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Silicon plasmon resonances in the local-density approximation
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As a continuation of earlier work, we present the results of a local-density-approximation-based calcu-
lation of some dielectric properties of silicon. In particular, we have calculated the plasmon-resonance
line shape for k—0 and the plasmon dispersion curves including local-field effects and exchange-
correlation corrections. The results are compared with both our earlier empirical-pseudopotential re-

sults and experimental data.

I. INTRODUCTION

In a previous paper' we have expounded on an efficient
numerical method, based on analytical continuation, to
calculate dielectric matrices of a semiconductor. We
used this method to obtain the random-phase-
approximation (RPA) dielectric matrices of Si as a func-
tion of wave vector k and frequency . Subsequently we
calculated the plasmon dispersion curves, including
local-field effects (LFE’s) at all considered wave vectors.
The Si band structure, which is a basic ingredient in such
calculations, was obtained by using the empirical pseudo-
potential method (EPM).

The EPM-based plasmon energies turned out to be
larger than the experimentally determined plasmon ener-
gies and also showed a stronger dispersion as a function
of wave vector than the experimental values. Moreover,
the small anisotropy in the experimental plasmon disper-
sion relations along the A [k=(0,t,¢)] and A [k=(t1,1,1)]
axes of the first Brillouin zone (1BZ) was not correctly
reproduced in our calculations. In fact, the experimental
energy of a plasmon oscillation with a wave vector along
the A axis is somewhat larger than the energy of a
plasmon oscillation with a wave vector of the same mag-
nitude along the A axis, whereas the calculated plasmon
energies displayed the opposite behavior.

Since it is known that the so-called exchange-
correlation corrections to the RPA flatten the plasmon
dispersion’ 7 we have included these corrections in our
calculations. The results of these calculations are
presented in this paper. In contrast to Ref. 1, we have
not used an EPM band structure but a local-density-
approximation (LDA) band structure in which ab initio
ion pseudopotentials are used to construct the crystal po-
tential. The advantage of working with the LDA instead
of the EPM is that it offers a natural, though approxima-
tive, way to include the exchange-correlation corrections
in the dielectric matrix.

In the next section we summarize briefly how the
exchange-correlation corrections to the dielectric matrix
are handled in the framework of the LDA. After that we
present the results of our calculations. These results
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comprise the plasmon dispersion along the A and A axes
of the 1BZ and the plasmon-resonance line shape
(Im[egx(k,0)] as a function of w) for k—0. Moreover,
although not of direct importance for the plasmon disper-
sion, we have included a figure in which we show how the
energy-loss function at k=(0.5,0.5,0.5) is composed of
two plasmon resonances. We end with some conclusions.

II. DIELECTRIC PROPERTIES IN THE LDA

In the LDA the one-electron Hamiltonian has the form
H=T+V_ +Vyp)+V,.(p) (1)

in which T is the kinetic-energy operator and V, is the
crystal potential. The Hartree potential V(p) and the
so-called exchange-correlation potential V, (p), which
are both functionals of the electron density p, account for
the electron-electron Coulomb interaction.

If a many-electron system is perturbed by an external
potential &, (w) with frequency w, the response of the
electrons to this potential induces a so-called screening
potential & (w) in addition to ®,,(w). The total inter-
nal potential ®; (0)=P,(w)+ P (w), which is set up
in the system, is the sum of the external potential and the
screening potential and will be linearly related to the
external potential if this potential is weak. This is ex-
pressed in the following equation:

b, (0)=€ )P (o), )

in which € !(w) is the inverse dielectric matrix.
In the LDA, or in general in density-functional theory
(DFT), the dielectric matrix is given by (see, e.g., Ref. 8)

elw)=1— Py(w) . 3)

v, +8V‘°

In this expression 8V, /8p is the functional derivative of
the exchange-correlation potential with respect to the
electron density evaluated around the ground-state densi-
ty. Furthermore, V(=6Vy/6p) is the naked 1/r
electron-electron Coulomb interaction and Py(w) is the
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RPA polarization matrix. The term (8V, /8p)Py(w) is
the so-called exchange-correlation correction to the
dielectric matrix. The response of the many-electron sys-
tem to an external field is influenced by the Coulomb in-
teraction between electrons and holes which are created
during the polarization process. The above-mentioned
exchange-correlation corrections account for these in-
teractions. If the exchange-correlation corrections are
disregarded, we obtain the more common RPA expres-
sion

elw)=1—V Pylw) . 4)

