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We use the self-consistent linear-mu%n-tin-orbital method in the atomic-sphere approximation for

the calculation of the electronic structure, total energies, and hyperfine fields for isolated Al point

defects and for trigonal Al defect pairs in silicon. Many-body effects are treated in the local-density

approximation of density-functional theory and the band gap appropriate for Si is obtained using the

scissors-operator technique. We find that the substitutional Als; point defect is thermodynamically

stable while the (Als;-Als;) pairs, the interstitial Al, point defects, the (Al;-Als;) pairs, and the

(Al. -A1, ) pairs are metastable. We calculate the hyperfine-interaction (HFI) matrix elements, the

contact term, as well as the full dipolar tensor for the Al nuclei and for the first ligand shells. We

discuss results obtained for several trigonal (Al, -Alql;) pairs which diR'er with respect to the distance

between the two Al atoms. No pair was found that has the large hyperfine-interaction matrix element

with the Als, nucleus, which is the characteristic of Si-G20. We have, therefore, calculated different

clusters where in addition to the trigonal (Al -Als;) pair another Als; or Cs; constituent was built-in,

thus preserving the trigonal symmetry. The search was unsuccessful, however.

I. INTRODUCTION

In thermal equilibrium aluminum is built-in into sil-
icon as a substitutional shallow acceptor, Upon ir-
radiation with electrons at lower temperatures Si self-
interstitials are formed which are mobile even at low
temperatures. If a self-interstitial and a substitutional
Als; point defect meet they can change places ("kick-
out' mechanismi) producing Al, interstitials. These have
been observed first in the paramagnetic Al++ state as
Si-G18 by Watkins. ' At elevated temperatures the Al;
interstitials become mobile, move to residual Als; point
defects and form defect associates. Two such defects,
Si-G19 and Si-G20, both with trigonal symmetry, each
containing an interstitial and a substitutional Al atom,
have been observed by Watkins. These defects are in-
teresting since atoms of the same chemical species are
built into the lattice at two nonequivalent lattice posi-
tions. The two defect atoms have grossly different formal
charge states and quite different properties as, e.g. , spin
density and electronic configuration.

Spin densities at the Al nuclei determined experimen-
tally by electron paramagnetic resonance (EPR) both
for isolated point defects and trigonal defect pairs have
been published by Watkins. A detailed investigation of
the hyperfine interaction (HFI) with the 2 Si ligands has
been performed by Brower for Si-G18 and in more detail
by Niklas, Spaeth, and &atkins for Si-G18 and Si-G19
using the electron-nuclear double resonance (ENDOR)
technique. These HFI data present precise information
about the spin density at the different impurity and lig-

and nuclear sites. The experimental methods, however,
can at most determine the direction of the distance vec-
tor from the impurity center to the ligand nucleus. The
length of this distance vector cannot be determined di-
rectly. The assignment of experimental data to the neigh-
bor shells is therefore not possible on the basis of exper-
imental data a1one.

Theoretical total-energy calculations present powerful
tools to investigate whether a defect configuration is sta-
ble or metastable, which pairs can be formed, etc. From
these calculations in addition the HFI matrix elements
can be obtained which can be compared directly with
EPR and ENDOR data. It is the aim of this paper to in-
vestigate theoretically the isolated Al point defects and
several trigonal defect pairs involving two difterent Al
atoms. VVe also calculate theoretically the HFI matrix
elements for these defects, both at the Al nuclei and at
the Si ligands. We succeed in identifying the pair configu-
ration corresponding to Si-G19. We do not find, however,
a pair which has the large contact HFI at the Als; nucleus
as that reported for Si-620. Preliminary calculations for
trigonal triple-defect complexes involving three Al atoms
and for trigonal complexes involving two Al and one C
atom as suggested by &atkins have also been unsuccess-
ful with respect to a possible identification of Si-G20.

It has been claimed that the comparison of experi-
mental HFI data for a highly symmetrical defect such as
the tetrahedral Al; point defect with data for a distorted
defect like the (Al, -Als, ) pair makes a definite assignment
possible. We shall show that the ambiguities inherent in
all attempts to assign experimental HFI data to ligand
shells in the case of a tetrahedral point defect cannot, be
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overcome by a comparison with HFI data for the pair.
We show that a very good agreement of HFI data calcu-
lated theoretically from first principles with experimen-
tal data for Si-G18 and Si-G19 is obtained. The results
show that the assignment proposed in Ref. 3 must be
modified: the first two {111)Si ligand shells must be in-

terchanged as was already considered by Brower~ for the
isolated defect Si-618. Our new assignment is supported
by the general shape of the spin-density distribution of
the defect-induced state in the gap for both systems.

II. COMPUTATIONAL

Our calculations have been performed within the gen-
eral framework of the spin-density functional theory
(DFT). Exchange and correlation are treated in the local
spin-density approximation (LSDA) of the spin-density
functional theory.

