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Acceytorlike bound excitons in semiconductors
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An effective-mass equation for the hole binding energy of an acceptorlike bound exciton in semicon-
ductors is developed. The motion of the electron is represented by an effective charge which modifies
the Coulomb interaction. An expression for the oscillator strength of the bound exciton is given in terms
of the wave function of the bound-exciton state. The theory is applied to the GaP:N system, which gives
hole binding energies for excitons bound to nitrogen pairs in good agreement with experiment, and pre-
dicts that the electron binding energy for an isolated-nitrogen-bound exciton is about 6 meV.

I. INTRODUCTION

The hole binding energies of the acceptorlike bound ex-
citons in semiconductor GaP are all found to be close to
but smaller than the acceptor binding energy in the
eifective mass (EM) approximation, E„=45.3 meV. '

For deep nitrogen pair bound excitons (i (5), the
nearest-neighbor (Zn, O) or (Cd,O) complex bound exci-
ton, and the neutral oxygen bound exciton, hole bind-
ing energies are around 40 meV. There are two possible
mechanisms which might explain the deviation of the
hole binding energies of these bound excitons from the
acceptor binding energy. One is the core correction due
to the repulsive core to the hole. The other is the charge
distribution of the bound electron. According to
Faulkner's estimate, the core correction should not be
important for a short-range potential. Thus, the most
distinguishing difference for the bound exciton from an
ideal EM acceptor is that the bound electron is not local-
ized at the impurity site but moves around the impurity.
In this work, we are going to concentrate on the effect of
the electron charge distribution on the hole binding ener-
gy. It is to be expected that the deeper, and therefore
more localized, the electron bound state, the larger the
hole binding energy will be. The hole binding energy will
converge to E„ for a "real" deep impurity center.

The acceptorlike bound exciton is treated in a way
similar to the standard treatment of the free exciton in a
semiconductor. A Schrodinger equation is developed
for the hole in which everything is the same as for an EM
acceptor except for the potential, in which the simple
Coulomb interaction is modified by a factor d (r), the
normalized effective charge. Also, an expression for the
oscillator strength of the bound exciton is obtained,
which is more general than the one usually used.

The calculation for the hole binding energies is applied
to nitrogen pair bound excitons in Gap. Quite good
agreement is found for these pairs NN;, i ~7 for which
experimental values are available. The observed binding
energy of the exciton bound to isolated nitrogen is only
consistent with the calculation if the electron is bound by
about 6 meV. This disagrees with previous theoretical
calculations in which the electron binding energies
were found to be near zero.

II. THE HOLE BINDING ENERGY
OF AN ACCEPTORLIKE BOUND EXCITON

In the Hartree-Fock one-electron approximation, the
ground state of a semiconductor can be described by a
Slater determinant

+o=A t +.|,i(ri)a(1)+, l, i(r2)P(2) 0 „„h,„(r ) %,j,iv(r2tt)P(2N) l

where A indicates the antisymmetrization operator, 'It„z
is a one-electron wave function in the valence band, and
a and p indicate the two spin eigenfunctions. We can
also use %0 as the ground state for the impurity problem,
as long as we assume that in the ground state the impuri-
ty atom is essentially the same as the host atom so that
the coupling between valence-band state and
conduction-band state due to the impurity potential is
very weak. This is the case for isoelectronic impurities in

semiconductors.
The bound-exciton state is an excited state of the sys-

tem. The basic assumption made here is that of the so-
called HTL (Hopfield-Thomas-Lynch) model. ' In this
model, for the case of the acceptorlike bound exciton,
firstly the electron is bound to a short-range attractive
impurity potential, giving a negative center, like an ion-
ized acceptor, and then a hole is bound to the negative
center via the long-range Coulomb attraction, forming a
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bound exciton. The bare electron bound state can be
written as

+ie g ~nk+nk &

where 4„k are the conduction-band states. 4,, gives a
true description for the ionized state of the bound exci-
ton, equivalent to the conduction-band state in the free-
exciton problem.

