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Effective size of scattering centers in a two-dimensional electron gas
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The screening behavior of a two-dimensional electron gas (2DEG) subjected to a periodic lattice of
scattering centers or "antidots" is investigated. We have obtained an exact solution for the nonlinear
screening problem of a 2DEG containing a single antidot and we have worked out a Monte Carlo simu-
lation method to solve the case of a periodic antidot lattice. We also provide general theoretical predic-
tions concerning the depletion phenomenon in this system. The shrinkage of the effective antidot size
with increasing carrier density of decreasing periodicity of the lattice has been calculated and compared
with experimental results.

I. INTRODUCTION

The transport of electrons in a periodic lattice of
scattering centers has been the focus of recent experimen-
tal and theoretical investigations. ' The scattering
centers we consider hereafter are called "antidots" be-
cause they locally create a repulsive potential acting on
the two-dimensional electron gas (2DEG). Interesting
phenomena have been observed, such as the inhomo-
geneity of the electron density between the antidots, ' and
the magnetoresistance oscillations caused by the anti-
dots. ' The effective size of the antidots as they interact
with the electrons is crucial in all these experiments.
Here we present a calculation that evaluates the antidot
potential as screened by the electrons. Antidots have
been fabricated in several ways, e.g. , using Ga-focused
ion-beam implantation, ' a field effect via a spatially
modulated gate, and etching. In this paper we present
experimental results on the Ga-focused ion-beam implan-
tation' method and compare them with the theory. The
main features should also be applicable to other experi-
ments. Using the theory of nonlinear screening
developed by one of us ' a self-consistent charge distri-
bution has been found to determine the antidot size as a
function of carrier density N, in the two-dimensional
electron gas (2DEG) and eventually antidot lattice
periodicity. In agreement with the experiments, the cal-
culation predicts a shrinkage of the size of the antidots as
a function of increasing carrier density N, of the 2DEG,
as well as for decreasing periodicity p of the antidot lat-
tice. In addition, we study experimentally the carrier
density N, of the 2DEG as a function of the front gate
voltage V . We observe that the slope of the N, versus
Vg function is independent of the periodicity p and that
the threshold gate voltage V,h

= V (N, =0) increases first
for large values of p-300 —500 nm (p decreasing from

500 to 300 nm), and saturates for small values of p (200
nm. These findings are qualitatively explained by the cal-
culation emphasizing again the effect of the physical size
of the antidots.

The experimental system we consider here is described
in detail in Ref. 1. A GaAs-A1, Ga, ,As heterostructure
is implanted with a Ga+ focused ion beam. The beam di-
ameter can be measured accurately at high beam currents
and is 80 nm. Transport through a square antidot 1attice
is possible at periodicities down to p =110nm, which in-
dicates that the diameter of the damaged area in the vi-
cinity of the 2DEG cannot be larger than 110 nm, but
indeed has to be smaller to permit electron transport.
Therefore we conclude that the damaged area is of the
size of the beam diameter, =80 nm. The implanted pat-
tern is periodic in the 2DEG plane and forms the array of
scattering centers. A pronounced negative magnetoresis-
tance is observed for low magnetic fields 8 &1 T. The
analysis as described in detail in Ref. 1, allows for a mea-
surement of the antidot size. In Fig. 1 the depletion radii
as a function of carrier density for a range of periodicities
are compared with the theoretical results which will be
developed further; the carrier density was changed via a
front gate voltage. Two trends in the data are noticed:
the size of the antidots shrinks for increasing N„aswell
as for decreasing p. To understand this behavior we con-
sidered the following model. Electrons from the 2DEG
are trapped after implantation in the heavily damaged re-
gions. In the experiment, this is indicated by the consid-
erable decrease of N, after implantation. This decrease
depends on the number of antidots per unit area. From
the results of large periodicities p =500 nm, we find that
about 100 electrons are trapped per antidot, which corre-
sponds to a trap density of X= 10' cm in the damaged
area. The creation of these strongly repulsive zones
leads to a depleted region in the vicinity of the implanted