For the computations we have made use of the self-
consistent linear-mufBn-tin-orbital method in the atomic-
sphere approximation (LMTO-ASA). In this method
the crystal is divided into (overlapping) spheres in which
the potential is assumed to be spherically symmetrical.
A self-consistent solution for the perfect crystal and the
corresponding Green function Gp is calculated. Next it
is assumed that the presence of the defect changes the
LSDA potential in a small region around the defect only
and for this "perturbed region" a Dyson equation for the
perturbed Green function is solved self-consistently using
Gp with the potential EV which is the difference between
the potential of a crystal with a defect and that of the
perfect crystal. The LMTO method allows the calcula-
tion of the wave functions in the region near the nuclei
which dominates the contributions to the HFI matrix el-
ements. The use of the ASA unfortunately prohibits the
introduction of any lattice relaxation effects.

Since the computational effort rises drastically with
the size of the perturbed region the self-consistent calcu-
lation was limited to a rather small perturbed region.
For the case of the isolated interstitial Al; point de-
fect the perturbed region contained the point defect, the
four nearest-neighbor Si ligands and the six next-nearest-
neighbor Si ligands. It also contained 14 "empty" ASA
spheres introduced to fill the open structure of the dia-
mond lattice. The potential LV obtained from a self-
consistent solution of the Dyson equation for this rather
small perturbed region was then used to solve the Dyson
equation non-self-consistently for perturbed regions that
also contained Si ligands located in more distant shells.
In that way it was possible to calculate the HFI matrix
elements for eight shells of neighbors in the case of iso-
lated Al,+. + point defects and for 11 shells for the pairs.
By a shell we denote all the atoms that are transformed
into each other by the point-group symmetry operations
of the crystal with the defect. We shall in the following
list only one member of a shell by the distance vector
from the Al,++ to this ligand in units of d/4 where d is
the lattice constant.

The small size of the perturbed region presents diK-
culties if one attempts to calculate the pair formation
energies, in particular for more distant pairs. The pair

formation energy is the difference between the total en-

ergy of the pair and the sum of the total energies of the
constituents of the pair as isolated defects. Since the pair
formation energy is always the small difference of large
energies we have to take precautions that the different ge-
ometries of the perturbed regions for the different pairs
do not influence the results. To this aim we have cal-
culated the total energies of the constituents for a given
pair with the same geometry for the perturbed region
used for the pair: for the trigonal Al;-Als; pair, e.g. , we
determine the total energy of the Al,+ constituent from a
total energy calculation for a trigonal pair where the Als,
is replaced by Si, etc U.sing this rather time-consuming
procedure the pair formation energies of the very distant
pairs turned out to be reasonably small in all cases.

It is well known that the single-particle band gap of the
DFT-LSDA is too small by about 0.5 eV if compared to
the experimental band gap. In previous calculations
on chalcogen in Si this small gap resulted in a shift of
the defect-induced gap state into the bottom of the con-
duction band where it forms a resonance. In the case
of Al; we use the scissors-operator technique described
by Beeler and co-workers in order to ensure that the
defect;-induced state has its single-particle energy in the
fundamental band gap. Without the use of the scissors
operator which gives the experimental band gap for the
crystal this defect state would be found in the valence
band where it would be diamagnetic. Alternatively we
have calculated the HFI for the paramagnetic defects
and defect pairs in a non self con-siste-nt manner without
the use of a scissors operator. Instead we used an extra
square well potential for the perturbed region that moves
the defect state into the band gap. We have found very
little differences (less than 10%%up for the contact HFI at the
Al,++ nucleus) between both calculations. As in the case
of the chalcogen substitutional defects in Si (Refs. 6—8)
we find that the wave function of a deep state is not dra-
matically affected by a change of the potential even if the
single-particle state is moved from the band edge to the
center of the band gap.

The hyperfine interactions for our systems are rela-
tively simple because we deal with S =

&
orbital singlet

states. In this case the isotropic hyperfine interaction for
an electron with g factor g, interacting with a nucleus at
the site R~ with 9 factor 9~ is given by

&N = s Pp 9e 9' Pw m(Rw)—2

where po is the susceptibility constant and p, ~ is the
nuclear magneton. The magnetization density m(R~) at
the nuclear site R~ is the product of Bohr's magneton
p~, and the difference m(r) between the electron spin
densities of up and down spins, n~ and n~, respectively

m(r) = pgg [ng(r) —ng(r)j.

m(r) will be analyzed in terms of three different con-
tributions. The first contribution arises from the para-
magnetic spin of the single-particle state in the gap. This
contribution actuates the magnetization of other states
leading to a spin polarization of the valence states, and



9034 H. OVERHOF, H. %EIHRICH, AND G. CORRADI

also to a spin polarization of the impurity and ligand core
states.

The anisotropic (dipolar) HFI is given by an integral
over the magnetization density over all space

po
(bar)~, , = —ge ger px8x

3z x —r2b

The integrand is strongly peaked at the nucleus and,
therefore, it is sufBcient in practically all cases to perform
the integration over the central ASA sphere. The con-
tributions from the other spheres can be approximated
replacing the spin distribution in each of these spheres by
point dipoles with a dipole moment appropriate for the
integrated spin density in the spheres. The anisotropic
hyperfine tensor can be diagonalized and cast into the
form

(b~),~
=

( b+ b-'

0
0

0 0)
—b —b' 0

0 2b)
(4)

If the spin density has axial symmetry the dipolar con-
stant b' must be zero. For nuclei that are not located
on at least a threefold-symmetry axis of the perturbed
region, b' will in general be nonzero. The principal z
axis of each calculated HFI tensor is by symmetry in the
(110) plane [our calculations do not include ligands that
are outside the (110) plane]. We shall give the orienta-
tion of the principal axis in this plane with respect to the
direction from the Al~++ to the ligand.

