1.

As a becoecomes significantly smaller than both k ' and
the wire diameter, the num

e ned limit. We show in Appendix B that for the limit-
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in nitely shar . Dis

are

wires with r
p. isper sion relations for rectan 1angu ar

7b for v
rounded corners are shown

' F' . 7
) or values of r/a equaling 10 and 10, respectively



45 INTERFACE PHONONS OF QUANTUM WIRES

(corresponding to the solid and dotted lines, respectively,
in Fig. 1). Figure 7(b) illustrates the approach to continu-
ous spectrum described above for cross sections having
sharp corners. Exactly one mode (m =0) is discretely
separated from the continuum but approaches it rapidly
as kr ~ 00. Its discrete separation from the continuum is
guaranteed by the fact that A,o(k~0)=1 as discussed
earlier. For other wire cross sections having corners,
other interface modes (i.e., m %0) might also be discrete-
ly separated from the continuum for small and moderate
k.

From an examination of the modes for kr ~ 1 we find
that those with eigenvalues near A, =6—,

' tend to be local-
ized in the corners of wires having approximately rec-
tangular cross sections. This is shown quite strikingly in

1.0 I T" I"I"I.J.J I I
~g ~ y

I I I I I I III I I I I I IIII
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FIG. S. The reduced potential P(x,y} generated by the m =0
mode of a wire with rectangular cross section having R/r =2
and corner curvature a = r/10. Here kr =2.

Fig. 8 for an m =0 mode at kr =2. Localization of
modes in the sharp portions of a wire with elliptical cross
section was shown in Fig. 4. In general one expects that
modes may be localized near "defects" like the corners of
these wires. This has been seen for acoustic phonons
near corners of elastic materials and for short-
wavelength surface phonons of stepped crystals. A pre-
vious study' of interface phonons for a wire of rectangu-
lar cross section did not obtain a complete description of
these corner modes.

Additional insight can be gained into the spatial behav-
ior of these corner modes by noting that for modes in the
vicinity of the corner, the local environment can be ap-
proximated by a single corner between two semi-infinite
planes as shown in Fig. 9. Details of the properties of

1.0 I 7 "I"I"I.I.J. I I I I I I I 1 III I I I I I I III
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(b)
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102

I I I I I IIII I II I I I I IIII I I I I I IIII
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kr

FIG. 7. Eigenvalues A, (k) for the rectangular case having
R/r =2 and (a) r/a =10 or (b) r/a =10'. The wire cross sec-
tion is indicated by the solid line or the dotted line, respectively,
in Fig. 1. The quantities (R, r, a) are defined in Fig. 1. The nota-
tion is the same as in Fig. 2.

FIG. 9. Cross section of a single corner (as discussed in Ap-
pendix A) formed from two semi-infinite planes which separate
two different dielectric materials.
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this system are given in Appendix A. There it is shown
that the localization length L of the modes in the corners
decreases with increasing k and, in particular, that L is
on the order of k 'max(1, (2/vr)sech '(2~A, ~)}. For lo-
calized modes with A, -+—,

' the electrostatic potential
generated is well approximated by a line of oscillating
(i.e., e'"') charge density situated along the corner. For
localized modes with k- —

—,', the potential is approxi-
mately that due to a line of oscillating dipole density.
Hence the sign of A, , or equivalently that of cot„—co, as
well as its magnitude, dictates the qualitative spatial
dependence of the potential generated by a particular in-
terface phonon. This, in turn, should affect the strength
of the electron-phonon coupling.

VI. DISCUSSION

In the present work, we have used the continuum ap-
proach to study the optical-interface phonons of quantum
wires with a number of different cross-sectional shapes.
Analytical results have been obtained for wires having el-
liptical cross sections, and numerical results based on an
integral-equation approach have been given for wires
with other cross sections. One of the interesting features
obtained in this work has been the appearance of modes
localized in the corners of wire cross sections. The de-
gree of localization has been found to increase with in-
creasing sharpness of the corners. A recent lattice-
dynamical study' of a particular quantum-wire array
also has obtained corner modes.