9082 1992 The American Physical Society



45 EFFECTIVE SIZE OF SCATTERING CENTERS IN A TWO-. . . 9083

250
E
C

~ 200
N

150-

C
100-0

CLI4 50-

0

\
'~

a ~

p ~200nm, experiments
paiOOnm, X~1.5x10 cm

p~300nm, X~7.3x10 cm

p~200nm, Xal.Ox10 cm

T' ~ 0

~ p~500nm, ex per lmentl

p~300nm, experlmenti

oo oo ~o ~ e

I-. -.4 aP'
e

o o
o ~o ~ooo ooe oooo oooo

Surface

N t' ~S
~ ~ o

~ ~ oo ~ o
~ ~ ~ ~ ~

~ ~ o ~

~ o\ e
o o o

o ~~oo o ooo o

I

ooo ~ oo eoe
o

~ ~ ~ ~ ~ ~ ~ ~

depletion 1irni t

depleted zone

z 300 nm

1 2 3 4 5 6 7 8

N (10 cm )

FIG. 1. Comparison of the experimental data showing the
dependence of the depletion radius vs carrier density for
different periodicities with the theoretical curves. The general
behavior is the same as those which have been pointed out in

Ref. 1. The plain curves correspond to the theoretical calcula-
tions. They represent the depletion radius as a function of the
transport carrier density X,".
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area: this is the lateral depletion layer. The carrier den-
sity X, is deduced from the periodicity of the
Shubnikov —de Haas oscillations at high magnetic fields
and consequently represents the density of mobile car-
riers between the antidots. The estimation of X for sam-
ples with small values of p becomes more complicated,
since the implanted area becomes comparable in size to
the nonimplanted area.

By exciting carriers via the persistent photoconductivi-
ty effect we achieve, for a given photon dose, the same in-

crease in N, for the sample with antidots compared to the
nonimplanted sample. This suggests that the amount of
ionized Si dopants is unchanged by the implantation pro-
cess. Our simplified model for these structures is as indi-
cated in Fig. 2. Figure 2(a) presents the top view of the
sample for large values of p where the depletion regions
of the antidots do not touch each other. The central cir-
cle with radius a indicates the size of the implanted re-
gion, i.e., the beam size. The circle with radius rd

represents the limit of the depletion layer. The remaining
area corresponds to the 2DEG. Figure 2(b) represents
the cross-section view. The crosses indicate the positive
charges N+ of the Si donors, which are not affected by
the implantation process and, therefore, are uniformly
distributed. Inside the implanted columns the concentra-
tion of trapped electrons per area is denoted by X. Out-
side the depleted region, the electron density is nonzero
but depends on the distance from the antidot. To make
Fig. 2(b) clear, we have located the donor plane at its real
position, 15 nm above the plane z =0 of the 2DEG. This
distance is very small compared to the large antidot lat-
tice periodicities (200 nm (p (500 nm) and the distance
of the 2DEG from the surface (300 nm). Therefore, Fig.
2 reflects very well the situation for large antidot lattice

FIG. 2. Top and side views of the electrostatic system which
approximates an antidot in a 2DEG structure.

periodicities and, in particular, for an infinite periodicity.
We consider first a single antidot reflecting the situation
of large periodicities.

The Fermi wavelength A,F [for typical carrier densities

E, = (2—4) X 10" cm, A,z =39—50 nm] and the
Thomas-Fermi screening length A,o (A,0=5 nm) are much
smaller than p. In this case we can use the theory of non-
linear screening. '

In Sec. II, we have obtained an analytical solution for
the case of a single antidot. In Sec. III, we describe the
results of a computer simulation applied to an antidot lat-
tice. The comparison with the experimental data is dis-
cussed in Sec. IV.

II. ANALYTICAL SOLUTION FOR A SINGLE ANTIDOT

The approximation of a smooth external potential re-
quires that the plane of the 2DEG be partitioned into two
kinds of regions. '

(a) Metallic regions, where the electrostatic potential is
constant and the electron density is nonzero (the theory
of nonlinear screening assumes that the density of states
of the 2DEG is infinite and therefore neglects the poten-
tial variations in the regions that are occupied by elec-
trons).