For the hyperfine matrix elements a~ and b~ we shall
give the correct signs. Most of the calculated HFI data
for Si ligands will therefore be negative because the g
factor grv for Si is negative. This is in contrast to our
earlier papers. From magnetic resonance experiments
the absolute signs of the HFI matrix elements usually are
not determined; however, it is possible to determine the
relative signs of b~ with respect to a~. Ne shall indicate
this sign ambiguity using + and p as signs.

In the following we denote by ar and bI the hyperfine
matrix elements which are calculated from the spin den-
sity of the single-particle spin density of the deep state
alone. By a«and b&~& we denote the hyperfine matrix
elements which are calculated from the total spin den-
sities which includes contributions from the deep state,
the valence band, and from the core states. The spin
polarization of the core states was taken into account
in each step of the self-consistent cycle using the poten-
tial derived from the solution of Dyson's equation in an
atomic Dirac-LINDA calculation. For the more distant li-
gands for which no self-consistent calculation of the spin
density was possible the core polarization has not been
determined.

resonance at the valence-band edge which transforms ac-
cording to the T2 irreducible representation. The neutral
charge state, Als;, is known to be a shallow state which
extends over many unit cells and, therefore, cannot be
computed by our methods,

For p-type Si the total energy of an isolated Al point
defect in an interstitial position turns out to be by about
4 eV larger than that of an Al point defect in a sub-
stitutional position. %'e thus do not expect to find Al
interstitials in thermal equilibrium. If Si self-interstitials
are present, the reaction

Si++ + Als; ~ Sis; + Al++ + AE+ e(EF Ev)

can take place. Since AE = 2 eV according to our to-
tal energy calculation the reaction will transform Als;
into Al, for all positions of the Fermi energy E~ with

respect to the valence-band edge Ey. For the interstitial
Al; point defect we find two different charge states, Al++

and Al+, with a removal energy E++~+ = Ey +0.58 eV
which must be compared with the value E++~+ = Ey
+0.17 obtained experimentally. The agreement is not
too convincing due to the fact that we have used a scis-
sors operator. According to our calculations there is no
neutral state for Al; as, e.g. , postulated by Troxell et al. ~

However, we find a resonance transforming according to
the T2 irreducible representation at the bottom of the
conduction band. This state must be subject to a Jahn-
Teller distortion which can significantly lower its energy.
This result is in general agreement with the prediction of
Troxell et al. that Al; in the neutral state is accompanied
by a significant lattice relaxation.

The single-particle wave function of the aq state in the
gap listed in Table I is quite different from the corre-
sponding wave functions of the deep levels of, e.g. , sub-
stitutional chalcogen in Si: about 15% of the particle
density is found in the Al ASA sphere compared to only
4% in the case of Ss;. In Fig. 1 we show a contour plot

III. ISOLATED Al POINT DEFECTS

We have calculated the total energies for isolated Al point
defects located at the tetrahedral interstitial and substi-
tutional sites. For Als; we can obtain the negative charge
state Als; only. There is no state in the gap for Als, but a

FIG. 1. Contour plot of the pa.rticle density for the ga, p
state of Al,++ in the (110) plane. The Al atom is at, the
center of the figure, the Si liga. nds can be identified froirI the
oscillations of the particle density in the core regions.
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TABLE I. Occupation of the different partial waves for the Al++ and the (AI, -Als;)+ pair [pair (a)].

Ai++ (AI, -Als;)+

Lig and

AI++ (0,0,0) 0.1513 0.0 0.0

Total

0.1513

Lig and

Al++ (0,0,0) 0.1417 0.0 0.0

Total

0.1417

Si(1,1,1)

Si(2,0,0)

Si(3,1,1)

Si(2,2,2)

Si(2,2,2)

Si(3,3,1)

O.O06O

0.0038

0.0005

0.0063

0.0016

0.0001

0.0013

0.0110

0.0049

0.0256

0.0003

0.0027

0.0210

0.0049

0.0012

0.0001

0.0001

0.0009

0.0283

0.0197

0.0066

0.0319

0.0020

0.0037

AI:;(1,1,1)

Si(1,1,1)

Si(2,0,0)

Si(2,0,0)

Si(3,1,1)

Si(2,2,2)

Si(2,2,2)

Si('&,2,2)

Si(3,3,1)

Si(3,3,1)