A trial function for the excited states of the system
~ & ~ \ ~(1 V hn)worl OVnW+Rra O+n+so I wo ew~rava 4ryi ~ v ~ vvuixu vaviavai oaxaN d7 B p Tx ll b)

=A
I %,k, (r) )a(1)+„k)(r2)P(2) . 0',,„(r ) +,kx(r~~)P(2%)] (3)

in which the impurity state 4;, „replaces the valence-
band state 0 vkh» in Co. The state 4;e„.vkh, h has one
electron in the electron bound state 4';, „and one hole in
the valence-band state 4,kh, h.

If the total Hamiltonian of the system is taken to be
spin independent, it is convenient to consider trial states
4';, ,'kh with a definite spin multiplicity. They are

multiplicity. A bound-exciton state of multiplicity M can
be expanded in the form

qr(M) —y A (k )@(M)

k, h

The total Hamiltonian of the system is written as

H, = gH;+ —,
' pe /lr; —rj. l

(1/v'2)(e, ,.„kh, +c,„p,„kh,p)

for singlet states (total spin =0), and

@ie,a;vkh, p &

(1/+2)(@(e,a;nkh, p @(e,p;nkh, p) ~

@ie,P;vkh, a &

(4)
with

H; = —A' /2m V —g V( R( —r, ) .
I

H; includes the impurity potential.
The eigenvalue equation is

H ly(~~=E q/~M]
e ex ex ex (8)

for triplet states (total spin is equal to 1).
Now 4';, ,'kh are used as trial states with definite spin

Multiply by 4';, ,'kh and integrate both sides, and use the
following results:

(C,„„„le(,„)&
= A (k„},

(C";„u'kh lH. l@';...'kh &
—lE.—E.«h }]5kh,kh

—(%';e(r) }%'„kh (r2)l(& «)2)l%', , (r))+„kh(rz) & (Coulomb term)

+25M(%';, (r))%',kh (rz)l(e /r)2))'P, kh(r, W;, (r2) & (exchange term) .

Here, 5M =0 for single states and 5M =1 for triplet states. (+OlH, l%'0& is taken as the zero of energy. Also, it is as-
sumed that the contribution from the valence band to the bound electron wave function 4;, is negligible. This would
not be a good approximation if one was attempting to calculate the electron binding energy E, from first principles, but
it should not introduce significant error here, where E, is treated as an empirical parameter. Thus, Eq. (8) becomes

[E;,—E, (kh } E,„]A(kh)+ g—A (kh)[ —(%,, )p„kh l(e /r)&)l%;, )p„kh &+25M(%;,%„kh. l(e /r)&)l+, kh%';, &]=0 . (9)
kh'

First, let us examine the Coulomb term:

ke, ke'

The only nonzero matrix elements in the sum on the right-hand side have k, —kh =k,' —k&, in which the approximation
u,*keu«euvkh. uvkh =1/V can be used. Here u«are the periodic part of the Bloch functions and V is the volume of the
crystal. The range within the Brillouin zone where the states N'...'kh have appreciable coefFicients in the expansion of
the bound-exciton state is assumed to be small enough to justify this approximation. This approximation is usually used
for free-exciton states, acceptor, and donor states to get an envelope-function equation. Since the hole binding energies
of acceptorlike bound excitons are usually smaller than those of acceptor states, although larger than the free-exciton
binding energy, this approximation is as reasonable for the bound-exciton problem as it is for the related acceptor prob-
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lem. Then the Coulomb terms are

—g A (kh')(O';, 'Il, zh ~(e /r&2)~'P;, 'P, zl, ) = —g A (k —k')f (k')s(k'),
kh' k'

where f(k) is the Fourier transform of e /r, z, f (k) =4ne Ik, and s(k) reflects the charge distribution due to the
delocalization of the bound electron:

s(k)= gaq, aq,
ke

Now let us turn to the exchange term:

25M(4', ,%„gq ~(e Ir)2)~+,~s+;, )=25M g az, a&,.(%,&, %„&i,.~(e Ir&2)~%„&&+,&,.)
ke, ke'

25M ga /palp —gQ+gp Jap'
ke

(10)

where J,„are matrix elements for exchange interaction,

F (r) =(1/V'V ) g A (k) exp(ik r)
k

and the equation is

(12)

[E,( iV)+d(r—)e Ier 5M Jp(r—)]F(r)= E&F(r) .

