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The electron states are investigated for a resonant-tunneling diode in which the potential well of an ac-

cumulation layer prevents electrons from tunneling coherently from source to drain at resonance ener-

gies. They may be specified as extended states, incident from the drain {anode) side and reflected back to
it, or as localized discrete "quasilevel" states, almost trapped in the overall barrier system and decaying

to the continuum on the anode side. The relation between these two representations is investigated.

Quasilevels that are at energies not near a barrier resonance energy in general have long escape (decay)

times, while a quasilevel in a certain energy range around a barrier resonance energy {for the range of ap-

plied bias that places it there) has an escape time of the order of the Breit-signer response time of the

resonant structure by itself. This energy range is proportional to the square root of, and in practice will

be large compared with, the resonance energy width of the "stand alone" resonant structure. Resonant
conduction may be expected to occur, for the corresponding bias range, by scattering transitions from

the cathode source to the quasilevel followed by tunneling escape from the latter to the anode side.

I. INTRODUCTION

In electronic diode conduction by a resonant-tunneling
structure, ' the normal situation has the resonant ener-

gy lying within the energy range of occupied states of the
"electron-sea" continuum of the cathode (emitter) side.
Direct coherent tunneling from the cathode source
through the resonant level to the anode side is then possi-
ble. One can, however, have diode configurations where
the resonant level is within the energy range of a cathode
accumulation layer, especially where there is a nominally
undoped spacer layer. Then electrons of the cathode
continuum may reach a resonant level, and thence the
anode states, via scattering processes at the site of the ac-
cumulation layer.

Figure 1 illustrates that one can expect to have levels
associated with the quantization of the accumulation lay-
er by itself as well as levels associated with a double-
barrier (or other) resonant structure. To investigate
these, it is necessary to analyze the quantum states be-
longing to the accumulation-layer potential and the reso-
nant structure in combination. These quantum states

may be considered as stationary states of the anode con-
tinuum, representing reflection on the anode side of the
overall diode structure, or else as quasilevels localized
within this structure but with a lifetime ~ for escape into
the anode continuum.

This paper presents a general analytical treatment of
the electron states, in particular the latter quasilevels. It
is shown that for the levels of the accumulation-layer
type (corresponding to the upper dotted line in the figure)
the escape time v normally will be long. Consequently,
the electrons can reach a resonance-associated level by
scattering processes, before tunneling to the anode side.
(Because of the lateral two-dimensional wave-vector com-
ponent for electron states in a three-dimensional par-
allel-plane structure, it is possible for elastic disorder-
induced scattering to contribute to these processes, as
well as the inelastic phonon-induced scattering. } The es-

cape time for resonance-associated quasilevels, on the
other hand, will be shown to be of the same order of mag-
nitude as the isolated ("stand alone" ) resonant structure's
response time, -filbE where hE is the resonance half
width. Where an appreciable fraction F of the norm for
these electron states belongs to the accumulation-layer
part of the structure, scattering rates should be compara-
ble to those for the usual "two-dimensional electron-gas"
subbands of a completely confining accumulation layer
plus conventional barrier.

II. GENERAL CONSIDERATIONS

R

FIG. 1. Potential profile for a diode with an accumulation
layer and a double barrier. The upper dotted line indicates an
electron level associated with the former, away from resonance
energies of the latter, and the lower dotted line a level associat-
ed with a barrier resonance.

It is sufhcient here to describe the electron states in
one-dimensional terms, with wave functions P(x). For a
given energy E, there are two Bloch functions P+(x) and

(x), for propagation to right and to left in the anode
continuum. In terms of wave vector k (E), we have a ve-

locity U
=dE/d(Rk), and w—e write P in terms of co-

efficients (a, b):
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g=v '~ (aP++bP ) (2.1) relations between the coefficients in (2.1):

with the P+ normalized in unit length. In the present
case there is no transmitted wave, and so the reflection
coefficient ~a lb~ is equal to 1. Then

a~ =PaL, + UbL,

b~ = VaL+QbL,
(3.1)

a Ib—:A,(E)=exp(i 0) (2.2)

with 8 real for real E.
For the decaying quasilevel there is no inward wave, so

we have b=0 and a+0, and hence a pole of A,(E) at a
comp/ex E value. Near a quasilevel at energy Eo, we
may assume the form