0.0044

0.0059

0.0047

0.0042

0.0005

0.0054

0.0062

O.Q016

0.0000

0.0001

0.0021

0.0003

0.0113

0.0097

0.0049

0.0200

0.0243

0.0001

0.0010

0.0026

0.0153

0.0206

0.0040

0.0058

O.Q012

0.0001

0.0000

O.OQQ2

0.0017

0.0009

0.0218

0.0268

0.0200

0.0197

0.0066

0.0255

0.0305

0.0019

0.0027

0.0036

Si(3,3,3) 0.0000 0.0008 0.0001 0.0009

of the particle density of the gap state of Al++ in the
(110) plane. We see that the state in the gap is bond-
ing and that the bond charges extending to the nearest
neighbors in the (111) directions extend to the (2,2,2)
ligands. This is possible since the wave function is pre-
dominantly s- and d-like at the (1,1,1) ligands whereas it
is s- and p-like at the (2,2,2) ligands. Here the bond is
terminated and there is about one order of magnitude less
spin density at the (3,3,1) ligands compared to the (2,2,2)
ligands. There is also a strong bond directed toward the
next-nearest neighbors in the (100) directions and again
the gap state essentially does not extend further. We
thus have the picture that the interstitial Al,+ ion is
bound to the Si ligands whereby the bond charges ex-
tend as long as there is a straight chain of ligands. There
is very little spin density extending toward the ( 1 1 1) di-
rections where the first ligands are farther apart. Except
for the oscillations of the wave function within the core
regions (we show in Fig. 1 the true wave function, not a
pseudofunction) the wave function has no node within the
rectangle spanned by the shell of (2,2,2) Si ligands. The
wave function changes sign outside this rectangle where
its magnitude is small, however, since already 75% of the
gap state density is contained in the region covered by
our calculation.

A comparison of the calculated HFI data with EPR
and ENDOR data of Brower and with ENDOR data by
Niklas, Spaeth, and Watkins directly reflects the results
just discussed for the wave function of the gap state. As
is evident from Table II the HFI at the defect nuclei and

at all ligands is predominantly given by ai which is the
contribution of the gap state. Contributions from the
valence-band polarization caused by the spin of the gap
state are of relative significance only at ligands where ai
is very small. This is in contrast to the results for the
chalcogen (substitutional) defects in Si (Refs. 6—8) where
the polarization of the valence band was largest at ligands
with larger contributions of the- gap state to the contact
HFI.

When comparing our data with experimental data of
Niklas, Spaeth, and Watkins we have interchanged the
experimental data for the Si(1,1,1) and the Si(2,2,2) li-
gands, respectively. Brower2 already noted that it is
difricult to distinguish between the two shells from the
magnetic resonance data alone. Both shells have approx-
imately the same contact HFI while the dipolar HFI dif-
fer by nearly one order of magnitude. The reason for this
can be seen if we compare wave functions of the gap state
for both ligands: Since the wave function at the nearest
neighbors is predominantly d-like there will be a small
dipolar HFI matrix element whereas at the Si(2, '2, 2) li-
gand the wave function is mainly p-type and accordingly
the dipolar HFI is much larger. The negative sign of

xp& with respect to apxpt; observed experimentally for
the ligand shell which we assign to Si(1,1,1) can be taken
as an indication that the wave function has a strong d
admixture as has been shown by van Wezep et al. Our
calculation gives the relatively small absolute value but
does not give the correct sign in this case which, however,
is the only sign inconsistency. We find a near-perfect
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TABLE II. Comparison of the calculated and experimental hyperfine data for the isolated AI++ point defect (in MHz).
a~ and b~ are calculated from the single-particle wave function of the state in the gap, a„b and a, are the contributions from

the polarization of the valence-band and core states while at, t and btot are the sum of all contributions. A dash means that
a, could not be calculated while missing data entries for b and b' represent a zero by symmetry. The experimental hyperfine

interactions listed as a,„~&, b, „~&, and b,'„~, , respectively, are taken from Brower (Ref. 2) for the interaction with the AI,++

nucleus and from Niklas, Spaeth, and Watkins (Ref. 3) for the interaction with the Si ligands.

Ligand ar ~vb a, +tot ~expt Tensor
aXlSt r1 e&71

stot ~expt
I

~expt Tensor
a~sex pt

Al++ 1287 70 8.0 1365 +1320

Si(2,0,0) —32.6 -0.5 0.4

Si(1,1,1) —51.3 —3.4 0.2 —54.7

—32.8

+50.09 [111)

+22.6 ' [100]

—0.34 —0.68

—2.3 0.07

p0.05

+1.44 [100]

Si(3,1,1) —3.92 0.53 —3.39 +3.51 [110]—19' —1.05 -1.02 0.03 +0.89 p0.04 [110]-15'

Si(2,2,2) —13.4

Si(2,2,2) —51.4 —0.2

0.44

—51.6

-12.92

+52.31 [111)

+11.31 [111]

—5.62

—0.06

—5.75

—0.09

+3.91

+0.16

Si(3,3,1) —1.11 0.05 —1.06 +1.24 [110]+26' —0.56 —0.58 0.04 +0.16 +0.02 [110]—58'

Si(3,3,3) —Q.20 0.08 —0.11 +2.03 ? [111) p +0.21 ?

agreement for the contact HFI matrix elements except
for the Si(2,0,0) ligand for which the theoretical contact
HFI is 44% larger than the experimental value. For the
anisotropic HFI mat, rix elements the deviations generally
are somewhat larger than for the contact HFI.