This is an effective-mass equation, in which
Eh =E;,—E,„ is the hole binding energy of an acceptor-
like bound exciton, and E„(—iV') is the kinetic-energy
operator for the valence-band states. The most irnpor-
tant difference from the equation for an ideal EM accep-
tor is a factor d (r), which is the result of delocalization
of the bound electron:

g exp(ik r)f(k)s(k)
d(r)=—

g exp(ik r)f (k)
k

(14)

d(r) can be understood as a normalized effective charge
experienced by the hole at position r. The denominator is
just the Coulomb potential; in the numerator each
Fourier component of the Coulomb potential is weighted
by a factor s(k). For the singlet state, there is an addi-
tional short-range, repulsive potential J,„p(r) for the
hole, here

J,„can be approximated by a constant
J,„= 2(%', o4„c~(e /r, z) ~%'„o%,o) since we expect that
A (k) is appreciable only in a small range of k. Finally,
we have the eigenvalue equation in k space:

[E;,—E,(k) —E,„]A (k)

+ g A (k —k')s (k') [ f (k')+5M—J„]=0 .
k'

Now we have to transform this equation to real space.
Multiplying by exp(ik r) to both sides and summing over
k, we will get the equation for the envelope function
F(r) F(r) is de. fined as

[(R /2m&*)V +d(r)e Ier]F(r)=El, F(r) . (16)

It is obvious that Eh will always be smaller than Ez (the
acceptor binding energy in the EM approximation) due to
the charge distribution effect. The direct reason for this
effect is that s(k)(1 except for k=0. s(k)(1 means
that the contribution from each k component to the elec-
tron bound state is not uniform. This is always true for
real semiconductors, since the conduction band is never
Hat. Only when the impurity potential is very localized
(for example, in the sense of the Koster-Slater one-site ap-
proximation ) and the conduction band is flat as viewed
by the impurity state can we say it is a "real" deep im-
purity. For a weakly bound electron, E& can be much
smaller than E~.

Since we started from the Hartree-Pock approxima-
tion, screening is not included in this approximation.
But, as in the case of treating free-exciton or acceptor
and donor problems, we can add a static dielectric con-
stant e to the Coulomb interaction in the last step as long
as the bound hole is not very localized.

The factor d (r) is determined by the electron bound
state. The Koster-Slater one-band one-site approxima-
tion is used to get the electron wave function 4,, In
this approximation, d (r), and thus the hole binding ener-

gy, is uniquely determined by the electron binding energy
E, . In calculating s(k), the summation over the Brillouin

p(r)= g exp(ik r)s(k),
k

which is approximately the probability distribution of the
bound electron, because in the effective-mass approxima-
tion s(k) is the Fourier transform of the ~%;, ~

. This
repulsive potential will contribute to the core correction.
It is assumed that the contribution from this potential is
negligible for an extended hole bound state, because the
exchange splitting is smaller than 1 meV for nitrogen
bound excitons. " Thus, the equation becomes the same
for singlet and triplet bound-exciton states, the only
difference from the equation for the EM acceptor being
the reduction factor d (r). Under the parabolic band ap-
proxirnation, it becomes
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zone has been done by using Kleiman's method, ' in
which the Brillouin is divided to X, L, and I valleys. The
numerical results for the charge distribution d(r) are
shown in Fig. 1 for different electron binding energies. It
is clear that when E, is large, d (r) deviates from 1 only
in a small range of r; when it is small, d (r) is less than 1

in a large range of r F.or an ideal acceptor d(r) should
equal 1 everywhere.