(b) Dielectric regions where the electron density is zero
(the large potential variations must occur in these regions
and, moreover, the potential there must be repulsive)

In the case of a single antidot, the dielectric region
(depleted zone) is the disk of radius r„around the original
implanted region (see Fig. 2). The depletion radius rd
and the electron density in the metallic region must be
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the solution of the following nonlinear electrostatic prob-
lem. We must find the electrostatic potential ed(r, z) that
obeys the Laplace equation in the three-dimensional
space and the following boundary conditions in the plane
of the 2DEG (z =0):

(
—e)4(r, O) =p

at r & rd, where p is the chemical potential, and e the ab-
solute value of the electron charge.

2ef ((}} 2cf (rd )o(r)= + 2m.
r +r2 rz o Qr2-tz dtr rd

at r & rd . (9)

Equation (8) leads to the complete determination of f (t)
After imposing f (0)=0 [f(0)%0 would induce a diver-
gence in the potential at r =0; see the Appendix], we get
the solution

Bz 0+ az

ext( r)
E,

(2)

df 1 d t rcr'"'(r)
dt n c dt . o Qt2 —„2

and, therefore, with f (0)=0, one gets

(10)

at r & rd, where o'"'(r) is the external charge density at
r & rd and c the dielectric constant. )

1 f t rcr'"'(r)
d

0 +tz r2—

( —e)4(r, O) & p (3)
We find f (t) at t &rd at t &a

e(X N+ )t—(t)=— (12)
at r &rd. In the case of a single antidot in a system of
infinite extension, the electrostatic potential is chosen to
vanish at an infinite distance from the antidot center. In
this first section, p=O. We have kept it in the text to be
consistent with Sec. II.

In the present case, o'"'( r) = —e ( X N+ )—at r & a with
X)N+, so that the electrons are repulsed from the disk
of radius a and o'"'(r) =eN+ at a & r & rd, where X is the
trap density, N+ the positive background density, rd the
depletion radius, and a the radius of the damaged area.
For a single antidot, the electroneutrality condition im-
plies that N+ also represents the electron density at very
large distance from the antidot.

It has been shown that this problem has a unique solu-
tion. We have found it in the form'

at a &t &rd

eX+t a e(X —N+ )—t-
f(t)= (13)

2ef (rd) 2
cr(r) = — +—eX sin

r r2 77

1/2
rd a

r —a2 2

——e (X N+ ) sin—2 ~ —] d

7T r
(14)

The total charge density (electrons plus positive back-
ground) at r & rd is given by cr(r)=cr"(r)+eN+ [where
cr"(r) is the electron density],

4(r, z)= f dk A (k)JO(kr)e
0

0 (4)
taking into account that

f(rd)=
eX'err rd —a —e(X N+ )rd—

(15)
where Jo is the zeroth-order Bessel function of the first
kind. We write A (k) in the form

A (k)= f f (t) sin(kt)dt
0

so that condition (1) is satisfied:

Ct(r, O)++= f f(t)dt f Jo(kr)sin(kt)dk =0,
e o 0

since"

f Jo(kr) sin(kt)dk =0 at t & r . (7)

Condition (2) leads to the integral equation which defines

f (t); indeed, after integrating A (k) by parts in the form

dfk A (k}=f(0) f (rd) cos(krd)—+f dt cos(kt},
o dt

we obtain the total density of charge for all r:

2ef (0) r dt do'"'(r)= " +2e at r &rd,
r r 2 tz—

then the asymptotic behavior of o(r) at r »rd takes the
form

2eXa Qr&~ a-
cr(r) =

31Tr

tref (rd )rd1—
Xa /r —a

(at r » rd ). On the other hand, when r ~rd,
o(r)= —[2'(rd)l+r rd]; if f—(rd) &0, then o(r}
goes to +DO when r~rd, however, no other positive
charges but the positive background are present in the
system; therefore, the possible singularity at r =rd must
come from the electron distribution. That means

f (rd) &0.
Condition (3) leads to the determination of the unique

value of rd. Indeed, at r & rd, the electrostatic potential
is given by

@(r,O)+ += f f (t)dt f Jo(kr} sin(kt}dk
e o 0

(17)
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so, according to condition (3), this must be negative at
l (rd.