As in the case of chalcogens in Si (Ref. 8) we find that
the spin density is neither isotropic nor a monotonous
function of the distance from the paramagnetic defect:
This is illustrated best by the HFI at Si(2,2,2) which is
completely different from that at Si(2,2,2). In addition,
the HFI matrix elements for Si(3,1,1) are much smaller
in magnitude than those for Si(2,2,2) which is farther
apart. We see from our data that the spin density of
the isolated Al++ point defect is essentially contained in

a small cluster containing the Al atom, its 14 neighbors
in the (1,1,1), (2,2,2), and (2,0,0) shells. The ligands
which are farther apart or which are in other directions
with respect, to the Al++ ion contribute little to the spin
density.

IV. TRIGONAL Al-Al PAIRS

The stability of trigonal aluminum pairs with respect
to dissociation is investigated by means of total-energy
calculations for several trigonal pair configurations in-
volving two Al atoms.

For the (Als;-Als;) pair where both Al atoms are
at the nearest-neighbor position we find that the total
energy of the pair is larger than the total energy of two
isolated Als; point defects and hence is unstable. The
pair formation energy is 1.2 eV for n-type samples which
is more than the screened Coulomb repulsion of the two
negatively charged Al ions. This is not unexpected since
in addition the filled valence shells repel each other. The

pair has two deep levels, the Eo~ level at Ev + 0.2 eV
and the F ~ level at Ey + 0.48 eV. If the Fermi level
is at the valence-band edge these (antibonding) states
are unoccupied. Accordingly the total energy of the pair
in the neutral state is only about 0.4 eV higher than
the total energy of two isolated Als; point defects. This
pair, therefore, could be stable, in particular if st, abi-
lized by lattice relaxation. If the state in the gap is

singly occupied it will be paramagnetic and predomi-
nantly p-type. It can be characterized by contact HFI
of a = 57.6 and —3.6 MHz for the interactions at the 2 Al
and the nearest-neighbor 2sSi nuclei, respectively, and

by anisotropic HFI constants that amount to 30.65 and
—2.088 MHz, respectively. Trigonal (Als;-Als, ) pairs
with a larger separation of the Al atoms (three nearest-
neighbor distances at least) have total energies which ac-

cording to our calculations cannot be distinguished from
the total energy of two isolated Als; point defects.

The (Al;-Al;)"+ pair where both Al atoms are located
on nearest-neighbor tetrahedral interstitial positions is
not stable with respect to pair dissociation. We find that
the pair formation energy is about 0.7 eV for all charge
states of the pair. We find a gap state at Eg + 0.5 eV
which is antibonding. If this state is fully occupied the
energy of the (Al;-Al;)++ pair is 0.8 eV larger than twice

the total energy of an isolated Al+ point defect. This
slightly exceeds the screened Coulomb interaction of the
pair (0.5 eV). If the state is unoccupied the much larger
Coulomb interaction of the (Al,.-Al;)"+ pair is reduced by
the occupied bonding configuration which is a resonance
in the valence band. The total energy of the pair is still
0.7 eV larger than the corresponding value of isolated Al

interstitials and, therefore, pair formation is unlikely.
Experimentally one finds two pairs which are trigo-
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nal and involve two Al atoms, one of which is located
on an interstitial position while the other substitution-
ally replaces one Si atom. The most extensively stud-
ied pair is Si-G19, identified as the (Al;-Als;) pair by
Watkinsi which exists in the (Al,.-Als;)+ paramagnetic
charge state. This state is also referred to as Al++-Als, .

in order to emphasize that the two Al atoms are diA'er-

ently charged Since there is another paramagnetic tri-
gonal (Al,.-Als;)+ pair reported in the literature [Si-G20,
(Ref. 1)] we have performed total-energy calculations for
several trigonal (Al,.-Als;) pair configurations which dif-
fer with respect to the distances between the Al atoms.
These configurations are schematically shown in Fig. 2.
Our results for the total energies of the pairs are sum-
marized in Fig. 3. We find that for all positions of the
Fermi energy the most stable pair is that for which the
two Al atoms are separated by one nearest-neighbor dis-
tance. The pair formation energy of this pair is about
—0.7 eV. The pair formation energies for the other pairs
in the positively charged state are only slightly negative
and therefore the stability of these pairs is questionable.
For the neutral pair the picture changes significantly: the
total energies of pairs (a) and (b) are virtually equal and
also pair (c) appears to be stable. Obviously the larger
distance of the defects in pair (b) with respect to pair (a)
does not alter the binding energy of the pair because a
Si atom is situated in between the defects. A similar re-
sult was obtained recently for the (Fe,.-Als;)o pair. i4 For
pair (c) an empty tetrahedral space separates the two
constituents which significantly lowers the pair binding
energy whereas pair (d) is quite similar to a dissociated
pair.