Equation (16) has been solved variationally for nitrogen
bound excitons in GaP. Since the spin-orbit coupling is
not taken into account in our derivation, but was includ-
ed in calculating the acceptor binding energy, to simpli-
fy the problem a parabolic valence band is assumed with
an equivalent effective mass which gives the correct EM
acceptor binding energy E„when d(r)=l. For the
ground state, a hydrogenlike 1S function is chosen as the
variational function

F(r)=(A, /ir)'~ exp( —Ar), (17)

where k is the variational parameter. The calculated hole
binding energy EI, is shown as a function of E, in Fig. 2.

In this calculation, pair states are treated as single
centers with different electron binding energies, so the in-
terference effect in the bound electron wave function is
neglected. If the orbit of the hole is much larger than the
pair separation, the single center approximation is
reasonable as far as the hole is concerned.

The hole binding energies for deep bound centers NN,
and NN2 are very close to the experimental result of Ref.
2, which suggests that the core correction is not impor-

tant for nitrogen bound excitons. The deviations for 1VN3

through NN7 are 3—4 meV, probably because the single
center approximation is not good enough for those wider
spaced pairs.

For the isolated center, it is expected that the theory
should work better since there is no interference effect in
this case. It is found that when electron binding energy is
5.8 meV (which corresponds to the potential constant
J = 1.799 eV), the corresponding hole binding energy is
27.2 meV, which gives a total binding energy 33 meV in
agreement with the experiment. ' Figure 3 shows the
probability distributions of the electron bound state and
the hole in the isolated center.

It can be concluded that the deviation of the hole bind-
ing energy from the EM acceptor is to be mostly attribut-
ed to the charge distribution of the bound electron, and
this model predicts that an electron should bind to isolat-
ed N with E, =6 meV. It is important to emphasize that
there is no adjustable parameter in this calculation.

III. OPTICAL TRANSITION RATE
OF AN ACCEPTORLIKE BOUND EXCITON

X5(E,„Eo fico) —. — (18)

The optical transition rate from a ground 'ko to an ex-
cited state 4,„is

I' =(2irliii)(eAO/rnc) [(e,„~e y p;~eo& )
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The matrix element

P =(2~/A')(eAo/mc) IM„I g A (k)ak
k

(19)

The transition rate given by (19) is somewhat more gen-
eral that normally used in some references: '

P =(2m lb)(eAolmc) IM,„I'Vla, l' IP(0)l' . (2o)

This is only valid when ak is very smooth in the vicinity
of I point, when one can write

g A(k)ak -=Iaol g A(k)
k k

By introducing a factor g:

g A(k)ak laol g A(k)
k k

the transition rate can be rewritten as

(21)

P =(2'/h)(eAo/mc) i)IM„I Vlaol I+(0) I (22)

The oscillator strength for the bound excitons can be
defined as'

2f =[2/(3m]]m)] (%,„xp;
l

which is given explicitly as

(23)

~.. 'y. p, ~. = y A*(k)(~„,.kl'yp, l~. &

1 k 1!

= g A*(k)(+,., Ie p; I+,k&
k

= g A*(k)a„*(e„lep, le„,&

k

= g A "(k)akM,„(k),
k

where M,„(k)= (4',kle p; I+„k&. If the k dependence of
M„(k) is negligible, then the optical transition rate for
an acceptorlike bound exciton is