E —Eo —i b.E
A,(E)= —

A,(EO) E ED+i bE (2.3)

r=fi /2b, E. (2.4)

The formal refiection delay time is t„=Kid(argA, )/dE
=Kid 8/dE for real E, and so from (2.3) and (2.4) we have

t„(E)=4', (2.5)

[Eo and b,E real; these are not the same quantities as for
Eq. (3.12) onward]. The pole is then at E=EO —ihE.
Since ~f~ varies with time t as exp[i(E* E)tlfi—], the
decay time is

detM =—PQ —UV = 1 (3.2)

for all E, and Q =P' and V = U' for real E. The stand-
alone transmission probability for this component of the
barrier system is

T(E)= 1/PQ

and, by (3.2), the refiection probability is then

R =1—T=UV/PQ .

(3.3)

(3.4)

The extended states are given by real E, with
IaL, /bL, I

=
la+ Ibtt ~

= l. Accordingly we set

at /bL =exp[2iy(E)] (3.5)

(where the phase y will, when convenient, be taken to be
given by f k dx on the L side) and

connecting the accumulation-layer side of the resonant
barrier (L=left) to its anode side (R =right). This matrix
satisfies

where

A(E) =1/[1+[(E—E, )IaE]']
U/P =R' exp(irt) .

(2.6) Then

(3.6)

is the standard Lorentzian, with half width hE.
Finally, we need to investigate the normalization,

within the overall reflecting structure, for the extended
(real E) states. Let JV—=f ~f~ dx be the norm, with the
integral extending over this (accumulation layer plus res-
onant barrier) structure. For an incident wave normal-
ized in unit length ( ~a~ = v

'~
) let JV= 1, defining the "nor-

malization length" l(E). Then for the state normalized
over a macroscopic length L (the anode space) we will
have IV= l /2L. The density of states with that normali-
zation is p(E)=L/mdiv. To define a single quasibound
state in this situation we should have fJVpdE=1, and
therefore f (l/u)dE =2M. This is satisfied by

l/u =4'(E)=t„. (2.7)

Thus l/v, which is usually called the "dwell time" in the
context of resonant transmission, may be equated to the
formal reflection delay time. That is the intuitive result,
although in resonance conditions the significance of a
wave-packet transit time is questionable. The result (2.7)
is analogous to what has been obtained for resonant
transmission.

Iax IaL, I
=( I/T) ~1+R ' exp( iQ) ~—

=(1/T)[(1—R '
) +4R 'i cos Q/2], (3.7)

where Q —=2g —g.
At E values far from a barrier resonance, we will gen-

erally have T &&1 and varying slowly with E. Then, by
(3.7), to a sufficient approximation ~aL /at, ~

versus E has
a sharp maximum equal to TI(1—R '~

) =4/T,
at a value E =Eo satisfying Q(E) =(2n +1)n for n an in-

teger, and a Lorentzian E dependence (2.6) with

b,E =(T/2) ~dE/dQ~ (3.8)

z=t /T, (3.9)

(these quantities being evaluated at E =ED). A physical
interpretation of (3.8) comes from taking the path contri-
bution to dgldE as (d /dE) f k dx =(1/A') f (1/u)dx and
hence, on adding a reflection delay time from the g term
(the refiection phase being m. —g), identifying A~dQ/dE~
as t, the "path time" for an itinerant electron to traverse
the accumulation layer once in each direction without es-
caping. Then from (2.4) and (3.8)

III. ELECTRON STATES OF THE SYSTEM

The method of this paper is to partition the reflecting
structure into its two components, and combine them in
terms of the parameters characterizing the resonant part.
For the accumulation-layer part, it is expedient to use the
representation (2.1) in some WKB sense (see below). For
the resonant barrier part, its "stand alone" properties are
given by the 2 X2 transmission matrix M(E) of the linear

in agreement with the heuristic expectation that 1/v.
should be equal to T times the "attempt frequency" 1/t~.
The factor T (which away from a barrier resonance will
be = TL Tz, where TL and Tz are the separate transmis-
sion probabilities of the pair of barriers, in the case of a
double barrier) should make the escape time long com-
pared to t =A/E. For the normalization length, we
should evidently multiply the maximum value, 4/T, of
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laL /az I by t v [that is, trav/2 for each of IaL I and
IbI I

—and so without the j factor of (3.22) which ap-
plies in that case], obtaining 1=4rv at resonance, in
agreement with (2.7).