Suppose f(rd))0. Then, in the vicinity of rd, at
r &rd,

2.5

2

d4(r, 0)+p/e =f (rd )arccosh

since N, =N+ in the case of a single antidot.
The total charge Q in the nondepleted region is derived

from the following expression:

Q =f a(r)2nr dr

=2m r . —eX sin
00 2 ~

P

I /2
r ad

r a2 2

——e(X—N+ ) sin
2 ~ —] d

7T T
(19)

is equal to elm. a —eN+~rd, which demonstrates the
electroneutrality of this problem.

At very large r, the electronic density cr"(r) is not per-
turbed:

cr"(r) = eN, = eN+ —. —

For the nonimplanted sample with X=N, =N+ this
leads to rd =a, i.e., no depletion length as it should be. In
the implanted sample we have X »N+ and, therefore,

a
rd = (X/N+ )'

2

At this point, we would like to explain that important
result. If we assume that the electron density is uniform
in the nondepleted region and equal to —N+, then the
electroneutrality equation provides rd =a(X/N+ )'~ .
The factor &2 originates from the nonuniformity of the
electron density in the nondepleted region. Figure 3
shows the electron density vs the radial coordinate r pro-
vided by Eq. (13). At r =a(X/N+ )'~, the electron den-
sity is 70% of its asymptotic value, whereas the error in d
is about 40% if we assume re =a (X/N+ )' instead of

a—(&/N, )'" .v'2

Another interesting result is the dependence of the poten-

This vanishes when r ~rd, but remains positive at r & rd,
with f (rd)) 0. This shows that the potential energy is
smaller than the chemical potential p in the vicinity of rd,
which clearly contradicts the third condition. Thus

f (rd )=0 is the equation that determines rd. It is easy to
check that, if such a condition is implemented, then
f(t)(0 at t (rd and thus condition (3) is satisfied.
Therefore, the correct expression for d is

1/2
1

(2—N+/X)'"
1/2

N,
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FIG. 3. Electron-density variation for a single antidot as a
function of the distance from the antidot center. This plot is ob-
tained for X=10' cm and 1V+ =2.5X10" cm

tial barrier on the electron density. Formula (6) gives a
means of calculating the electrostatic potential at r &rd.
Its expression is given in the Appendix. It follows that
the drop of the electrostatic potential between the im-
planted cylinder and the nondepleted region is simply

e Xa
(20)

KC

a
rd(N+ )

III. NUMERICAL SOLUTION
FOR AN ANTIDOT LATTICE

To study the periodicity effect of this system, we have
worked out a program and adapted it to a periodic lattice
of repulsive centers, or antidots. The theoretical basis for
this numerical solution has been explained previously in
the study of a single antidot. It solves this problem on a
unit cell, i.e., a square grid of length p, of N XN sites, as-
suming periodic-boundary conditions ' the initial
square is periodically repeated along each coordinate axis
so that all the calculated functions in this program (in
particular the electron density and the electrostatic po-
tential) are invariant under any translation of length p;
thus we have checked that the solution of the problem in-
volving four antidots in a square cell of length 2p is the
same as the one involving one antidot in a square cell of
length p. Figure 4 outlines the procedure. The computa-
tion starts with the case of a single disk of radius a and

This clearly shows that the more the electron density in-
creases, the more the potential created by the ionized
traps is screened.

For a rough comparison between experiment and
theory, we choose p =512 nm and N, =2.5 X 10" cm
The experiment reveals rd = 140 nm (see Fig 1.
and Ref. 1). The theory for an infinite periodicity
with X= 10' crn —which has been evaluated
experimentally —gives rd =180 nm in reasonable agree-
ment with the experiment. Also, the theory predicts a
decrease of the depletion radius with increasing N, as ob-
served in the experiment.
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FIG. 4. Basis of the numerical solution.

density X, in the center of a square, with the positive
background associated with the initial charge. We im-

pose a given value of the chemical potential p at the very
beginning and the program finds the density of electrons
that obeys the conditions required by the theory. In such
a way, we simulate the change of potential of the gate
electrode when the distance between the surface and the
2DEG is much larger than the depletion region size. The
potential valleys defined by this value of p are progres-
sively filled with electrons until their potential energy
reaches that value. For every iteration, we impose the
charge neutrality onto the system. In other words, when
a number 5n of electrons is added to the system, the
amount 5n is uniformly redistributed to the positive
background all over the unit square. The iteration stops
when the electrostatic energy of the 2DEG reaches the
imposed value p. Therefore, for each value of p we get a
unique corresponding carrier density N, and a unique de-
pletion zone.