the predicted f is about two orders of magnitude too
large, rather than one order of magnitude too sma11. The
contribution from different bands must clearly be includ-
ed to give an accurate bound electron wave function close
to the impurity, and if the electron binding energy is to
be calculated from first principles. Even though a& in the
I valley are relatively small, they are sensitive to the de-
tail of the potentia1 near the impurity site which deter-
mines the behavior of the bound electron wave function
near the center. However, far from the impurity, the con-
tribution from the first conduction-band minima (i.e., the
X valley) is dominant. The extent of the wave function is
a function only of the binding energy (which is an empiri-
cal parameter in this calculation). In general, while most
properties of the bound-exciton state depend on the de-
tailed behavior of the bound electron wave function, such
as the oscillator strength, binding energy, and its pressure
coeScient, which depend on az in the I valley or a& in
whole BZ, the hole binding energy and the electron —LO-
phonon coupling for polar interaction should not, since
they are mainly determined by the long-range behavior of
the electron wave function. In this calculation, the corre-
lation inside the exciton is neglected. The correlation
correction was calculated to be small for the isolated-
nitrogen-bound exciton, and it will be even less impor-
tant for the pair centers since the wave functions for the
electron and the hole will be more different for the nitro-
gen pair bound excitons.

Finally, a few words about the generality of this theory
are in order. First, it has been assumed that there is no
contribution to the electron wave function 4;, from the
highest valence band, in order to satisfy the orthogonality
relation between the ground state and the trial states.
Since the highest valence band in zinc-blende crystal is
p-like and the relevant contribution to the bound electron
wave function exhibits a node in the region where the im-

purity potential is strong, there is no significant contribu-
tion from this band. ' Thus, the orthogonality relation
holds even in a multiband model, as long as it is safe to
say that the hole bound state has contributions only from
the highest valence band. In the multiband model, the
only change to be made is that s (k) is generalized to

f =3i)Vlao I' I+(0)I'f,.(Eg /&~), (24) Xaka'k —k' (25)

where f,„=E /(3Eg), ' E is the direct band gap, and

Ep=2I(XIp„S&l /m. For Gap, f„=2.58. For the
isolated-nitrogen-bound exciton, F 0 =2.5 X 10
A, Vlaol =72 A, and q=0. 56. The factor 3 in (24)
comes from the degeneracy. The, f =0.01. This is an
order of magnitude smaller than the experimental value
of 0.1 derived from the radiative lifetime' or the absorp-
tion cross section' of the A line. Although the local field
effect, ' neglected in Refs. 16 and 17, could explain part
of this discrepancy, the main source is presumably the
inaccuracy of the one-band —one-site model used in this
calculation. As has been pointed out previously, ' a
multiband model should be used for impurity states local-
ized by short-range potentials. The existing multiband
calculations give a ratio Iaol /la+I -0. 1 compared to
—1X10 in the present one-band calculation, so that

n, n', ke

Second, the spin-orbit effect can be taken into account
from the starting point: the ground state +o. If this is

done, Eq. (16) will become a 4X4 or 6X 6 set of second-
order differential equations, as in the EM acceptor prob-
lem. ' This would need a lot more work than what has
been done here. Third, this theory is generally applicable
to aceeptorlike bound excitons in semiconductors as long
as the approximations made in the first section are
satisfied. It is expected that this approach should be

good for the systems like ZnTe:0, ' in which the isoelect-
ronic impurity oxygen binds an exciton in a very similar

way to nitrogen in GaP. Also it is possibly applicable to
the deep neutral donor bound excitons like oxygen in

GaP where the electron is very tightly bound to the neu-

tral oxygen.
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IV. SUMMARY

An efFective-mass equation has been set up for the hole
binding energy of an acceptorlike bound exciton. The
e8'ective potential for describing the motion of the hole is
determined by the bound electron wave function. %hen
the attractive potential to the electron is a short-range
one, the hole binding energy is determined only by the
electron binding energy. An expression for the oscillator
strength of the bound exciton is given in terms of the
wave function of the bound-exciton state.

The theory has been applied to nitrogen bound exci-
tons in GaP:N. Good agreement is obtained between the
theoretical and experimental results for the hole binding

energies of excitons bound to nitrogen pairs. The spread
in the charge distribution of the bound electron is found
to be the main mechanism for the deviation of the hole
binding energy from that of the EM acceptor. The elec-
tron binding energy of the isolated nitrogen bound exci-
ton is predicted to be about 6 meV.
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