A useful way to understand a number of the properties
obtained here for the interface modes of quantum wires is
to compare them with corresponding results for quantum
wells, systems which have been subjected to considerably
more study. The characteristics of quantum-well inter-
face modes calculated from the continuum approach
resemble closely those from more detailed calcula-
tions. ' ' ' For the quantum well there are four inter-
face modes. The two modes with frequencies between
a@To, and ~aLo, (corresponding to the well material) are
of particular interest here. At vanishingly small wave
vector k parallel to the plane of the quantum well, one of
these has eigenvalue A, = —1, frequency ~=coi0 „and
polarization perpendicular to the plane of the quantum
well. The other has k= 1, frequency co=coTQ „and polar-
ization parallel to the well. For the former mode the
Coulomb field arising from the bound charge at the inter-
faces of the well causes vibrations to be at the bulk-LO
phonon frequency, whereas the lack of such a Geld for the
latter interface mode causes it to vibrate at the bulk-TO
frequency. This reversal of the polarization-frequency re-
lationship for LO and TO modes in a quantum well as
compared to the bulk has been noted previously. ' At
larger wave vectors k the quantum-well interface modes
become increasingly localized on the two interfaces, and
their frequencies approach that of the isolated interface.

In the case of the wire geometry for vanishingly small
wave vector along the wire, there is only one longitudi-
nally polarized interface mode. This is the m =0 mode,
which has eigenvalue A, =1 and frequency co=coTo &, as
does the interface mode with corresponding polarization

in the quantum well. There is no modification of its fre-
quency due to the wire confinement, and thus it is a
feature common to all wire cross sections. In the ease of
the quantum well there has been discussion in the litera-
ture concerning the construction of a complete set of
phonon states from the interface and confined bulk
modes derived by a continuum approach. ' ' For the
quantum wire we have seen that at small wave vector the
potential generated by the m =0 mode fills the wire uni-
formly and looks like a nodeless bulk mode as seen, for
example, in Fig. 6. %e suggest that this mode be best
thought of as an interface mode and that no correspond-
ing mode should be included among the bulk confined
modes in constructing a complete set of states for the
wire.

In the wire geometry there are two polarizations per-
pendicular to the wave vector. The frequencies of these
modes are influenced by the Coulomb interactions from
the sides of the wire, which depend on shape. At long
wavelengths no mode occurs with eigenvalue A. = —1

(&@=co„o,), because of modifications to the long-range in-
teractions as compared to the case of the quantum well.
For increasing m the modes are more localized in the in-
terface region, and thus their frequencies approach
co=a&z, that of the planar interface. For a given m the
two modes have different symmetries, and different
Coulomb interactions for the two modes gives rise to a
splitting between them. The case of k =0, mAO modes
of the ellipse shown in Fig. 2 provides a useful illustra-
tion. Pairs of these modes with equal values of m have
equal and opposite values of k. The upper modes are
symmetric about the x axis, whereas the lower modes are
antisymmetric about the x axis. In this regard the case of
the circular cross section is an interesting limit. For this
limit, each of the modes for a given m are equivalent by
symmetry; therefore, their eigenvalues k are degenerate
and must equal zero (corresponding to co = co&z).

The continuum approach provides a simple, clear pic-
ture of the interface phonon modes of confined struc-
tures. This approach has been used extensively to obtain
analytic results for electron-phonon coupling in quantum
wells where scattering from interface modes has been
found to be particularly important. In this regard the
present results should prove usefu1 for studying electron-
phonon scattering in quantum-wire systems. The contin-
uum approach also provides a model within which there
is clear distinction between interface and bulk confined
modes. In the present work we have made a comprehen-
sive study of the properties of interface phonons of quan-
tum wires using this approach. %'e have explored the
systematic variations of the features of the interface pho-
nons with the shape of the wire cross section and have re-
lated them to corresponding results for quantum wells.

Certain limitations of a continuum model might be
noted. For instance, to apply a continuum theory to a
quantum well the number of atomic layers must be large,
and the wave vector must be less than the Debye wave
vector kD =O(a ') where a is the lattice constant. This
also holds true for a wire, and in addition the mode index
m must be less than O(r la) for a wire of radius r. Also,
a realistic wire with rectangular cross section should have
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corners rounded on the scale of at least one lattice con-
stant, which would eliminate the unphysical behavior as-
sociated with sharp corners discussed in Sec. V and Ap-
pendixes A and B. The dispersion of the bulk-LO and
-TO phonons will give rise to some mixing of the inter-
face and bulk confined modes. The present continuum
approach does not include this dispersion, and thus it
does not give a description of this coupling. This issue is
studied better using a lattice-dynamics approach for par-
ticular systems such as those done in two recent stud-
ies 12, 13