We shall concentrate our discussion of the paramag-
netic properties on pair (a) which will be identified with
Si-G19. For this pair the calculated transition energy
is E+~ = Ey + 0.7 eV. A contour plot of the electron
density of the gap state for this pair in the (110) plane
is shown in Fig. 4. The particle density for the pair is
remarkably similar to that of the isolated Al++ point de-
fect with the exception that the negatively charged Als;
is less attractive for electrons than the Si ligand which it

0.5

EE

0.0

b
~ ~j~ ~ ~~ ~ ~

-1.0
Ev ——0.0 0.5

EF(eV)

I

1.0 Ec

replaces. This leads to the asymmetry of the particle den-

sity. We see that the pair formation is essentially caused

by electrostatic forces and not by covalency. A quantita-
tive comparison of the wave function for the gap state of
the pair with that of isolated Al++ can be made with the
help of Table I. For the comparison we must bear in mind

FIG. 3. Pair formation energy for the (Al, -Als;)i"~ pairs
in different atomic positions for the charge states (n) as a
function of the Fermi energy. Lines with positive slope cor-
respond to n = 1, lines with zero slopes represent neutral
pairs. Full lines, dash-dotted lines, dashed lines, and dotted
lines correspond to pair configurations (a), (b), (c), and (d),
respectively, while thin dashed lines correspond to dissociated
pairs. Circles mark electron removal energies.

FIG. 2. Schematic representations of the diR'erent config-
urations of trigonal Al;-Als; pairs in Si in the (110) plane.
Hatched balls represent Als, , cross line hatched circles repre-
sent Al;, and plain circles represent Si atoms.

FIG. 4. Contour plot of the particle density for the gap
state of the trigonal (Al, -Als;)+ pair (a) in the (110) plane.
The Al, atom is at the center of the figure and the Als, is
at (1,1,1) as can be seen from the slightly smaller particle
density in this region.
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that ligands which for the isolated point defect belong to
the same shell now can become inequivalent due to the
lower symmetry of the pair with respect to the isolated
point defect. From the comparison of the data in Table
I we see that the replacement of a Si atom by Al has no
dramatic effect on the wave function: the occupancy of
the Al++ s partial wave is reduced by 10%; the relative
changes at the ligands are somewhat larger but the over-
all particle density distribution is not affected by the pair
formation.

This insensitivity is also borne out by the HFI ma-
trix elements listed in Table III. The agreement of our
calculated data with the experimental results of Niklas,
Spaeth, and Watkins for the pair is remarkably good
though somewhat inferior to the case of the isolated point
defect. In particular the anisotropy introduced by the ad-
ditional Als; is consistently underestimated by our calcu-
lation. The agreement of experimental dipolar HFI data
with the experimental data is rather poor unless we in-
terchange the assignment of the experimental data to the
Si(l, l, l) and the Si(2,2,2) ligands. As in the case of iso-
lated Al++ point defects the larger bext value belongs to
the more distant ligand because here the wave function
is s- and p-type whereas at the nearest-neighbor ligand
the s and d character predominates.

Niklas, Spaeth, and Watkinss give the following argu-
ment for their assignment of ligand shells: they start from
the observation that the quadrupole interaction constant
requires that the two Al atoms are nearest neighbors.
Since the HFI data for the pair are similar to those of
the isolated point defect the replacement of the Si ligand
by Al is regarded as a small trigonal perturbation of the
HFI data except for the HFI interaction with the Als;
nucleus itself. A small trigonal perturbation will split a
(ill) ligand shell into a subshell of three ligands and a

subshell containing just the ligand on the trigonal axis.
If the perturbation is small enough it is possible from the
HFI data to identify those two (111)ligand subshells that
belong to the same shell. However, there is one subshell
with three (111)ligands for which there is no correspond-
ing subshell with one Si ligand because it is replaced by
Al. This Si subshell must then be the one nearest to
Al; which in turn identifies the nearest Si shell for the
isolated point defect.

The procedure is straightforward provided the differ-
ence between the HFI data for the different (ill) shells
of the isolated Al, point defect is much larger than the
splitting between subshells introduced by the Als;. This
is unfortunately not the case for the Al pair and hence
the assignment of the data from the experiment alone is
still ambiguous, in fact the choice made was wrong.

It remains to show that the pair Si-G19 observed exper-
imentally can in fact be identified with our pair (a). An
experimental hint is the quadrupolar interaction which
is about a factor of 2 larger than one would expect for
pair (a). For the other pairs the discrepancy would be
much larger. Since for this interaction there is no valid
theory (see, e.g. , I,annooi5) the discrepancy might not be
a strong argument. According to our total-energy calcu-
lations pair (a) is more strongly bound than pair (b) in
the positive charge state, which need not be, however,
the actual charge state at the diffusion temperature. A
decision is not easy on the basis of the calculated HFI
with the 2 Al nuclei for the different pairs listed in Table
IV: The HFI contact interactions with the Al++ nucleus
for all pairs are practically identical. The differences are
much larger for the HFI interactions with the Als; nu-
clei which rules out pairs (c) and (d). The pairs (a) and

(b) have about the same contact interactions and the
calculated dipolar HFI data differ by a factor of 2 only

TABLE III. Comparison of the calculated and experimental hyperfine data for the trigonal (AI, -Als;)+ defect pair [pair (a), in MHzi. a~ and
bI are calculated from the single-particle wave function of the state in the gap, a„b and a are the contributions from the polarization of the
valence-band and core states while atot and btot are the sum of all contributions. The experimental HFI interactions listed as aexpt bexpt and

box pt respectively, are taken from Watkins (Ref. 1 ) for the interaction with the Al nucleus and from Niklas, Spaeth, and Watkins (Ref. 3) for

the interaction with the Si ligands.