We may also analyze the quasilevels in terms of (3.1),
still for E far from a barrier resonance. The condition for
b~ =0 is

al lbl = —Q/V .

Together with (3.5) this gives

R '~ +exp( i Q—) =0 . (3.11)

Writing Q =Q'+i Q" (real and imaginary parts), we have
that (3.11) is satisfied by Q'=(2n+1)n and, to sufficient
approximation for T((1, by Q"= —T/2 (neglecting
here the variation of R due to Q" ). Taking Q"
=E"(dQldE), this result agrees with the value of r ac-
cording to (2.4) and (3.8).

To analyze a quasilevel associated with a barrier reso-
nance, we expand the right-hand side of (3.10) about the
"stand alone" resonance energy, in terms of z =(E-

Ep)/EE—, where Ep and hE ivi11 hereafter refer to the
resonant barrier system —such that its "stand alone"
transmission probability is T(E)= TpA(E) where A is
given by (2.6) and the maximum Tp=T(Ep) is given by
(3.14). (This b,E could be —I meV. ) It can be shown
that, near this Ep,

Q =Qp(1 iz), V—= Vp(1 izcrR p
'~—), (3.12)

where Qp —=Q(Ep), etc., where Rp = 1 —Tp is the value of
R at E =Ep, and where, in terms of the leftward and
rightward decay currents IL,I„ for the quasilevel of the
"stand alone" resonant system, o =+1 if Iz &II and
= —1 if It ) Itt . (We expect the former case, because of
the applied bias. ) We make use of the formulas

1 +0 R p =2' /(It +I' ):2&ii
(3.13)

1 —OR@ =2It /(It +Ig )=27'I

and

= —x [1—exp( —4ay)] . (3.18)

Since a « 1, an appropriate approximation is to drop the
exp( —

4ay ) on the left and replace the second factor on
the right by 4ay. Then, to sufficient approximation,

HLER

yL +ax
(3.19)

Thus, when x is small compared to yl /a the decay rate
is y~ times the "stand alone" resonant-state value
26E/A, and as x increases the rate falls off when
(E' Ep) —=yL hE/(dy/dE).

Scattering to this quasilevel will depend on the norm
fraction

F =JV„,/JV, (3.20)

where JV„, is the accumulation-layer part of the norm
JV= f lgl dx for the overall barrier structure. A decay
rate of 1/~ corresponds to

for the wave function on the anode side. This compares
with JV„,=j„,lgl dx=('(laL

I +Ibl I )f„,(1/v)dx,
where g is a factor from the degree of nonorthogonality
of the p+ and p terms of f in the integral JV„,. The g
factor depends on the potential profile and v (E,x), and
evidently cannot be evaluated in general terms. Howev-
er, consideration of the "square-well" case indicates that
it oscillates about 1 over a limited range, and so does not
change the order of magnitude of F. We have

Ep} as Qp —2nm passes through zero. This is the range of
the long-lived resonant quasilevels. They are thus "an-
tilevels" relative to the levels away from this resonance
energy range, which are at Qp=(2n + 1)m.. It is useful to
treat y as a function of x, rather than of Qp, as indepen-
dent variable. Taking the modulus of each side of (3.17),
we have

(1+y) —(crRp~ +y) exp( —4ay)

Tp =4ILItt /(IL +Inst ) =47'I 7'g (3.14)
JV„,= g'(

I ~, I'+ Ib, I')irt dy/dE (3.22)

(3.15)

Since Qp/Vp=Rp '~ exp(imp), Eqs. (3.5) and (3.10)
with (3.12) give

+exp(iQ) =0,1 —iz

R p
—icrz

and therefore

I~L I'+ Ib~ I'
F =4/a( —y)

21~x I'
(3.23)

hE dQ dy
2 dE dE

(3.16}

It is applicable since we will have a «1. The resulting
equation

1 —iz
, z

= —exp[i(Qp+2az)]
Rp —ioz

(3.17)

for complex z =x +iy in terms of Qp has a solution with
x=0 when exp(iQp)=cr. For o =+1, it is given by
Qp=2nm. , and x sweeps through zero (E' sweeps through

where here Q=2y(E} rip. An aPProPr—iate aPProxima-
tion in (3.15) is Q=Qp+2az, where Qp ——Q(Ep) and