The computation first indicates the existence of
different regimes in this system, for all periodicities p and
all trap densities X (see Fig. 5).

(1) A regime where the unit ce11 is partially filled with
electrons. In this regime, the electrons are located in
pockets around the corners. At zero temperature, the
system is therefore a complete insulator in this regime
[see Fig. 5(a)].
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FIG. 5. The following plots represent the electron density plotted vs the spatial coordinates and obtained by the computer simula-
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antidots increases or, in other words, the depletion radius shrinks. Isoelectron density line 1 is the depletion limit at d =125 nm.
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tron density is close to its maximum va ue:1:4X 10" . At isoelectron density line 9, the electron density takes approximately thecm
value of the average electron density.
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(2) Above a certain critical average electron density N;,
there is a regime where a disk of radius r& (the depletion
length) is depleted of electrons and where the existence of
a channel allows the transport of electrons. This is the
conduction regime [see Fig. 5(b)].

In the insulator regime, the depletion diameter 2rd is
larger than the periodicity p, and the electron density be-
tween two antidots is zero. Therefore, at zero tempera-
ture, no transport is allowed and the system is an insula-
tor. In the conduction regime, the electron density can
either be measured from the Shubnikov —de Haas oscilla-
tions or from the Hall effect. However, the electron den-

sity in this system is inhomogeneous. For a given mag-
netic field, the filling factor of the Landau levels is also
spatially dependent. The region of the maximum filling
factor is centered at the corners of the unit cells since the
electron density is always maximum at this point (see Fig.
5). The boundaries of this region (edge trajectories) can
be either closed or opened. ' The corresponding Landau
level contributes to the transport only if they are open.
This occurs when that level starts being filled with elec-
trons at the saddle point which is the point in between
two neighboring antidots. Thus, the most important den-
sity for the transport is the density in between two neigh-
boring antidots, since it is the passing point for the
current. We refer to the density at this point as the
"transport" density N,". This density is responsible for
the period of the oscillations of the transport coefficients.
It equals zero when the average electron density is N,'
and the positive background density reaches its threshold
value, N'+,' this is the transition from the insulator regime
to the conductor regime. For Landau levels of larger in-
dices, one can expect that the quantization is not very im-
portant for the screening properties. Otherwise, it must
be taken into account.

Strictly speaking, N,"should not be linear with the gate
voltage, and the oscillations should not be periodic with
the gate voltage, either. However, we show in Sec. IV
that in our experiments, the linearity exists. We discuss
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FIG. 7. Depletion radius vs the transport density: numerical
solution; the behavior is the same as that of Fig. 6, since increas-
ing the positive charge background implies increasing the elec-
tron density and therefore reducing the depletion radius.

hereafter the variations of different parameters in this
system at a constant trap density X=10' cm

In Fig. 6, the variations of the depletion radius vs the
positive background N+ are represented for three period-
icities p. It shows that the depletion radius shrinks with
increasing N+ (therefore, with increasing carrier densi-
ties) and that it does not depend on the antidot lattice
periodicity for large values of N+. Moreover, the analyt-
ical expression obtained for an infinite periodicity, which
has to be the asymptotic value, is valid in a large range.
A dependence on the periodicity is observed at low N+,
since the maximum value of the depletion radius in the
conduction regime is half the periodicity.