It has to be remarked that DFT, and thus the LDA to
it, can formally only be used to calculate ground-state
properties. Therefore Eq. (3) is, strictly speaking, only
usable to calculate the exchange-correlation corrections
to the static dielectric matrix (w=0). A rigorous calcula-
tion of exchange-correlation corrections to the plasmon
energies, which are determined by the dielectric proper-
ties at nonzero frequency, requires in principle the use of

J
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energy-dependent exchange-correlation corrections.'®!°

In spite of this, we use Eq. (3) to do a calculation of
exchange-correlation corrections to the plasmon energies
of an inhomogeneous system.

In a plane-wave basis Eq. (3) takes the form

_ e? 1
6K1Kz(k"")—5KnKz_E_OWP&K;“"“’)
i (k)Pok_(k,@) . (5)
% § K,Q QK, o

In this expression K, K,, and Q are reciprocal-lattice
vectors and k is a vector in the 1BZ. The RPA expres-
sion for the polarization matrix PKIKZ(k,a)) in terms of

the electron band structure is given by

__2 5
P (k)= 225 1% x (k) (6)

v

in which I%lxz(k,w) is the integral:

I, ko)=[ dq|3 3 -3 3

l|Ec ,EV l,€v l,€Ec

co—s,l(q)+t-:12(q—k)ii17

X 2 dllq(QZ)dlzq—k(QZ—KZ) 2 dlzq—k(Ql_Kl )dllq(Ql ) . (7)
Q2 Q1

In Eq. (6), a=5.43 A is the Si lattice constant and E, is a
unit of energy defined as E, =(2#*7?)/(ma?)=0.375 Ry
in which m is the electron mass. The d;(K) and ¢,;(k)
are a plane-wave coefficient and band energy, respective-
ly. Wave vectors are in units of (27)/a and energies in
units of E,; ] Ec or v means that the summation is to be
done, respectively, over the conduction and valence
bands only. In the energy denominator +in applies if
I,Ec and I, E€v, and —in applies if /,Ev and I, Ec,
where 7 is positive and infinitesimally small. Because we
have chosen the origin of our coordinate system in a
bond center between two Si atoms, the plane-wave
coefficients in Eq. (7) are real. How we calculate the in-
tegral in Eq. (7) is discussed at length in Ref. 1.

We have to remark that although the exchange-
correlation corrections are included in a way which is
consistent with the LDA one-electron Hamiltonian, they
suffer from a principal shortcoming which is due to the
local nature of the LDA. Because of this local nature,
the momentum representation (8V,, /8p)k (k) is in fact
independent of k. This is an artifact of the LDA, howev-
er, and it is known from calculations on the free-electron
gas that the k dependence of the exchange-correlation
corrections can be important.*>

In our calculations, the results of which will be
presented in the next section, we have used the
exchange-correlation potential that has been obtained in
Ref. 9 by a fully self-consistent LDA calculation of the Si
total ground-state energy. The exchange part of this po-
tential has the Kohn-Sham form!? and the correlation po-
tential is according the the Wigner form.!! The ab initio

ion pseudopotential of Ref. 12 was used to construct the
crystal potential V.

III. RESULTS

In this section we present the results of our LDA cal-
culations and we make a comparison with the EPM re-
sults of Ref. 1. In the remaining part of this paper we
will use the shorthand notation ““(S,N) LDA-EPM calcu-
lation” to indicate a LDA-EPM calculation in which we
used an S XS dielectric matrix to account for the LFE
and in which we used N plane waves in Egs. (5)-(7) to
calculate a dielectric matrix element eKlKZ(k,w). We re-

call that all EPM calculations are done using Eq. (4), that
is, no exchange-correlation corrections are included.