(1+y) +xF= a
7'I +ax

(3.24)

For x ~ 1, this will be small, because of the initial factor
a. For x ))1, it becomes fax /(ye+ax ). Thus F in-

On substituting bz =0 in (3.1) and making use of (3.2),
we obtain aL /et+ =Q and bL /az = —V. The final factor
of (3.23) is therefore equal to ( I Ql +

I Vl )/2. With use of
the approximations leading to (3.19), this factor becomes
[(1+y) +(1+2ay)x ]/Tp. The 2ay will be small com-
pared with 1, and may be dropped. Then, on substituting
from (3.14) and (3.19), we have
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I =(1 f)F/(gr—))=fG/rq, (3.25)

where f is the occupation probability of the quasilevel,
1/r& is the rate of scattering into it when F=g, the max-
imum rate of escape by tunneling out of it (i.e., for x=o)
is 1/rz, and G is the factor given by (3.19) as —y/yR.
Eliminating f from (3.25), we have

1 k'r& ~z+—I F G
(3.26)

On substituting in (3.26) for F and 6 from (3.19) and
(3.24), to a sufficient approximation I(x) has a maximum
of 1/(r +7 ) at ax /yL =(r)/1$)'

If we set 00=2nm+co (so that co varies with x), then
the corresponding bias increment is presumably given by
E, /e where

E& -(dE/dQ)co=(bE—/2a, )co . (3.27)

creases to g when ax /yL becomes large. This result
seems somewhat anomalous, because apparently one
could have F &1. However, for the "square-well" case
one finds that g —1 has the same sign as bio, and analysis
of the double-barrier structure shows that go & 0 when E
is less than half the height of the barrier on the L side. In
this case, at least, we can expect g & 1. There remains a
question of how far results here are dependent on the as-
sumption, at various points, of a WKB form for P(x) in
an accumulation layer (rather than, for example, Airy
functions). An alternative treatment in terms of a model
Hamiltonian with coupling elements at the two boun-
daries of the resonant structure, applied to this system so
as to couple component states in the two regions, should
give overall barrier states with F ~ 1, which then become
quasilevels decaying into the anode continuum.

Kinetic analyses of the current through this system of
levels, in its three-dimensiona1 context, are algebraically
complicated. We may examine the effect of variation of v
and F, for a single quasilevel near Eo, by a simple model
in which it is assumed that the levels from which this lev-
el is filled by scattering processes remain full. Then the
current passing through the quasilevel is proportional to

From (3.17), in the conditions of interest we will have
or= —2ax for a quasilevel. Hence E, = —xhE. The
range of interest for xhE, and therefore for E„ is
-EEa ' . Since the conventional level spacing, for the
accumulation layer, is 5E=~dE/d 0, this range is-(b EBE)'~, the geometric mean. The effective energy
width for resonance current is thus in practice large corn-
pared with AE, an unexpected result.

IV. DISCUSSION

The foregoing general treatment has shown that (a) the
quasilevels at energies far from the barrier resonance en-

ergy, associated with the accumulation layer, in general
have relatively long decay times; and (b) quasilevels in a
relatively small range of energies near a barrier resonance
energy have decay times comparable with the charac-
teristic response time fi/26E of the resonant barrier
structure, and for a substantial part of this range most of
their norm J ~f~ dx is within the accumulation layer.
Hence we expect a diode current due to scattering into
these resonance-associated levels from the cathode side
and out of them to the anode side, for the corresponding
range of the external bias.

One would expect a detailed treatment of the kinetics
to be most successful by a Monte Carlo method (adapted
to allow for degeneracy in the occupation of the states).
However, this presumes prior numerical calculation of
wave functions, and thereby calculation of the strengths
of the scattering processes for localized and continuum
states. ' One would seek to compute wave functions for
the extended, stationary (real E) states, rather than for
the decaying quasilevels. The normalization length l(E)
would be calculated. Its maximum, lo—:l(EO), should

give the location of Eo. A Lorentzian variation of /(E)
about Eo would give a half width AE and hence a value
of r=fi/2b E, and should verify the relationship I0
=2k'v/b, E. As is elucidated above, one will need a deli-
cate precision as a function of Eo, for many values in a
small E range. Techniques for such computations have
been demonstrated. "
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