Figure 7 compares the variations of the depletion ra-
dius vs the transport density. At very large carrier densi-
ties the system tends to be uniform while the depletion
radius shrinks; it is clear that, in both cases (Figs. 6 and
7) the asymptotic behavior of the depletion radius must
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FIG. 6. Depletion radius vs applied positive background: nu-
merical solution; the depletion radius shrinks with increasing
N+ (and, therefore, with increasing average electron density).
The analytical solution is valid in a large range of densities.
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FIG. 8. Transport density N,"as a function of positive back-
ground density: numerical solution; we observe an increasing
shift of the threshold background density (at N,"=0) with de-
creasing periodicities. The simulation has been achieved for
X=1X10' cm . For intermediate N+, the regime is quasilin-
ear before all the curves take an identical asymptotic behavior.
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not depend on the periodicity.
Finally, we present in Fig. 8 the variations of the trans-

port density vs the positive background. At large posi-
tive background densities, we observe a similar behavior
for the studied periodicities. In this range of densities,
the depletion radius tends to the value of the beam diam-
eter, a =40 nm and, therefore, the system behaves like a
regular condensor.

The shift in the threshold positive background density
N'+ at N,"=0 varies approximately as 1/p . In the fo1-

lowing section, this type of dependence will be explained
in more detail.

IV. COMPARISON %ITH EXPERIMENTAL RESULTS

Figure 9 shows the dependence of the carrier density,
measured from the periodicity of the Shubnikov-de Haas
oscillations, vs the applied gate voltage for different
periodicities p of the antidot lattice. Three striking ob-
servations need to be explained: (a} the apparent parallel-
ism of those curves in this range of carrier densities; (b)
the shift of the threshold gate voltage [Vz(X, =0)] with
decreasing periodicities; (c) the saturation of the thresh-
old voltage at periodicities smaller than p =200 nm.

Behaviors (a) and (b) are predicted in Sec. III (see Fig.
8). Indeed, we have underlined the increasing shift of the
threshold positive background with decreasing periodici-
ties. This shift varies approximately as I /p and should
saturate when the antidot lattice periodicity gets closer to
the beam diameter (80 nm). However, in Fig. 9, the satu-
ration occurs when the periodicity decreases from

p =200 nm. This clearly shows that the ionized trap den-

sity does depend on the periodicity, at least for small
periodicities. But, as mentioned earlier, it is more
difticult to estimate X for smaller periodicities because
the implanted area becomes the size of the nonimplanted
area. In fact, the charge-neutrality equation shows that

7.00

X(p) has to be proportional to p in order to account for
the observed saturation at p (200 nm.

A simple explanation of this parabolic dependence is
given in the following. When the antidot lattice periodi-
city is reduced in a given large area, the number of creat-
ed defects increases. Therefore, if we assume that the
average number of electrons trapped after implantation is
the same in this large area for p (200 nm, then the aver-

age ionized trap density per unit cell must decrease with
the periodicity and is given by X(p) =X(200 nm}(p/200)
(with p in nm).

On the other hand, at very large antidot lattice periodi-
cities, the charged trap density must tend to its asymptot-
ic value when p is infinite. To determine the intermediate
experimental values of X(p) at p =500 nm, p =300 nm,
and p =200 nm, we have adjusted them from Figs. 8 and
9 in the following way. Suppose that the ionized donor
density is p independent, as said earlier; we are able to
determine X(p) from the experimental data. Indeed, at a
given gate voltage for different periodicities p, the
difference of measured carrier densities hN,"can be relat-
ed to the variation of ionized trap densities b, [X(p)/p ]
by the following relation derived from the charge-
neutrality equation:

Ntr ~g 2 X( ) (21)

which is valid at large positive background densities,
when N," is close to the average electron density. This
clearly proves that X decreases with p according to Fig.
9.

Finally, if we know, for example, X(500 nm), we can
afterwards deduce X(300 nm) and X(200 nm) using Fig. 9
and Eq. (21) (at large electron densities). At p ) 500 nm,
X(p) must saturate to its value for an infinite periodicity.
To determine X(500 nm), we fit the experimental curve of
Fig. 1 and we find X(500 nm)=1. 5X10' cm

Summarized in Fig. 10 is the dependence of X on the
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FIG. 9. Experimental data showing the carrier density mea-

sured with the periodicity of the Shubnikov —de Haas oscilla-
tions as a function of the applied gate voltage. The parallelism
of those curves, the shift of the threshold gate voltage at low
carrier densities increasing with decreasing periodicities, and
the saturation at periodicities & 200 nm are noted.