The methods used here may be useful for the study of
interface phonons of other confined systems. For exam-
ple quantum dots of various shapes and systems com-
posed of either line defects or several wires can, depend-
ing on the specific geometry, be treated either analytically
or by generalizations of the integral equation approach
used here. In addition, other excitations such as interface
plasmons can be treated with a dielectric formalism simi-
lar to the one used here.
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and (Al)

d R + +( —k )R =0p
p p

where y is the separation constant. The boundary con-
ditions that lim „R(p) and lim DR (p) are both finite
restrict y to being real and positive. For definiteness
we take y) 0. The radial solutions are Bessel functions
of imaginary index (given by i y ) and of imaginary argu-
ment (given by ik p ). When p ))y /k, then
R (p)-exp( —kp), and when p «y/k, then
R (p) =cos(y inp+ 5). Hence the quantity
L =k 'max(l, y) defines a localization length beyond
which P decays exponentially. The quantity y represents
the rapidity of oscillations as p~0 and so is analogous to

APPENDIX A: BEHAVIOR NEAR A CORNER

Near a sharp corner in a wire cross section the envi-
ronment is approximated by a single corner separating
two semi-infinite planes which, in turn, separate two
different dielectric media as shown in Fig. 9. The angle
2P between the two planes equals n /2 for a wire with rec-
tangular cross section, but for reasons of generality we al-
low it to take any value in the range 0 & 2P & 2m. . Here we
study the properties of such an isolated corner, for which
Eq. (2.2) and the boundary conditions separate in cylin-
drical coordinates (p, 8). Taking P(p, 8)—= T(8)R (p), the
one-dimensional differential equations are

T
y2 —0

dO

the mode index m. Note that R (p) has an infinite num-
ber of oscillations as p~0. It might be noted that this
unphysical behavior is eliminated either if the corner is
slightly rounded or if e(co) has a q dependence.

The angular solutions can be chosen to be either even
or odd with respect to reAection through the 6I =0 plane:

coshy(m. —P)coshy8, I8I &P
T+(8}=

coshy(m 8—)coshyP, n ) I8I &P,

sinhy(m —P)sinhy8, I8I &P
T (8)=

sinhy(~ —8)»nhyP, ~ —I8I

(A2}

(A3)

where 2P is the angle formed by the two planes (Fig. 9).
Here the subscript indicates the parity of T(8) with
respect to refiection through the 8=0 plane. By requir-
ing that the normal component of D be continuous we
obtain

ei(ai)+e2(ai) sinhy(m —2P)
e,(ai) —e2(co) sinhym.

(A4)

and (A5)

Straightforward application of boundary conditions
yields A.

' '= 2P/n. —1. However, the result that
A, '+'= 1 —2P/m is obtained by encircling the edge with an
imaginary cylindrical surface and applying Gauss's law.
The charge density corresponding to the even-parity solu-
tion is nonzero only at p=0, so it might be called a
corner mode. The relative atomic displacements for
these (and other) interface phonons are simply propor
tional to the polarization P=(e e„)E/4~. —Sufficiently
near the corner (p «k ') the polarizations for the sym-
metric and antisymmetric corner modes, respectively, are
P+-e' 'p 'p and P -e'"'p '8 lnkp. Hence, near the
corner the polarizations of both the symmetric and an-
tisymmetric corner modes diverge and are perpendicular
to both k(=kz) and each other. In fact, the surface
charge density for the y+0 modes is proportional to
R+(p)/p, so all of the interface modes (and fields gen-
erated by them} are partially localized to within a partic-
ular distance [ —k 'max( l, y)] of the corner. For a rec-
tangular corner (2P=m/2), Eq. (A4) can be inverted to
yield

2 1++I—4A,y= —ln (A6)

As y ranges from 00 to 0 the quantity A, + (A, ) ranges
continuously and monotonically from 0 to 1 2P/n—(to.
2P/n 1), whic—h leads to a continuous spectrum as noted
in the text. A more rigorous proof of this fact is given in
Appendix B.