Ligand al avb ao atot aexpt Tensor
axistheor

btot bexpt
I

bexpt Tensor
axlsex pt

A l++ (0,0,0)

Als,.(1,1,1)

Si(1,1,1)

Si(2,0,0)

SI(2,0,0)

Si(3,1,1)

Si(2,2,2)

Si(2,2,2)

Si(2,2,2)

Si(3,3,1)

Si(3,3,1)

1225

33.5

—50.7

—39.4

—36.4

—0.13

—44

—51.8

—12.1

—0.17

—0.98

25

-0.23

0.17

—0.70

1.0

0.52

—2.3

0.35

0.1

0.60

0.02

3.0

—0.56

0.30

0.35

0.6

1253

32.7

—50.2

-39.75

—35.4

0.39

—46. 1

-51.44

—12.0

0.43

—0.96

+1180 [111]

+37.75

+56.76

+25.46

+24.41

[1 1 1]—24

[100]—11

[100]+1.9

+31.32 [111]

+60.76

13.53 [111]

[331]+63

0.29

0.51

—0.22

—2.41

—2.01

—0,29

—4.21

—5.15

—0.02

—0.36

—0.54

0.31

0.80

—0.32

—2.44

—1.92

—4.14

—0.08

—0.34

0.07

0.03

0.12

+1.1

y0.41

1.02

+1.42

+3.98

+6.08

+0.16

y0. 18 [i i i]+i2

+0.18 [100]+5

y0.23 [100]+7
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TABLE IV. Comparison of the calculated hyperfine data
for the different trigonal (Al, -Als;)+ defect pairs (in MHz)
with the experimental HFI interactions at the Al nuclei for
Si-G19 taken from %atkins (Ref. 1).

Pair

(a) 1253 0.31 32.74 0.80

1200 0.33 31.8 2.17

(c) 1300 0.66 10.95 0.07

1286 0.26 1.61 0.008

+)180 +3.31 +37.75

embracing the experimental value. Pair (b) can however
be discounted as a candidate for Si-G19 because the HFI
interaction for the Si(1,1,1) ligand would be at t ———11.6
MHz and bq &

———2.4 MHz according to our calculation
which is not compatible with the experimental HFI data.
The fact that this would be the only major discrepancy
for pair (b) indicates strongly that the atomic structure
of this pair is incorrect. We, therefore, conclude that we

have an excellent agreement between theory and experi-
ment if we identify pair (a) with Si-G19. Still the agree-
ment is considerably less convincing than that found for
the isolated interstitial Al,++ point defect. In particu-
lar our calculated data underestimate systematically the
subshell splitting of the HFI data. This might be due to
a trigonal lattice distortion which is not included in our
present calculation. This distortion, however, does not
seem to have a major effect on the HFI data.

V. TRIGONAL Al;-Also-Also AND Al'-Alsi-Csi
CLUSTERS

Since the paramagnetic properties of the trigonal pairs
did not show the characteristic value a, pt, 127 MHz
found by EPR for the HFI contact interaction with the
Als; nucleus in the pair Si-G20 (Ref. 1) we have made
an attempt to calculate the HFI data for larger trigonal
clusters which besides the Al;-Als; trigonal defect con-
sist of additional ingredients. Following a suggestion of
%atkins we have tried Cs; besides Als; as additional
members of the trigonal clusters. The structure of these
clusters is sketched in Fig. 5.

We determine the cluster formation energy as the dif-
ference between the total energy for the cluster and the
sum of the total energies for the (Al,++-Als;) pair and for
the additional constituent of the cluster. We find for the
trigonal (Al,.-Als;-Als;) cluster (a) a very small formation
energy of —0.1 eV as is to be expected for a (Al,+. +-Als, )
pair where an Als; defect is to be attached to the Als; side
of the pair. In contrast the (Al,.-Als;-Als;) cluster (b) has

FIG. 5. Schematic representations of the diH'erent config-

urations of trigonal Al;-Als;-Als; and Al;-Als;-Cs, clusters in

Si. Hatched balls represent Als;, cross line hatched circles
represent Al;, black circles represent Cs;, and plain circles
represent Si atoms.

a binding energy of —0.9 eV—the distance between the
(Al, -Als;) pair and the additional Als; is larger but the
positive charge is now surrounded by negative charges
on both sides. We note that the formation of Al triplets
may be promoted by the existence of divacancy centers
which have been observed by Watkins and Corbettis and
by Browers in electron-irradiated Al-doped Si crystals.
These might, e.g. , trap the Al interstitials one-by-one
during the annealing process.

The situation is different for the (Al,.-Als;-Cs;) clusters
because here the additional Cs; atom is neutral and for
the binding of the Cs; atom to the (Al,.-Als;)+ pair elec-
trostatic effects play no role. We find for (Al, -Als;-Cs;)
cluster (a) and for (Al;-Als;-Cs;) cluster (c) that the clus-
ter formation energy is slightly positive with E ' = 0.1
eV [cluster (a)] and Ero'~ = 0.5 eV [cluster (c)]. For (Al, -
Al»-C») cluster (b), however, the formation energy with
E ' = —1.3 eV seems to be unexpectedly high. This is,
however, not quite correct because in this case we should
calculate the cluster formation energy as the difference
between the total energy for the cluster and the sum of
the total energies for the [Al;(0, 0, 0)-Cs;(1, 1, 1)]pair and
for an additional substitutional aluminum. Since for the
[Al;(0, 0, 0)-Cs;(1, 1, 1)] pair the formation energy of —2
eV exceeds that for the (Al, -Als;) pair (a) (—0.7 eV) we
obtain a cluster formation energy which is also close to
zero.