FIG. 10. Periodicity dependence of the ionized trap density

which has been deduced from Figs. 8 and 9. We note the para-
bolic behavior (plain curve) for p & 200 nm, which accounts for
the observed saturation. For p )500 nm, the trap density

should progressively saturate to the value X (p = ao).
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periodicity p. We do not know quantitatively the
ionized-donor concentration; therefore, we can only show
in Fig. 11 the dependence of the transport density on the
positive background, which is provided by the numerical
calculation. It reproduces the periodicity dependence
shift in the threshold positive background when N," de-
creases, with (a) a I/p -type dependence at large periodi-
cities since the trap density does not depend strongly on
p, and (b) a saturation in the shift at p (200 nm. Finally,
Fig. 11 points out the linear behavior of N,"vs N+ in the
range of applied positive background densities
2X10" cm —7X10"cm, the slope of those curves
being slightly dependent on the periodicity.

Finally, we have checked that the deduced values of
X(p) for p =300 and 200 nm from Fig. 9 could enable us
to reproduce the experimental data of Fig. 1 showing the
depletion radius as a function of the transport density.
Actually, the depletion effect can be directly pointed out
from transport experiments, ' and it has been shown that
features in the longitudinal magnetoresistance as a func-
tion of the magnetic field could lead to its evaluation (see
Ref. 1 for its experimental determination). In Fig. 1, the
theoretical dependence of the depletion radius on the
transport density in the channel is compared to the ex-
perimental measurements for the periodicities 500, 300,
and 200 nm. The values of X(p) are indicated in the
legend frame. We notice again that an increase of the
gate voltage enhances the average carrier density (and,
therefore, the transport density) and reduces the effective
antidot size. Finally, the good agreement between experi-
ment and theory reinforces the idea that, in this very in-
homogeneous system, transport properties are deter-
mined by the geometrical place where the current is the
most strongly subjected to the antidot repulsion.

In conclusion, we have shown that the electron density
in an antidot lattice is quite inhomogeneous in certain
cases, ' at least in the vicinity of the depleted zone. In
this regard, we do not expect the electron gas to behave
like a free 2DEG. In particular, we think that the elec-
tron concentration in between two antidots has a crucial
role in the transport properties of this system. However,
at large carrier densities, when the depleted zone is ex-
pected to be considerably reduced by the screening effect,
we think that the transport properties must resemble
those of an homogeneous 2DEG.

We have compared experimentally determined values
of the antidot size with the results of a self-consistent
electrostatic calculation. The agreement is satisfactory.
We have pointed out that this effective size can be adjust-
ed via an applied gate voltage (or using photons, as in
Ref. 1) that modifies the positive background and, there-
fore, the average electron density. At small periodicities,

C7

5a

4i

3 ~

4 5

M(10 em }

FIG. 11. Variation of the transport density vs the positive
background density provided by the numerical calculation.
Knowing the ionized donor density, we could fit Fig. 9 (assum-

ing an unchanged capacitance).

the physical size of the antidot is not determined mainly
by depletion effects but by the present states of the fabri-
cation technology, i.e., the focused-ion-beam diameter.
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APPENDIX

At r & r&, the electrostatic potential is given by

@(r,o)++=f f(t)dt f Jo(kr)sin(kt)dk
e 0 0

@(r,o)+~= E sin
e &E, rg

at a &r &r&,

Qt2 „2
(see Ref. 11). In particular,

c(o,o)+&=f 'f '
dt

e o t

which shows that f (0) must be equal to zero for the po-
tential at r =0 to be finite. Thus, at r & a

r a r+E sin —E
rg r a

2
C'(r 0)+ =

~ 1 —
2

E — Fsin-eXr a a .
&

r a
e ~E r r rg r

where E (x,y) is the elliptic integral of the second kind, E(x) is the complete elliptic integral of the second kind, F(x,y)
is the elliptic integral of the first kind, and K (x) is the complete elliptic integral of the first kind.
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