The limiting case y =0 deserves special attention. The
radial solutions are Rig(p)=ED(kp), and the angular
solutions are

T'+'(8) =const
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L (k, i, ) =k 'ma 1 —ln
2IA, I

(A7)

Hence the corner localization length in this case is given
by Pso (~o

ri. &o(s)= —1, s &0, p, o&ro

0(1) otherwise .
(83)

APPENDIX B: CONTINUOUS SPECTRUM FOR A WIRE
WITH A SHARP CORNER

In order to show that the spectrum of Eq. (4.6) is con-
tinuous in the range I

A, l ( I
1 2p/—n I for a wire cross hav-

ing a sharp corner of angle 2p, it suffices to show that

For later convenience we define ro to be much smaller
than both k ' and any (nonzero) radius of curvature C,
along the wire. The following proof takes advantage of
the fact (shown in Appendix A) that if oi.(s) is a solution
of Eq. (4.6) with eigenvalue A, less than

I
1 2p—/olin .ab-

solute value, then sufficiently near a corner
o i (s)-p o'cos(y lnp, o).

In order to prove Eq. (Bl), first notice that

lim
wads'A(s, s')f„(s')—

A f„(s)

llf (s)
=0 (Bl) lim Ilf„(s)ll =0(lnr„'}~~ .

n~oo

where [f„(s)j is an infinite sequence of functions [not
necessarily solutions of Eq. (4.6)] and llf (s)ll =—fds If (s)l
(see, e.g. , Sec. 5.6 of Ref. 24). We choose f„(s)as

f„(s)=r (s) X
cos(y lnp, o)

Pso

0 otherwise

p,o&r„)0
(B2)

Here s ' =0 defines the position of a particular corner,
lim„„r„=0, and y( )0) is related to A, by
I&l =(sinhyml 1 2P/~l)/sinhyn. Also r„(s)=1 if & is
positive, but takes on the following functional form if k is
negative:

Now we simply need to show that the numerator of Eq.
(Bl) is bounded. (c„ is "bounded" if and only if
lim„„c„&00 ~ ) To do this we separate the range of in-
tegration (over s) into three disjoint regions: (1) p, o ro,
(2} ro &p, o

~ r„, and (3) r„~p,o. Now

, + II II,+ II II, . We will show that
each of these is bounded, in turn.

Region l. Af„(s) is obviously bounded. To see that

fds' A (s,s')f„(s') is bounded, first realize that

&, ds'A (s,s')f„(s')=fz &„ds'A (s,s')fo(s')

is bounded, because neither A (s,s') nor fo(s') is singular
in this region. Next, note that

wads'A (s,s')f„(s')-[A (s,e)+ A (s, —e)]f ds'f„(s')
0

—[A (s, e)+A (s, —e)][sin(y lnro) —sin(y Inr„)]/y,

which is bounded (In these and future equations the top sign is taken if A, )0 and the bottom one is taken if A &0 )

Hence

fds'A (s,s')f„(s')—Af„(s)

is bounded.
Region 2.

wads'A (s,s')f„(s')-kk sin2pf pdp f„(p)
~Vp +pso 2pp ocos2P

(because r0 && C, )

-+ '" f pdp f, (p)/(p'+p'o 2pp. ocos2»
0

(because ro &(k '
)

=+ f dp(p +p,o
—2pp, ocos2p) 'cos(y lnp) .

7T pf

Also,

sinhy(n. —2p}cos(y Inpso} sin2gf (s) —+ ' =+ f dp(p +p,o
—2pp, ocos2p) 'cos(y lnp)

( sinhy m)p,o
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(see Sec. 3.983 of Ref. 23). Hence,

fds'A (s,s')f„(s')—A f„(s) = f dp(p +p,o
—2pp, ocos2P) 'cos(y Inp)

Po

dp(p +p.o 2pp ocos2P)
0

T'0

~ m
' f dp(p, o

—p cos2P)
0

=r„ /[ mp, c(p, c
—p„cos2P)) ~

p,o(1 —cos2P)

so

fds'A (s,s')f„(s')—Af„(s) ~0 f r„dplp =0(1),
which is bounded.

Region 3. First note that A f„(s)=0. Next,

fds'A (s,s')f„(s') — f dp(p +p,c
—2pp, ocos2P) 'cos(y 1np)

lt

' f dp/(p —p,ocos2P) =[m(r„—p, ocos2P)] ' ~ [mr„(1—cos2P)]

so

fds'A(s, s')f„(s')—Af„(s) ~0(r„/r„)=0(l),
3

which is bounded. Hence,

f ds' A (s,s')f„(s')—Af„(s) ~~ f„(s)~(

~ [0(1)+0 (1)+0(1))/0(lnr„') =0(—1/1nr„) ~0,
so the spectrum of Eq. (4.6) is continuous is the range ~A,

~
( [ I —2P/ ~m.
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