The HFI matrix elements for the interaction with the
z Al and the isC nuclei (in parentheses) are listed in Ta-
ble V. We find that the interaction matrix element with
the Al nucleus of the interstitial Al is not very much
afkcted by the formation of the cluster while the inter-



H. OVERHOF, H. WEIHRICH, AND G. CORRADI 45

TABLE V. Comparison of the calculated hyperfine data for the diKerent trigonal
(AI;-Als;-Ais;) and (Al;-Als;-Cs;)+ defect clusters sketched in Fig. 5 (in MHz) with the exper-
imental HFI interactions at the Al nuclei for Si-G19 and for Si-G20 taken from Watkins (Ref. 1).
The interactions with the ' C nuclei are in parentheses.

Cluster

Al++ (0,0,0) Als;(1 1 1) Als,.

(Al, -Als;-Als;) cluster (a)

(Al;-Als;-Als;) cluster (b)

1042

1257

2.8

1.3

2.7

40.0

3.4

0.05

42.5

12.6

5.6

2.3

Al++ (0,0,0) Als' Cs

(Al;-Als;-Cs;)+ cluster (a)

(Al, -Als;-Cs;)+ cluster (b)

(Al,.-Als;-Cs;)+ cluster (c)

Si-G19

Si-G20

1185

1548

1169

+1180

+1162

0.9

2.9

3.2

+3.31

+2.99

56.2

23.0

40,3

+37.75

+127.0

0.05

0.8

0.8

(66.8)

(112)

(25.8)

(3.25 )

(1.6)

(0.4)

action with the nucleus of the Als; atom for all clusters
except (Al, -Als;-Cs;) cluster (b) is somewhat enlarged.
The case of (Al,.-Als;-Als;) cluster (a) is quite interest-
ing because here the spin density is predominantly found
in the Al++(0, 0, 0) and the Als;(2, 2, 2) ASA spheres
but remarkably little spin density at the intermediate
Als;(1, 1, 1) nucleus. One might speculate that a trigonal
lattice relaxation could support this effect and lead to a
pile-up of s-like spin density at the Als;(2, 2, 2) ligand.
At present we are unable to treat this case. We, there-
fore, have no defect cluster for which the contact HFI at
an Als; nucleus is comparable to the value of 127 MHz
found experimentally by Watkins some 35 years ago.

VI. CONC? USIONS

We have performed total-energy calculations for iso-
lated Al point defects and trigonal Al-Al pairs. Sub-
stitutional Al point defects were found to be the stable
defects; all other defect configurations are metastable at
most. We have studied in particular the paramagnetic
Al++ impurity which has a deep level in the fundamen-
tal band gap. This state is well localized and more than
50% of the total spin density is shared by the impurity
and its 14 nearest Si ligands. We have compared the cal-
culated HFI data with EPR data reported by Watkins,
Brower, and Niklas, Spaeth, and Watkins for the defect
Si-G18 identified by %atkins as Al+ . We find that the
assignment of the experimental HFI data to the Si(1,1,1)
and Si(2,2,2) shells has to be interchanged in order to be
compatible with our results. We then find a close agree-
ment of the calculated and experimental HFI data, both
for the contact term and for the dipolar terms for which
we give the full tensor.

No stable substitutional Al-Al pairs have been found
and also the pairs of two interstitial Al atoms have at best

a questionable stability against dissociation. We did find,
however, mixed interstitial-substitutional pairs of trigo-
nal symmetry to be stable with respect to dissociation.
Of particular stability is the pair where the substitutional
Al defect atom is situated next to a tetrahedral intersti-
tial Al atom. For this pair we find a striking similarity
of the calculated HFI data with the experimental data
reported by Watkins, and Niklas, Spaeth, and Watkins
for the defect Si-G19 if a similar interchange of the assign-
ments as above is made for the Si(l, l, l) and the Si(2,2,2)
shells.

None of the pairs shows the la,rge contact HFI at the
Als; atom which is characteristic for the trigonal Si-G20
defect which is known to contain Al; and at least one
Als; defect atom. We have calculated the total ener-
gies and magnetic properties of trigonal clusters that in
addition contained an extra Als; or Cs;. We did find
clusters that are stable against dissociation and we also
found that the contact HFI interaction at the Als; nu-
clei could be nearly a factor of 2 larger than for the pairs.
We did not find, however, a cluster for which the contact
HFI at the Al atom was comparable to the experimental
value of 127 MHz which is more than a factor of 2 above
the highest value found in our clusters. Clusters which
involve vacancies seem to be interesting candidates for
Si-G20 and preliminary calculations have resulted in in-
teresting results which will be reported in a subsequent
paper.
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