In Fig. 1(a) we have plotted the plasmon dispersion re-
lations of Si along the A and A axes of the 1BZ as ob-
tained in the energy-loss experiments of Refs. 13 and 14.
Note that according to the experiments there is a small
anisotropy in the dispersion along these two directions.
The plasmon energy at a given |q| along the A axis is
somewhat larger than the plasmon energy at the same |q|
value on the A axis.

Figure 1(b) contains the calculated plasmon dispersion.
The plasmon energies in this figure are the positions of
the maxima in the calculated loss functions
— Im[egi(k,®)] (in Ref. 1 we called this the experimen-
tal definition). For the dispersion along both the A and
the A directions two sets of results are shown. The sym-
bols correspond to a (15,59) EPM calculation (O, A axis;
+, A axis) and the lines (full line, A axis; dotted line, A
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FIG. 1. Plasmon dispersion relations. (a) Experimental values. [, along A axis according to Ref. 13; <, along A axis according to
Ref. 13; +, along A axis according to Ref. 14; (b) O, (15,59) EPM calculation along A axis; +, (15,59) EPM calculation along A axis;

, (15,59) LDA calculation along A axis; - -

- -, (15,59) LDA calculation along A axis. (c) Plasmon dispersion along A axis. O,
experiment according to Ref. 13; A, experiment according to Ref. 14; +, (15,59) EPM calculation of (b);

, (27,113) LDA calcu-

lation; V, (27,113) LDA calculation with exchange-correlation corrections. (d) Plasmon dispersion along A axis. <, experiments ac-

cording to Ref. 13; O, (15,59) EPM calculation of (b);
correlation corrections.

axis) have been obtained with a (15,59) LDA calculation
according to Eq. (4), that is exchange-correlation correc-
tions have not yet been included. Comparing in Fig. 1(b)
the dotted line with the full line shows that the LDA
plasmon energies along the A axis are somewhat larger
than the LDA plasmon energies along the A axis. Thus
we see that, in contrast to the EPM, the LDA leads to
plasmon dispersion relations which display the experi-
mentally observed anisotropy.

In Figs. 1(c) and 1(d) both the EPM- and LDA-based
plasmon energies are compared with the experimental
values. The full line in these figures corresponds to a
(27,113) LDA calculation using Eq. (4). We observe that
the LDA yields plasmon energies which are in far better
agreement with experiment than the EPM plasmon ener-
gies. This is especially so for the plasmon energies along
the A axis in Fig. 1(d). The V symbols were obtained by
taking exchange-correlation corrections into account ac-
cording to Eq. (3). The effect of these corrections on the
plasmon energies turns out to be very small and the
plasmon dispersion is only slightly flattened in the direc-
tion of the experimentally determined dispersion.

The only small modification has to be contrasted with
the much larger effect of exchange-correlation correc-
tions on the plasmon dispersion which has been found in
Refs. 4-7. Of these works Refs. 4—6 concern the free-
electron gas and Ref. 7 (see Table I) deals with inhomo-
geneous systems. This larger effect of the exchange-
correlation effects might be connected with the above-
mentioned k independence of our exchange-correlation

, (27,113) LDA calculation; V, (27,113) LDA calculation with exchange-

corrections, a shortcoming of which the cited works do
not suffer. Moreover, as opposed to the LDA expression
for the exchange-correlation correction (8¥,./8p) which
we use, the exchange-correlation corrections in Refs. 4-7
are energy dependent and this energy dependence is im-
portant in the flattening of the plasmon dispersion.®

It is common usage to describe plasmon dispersion re-
lations by

E(Q=E,(0)+a(#/m)lq|*, (8)

with a a dimensionless parameter. The RPA value of
this parameter for the free-electron gas is given by
a=3(Ep /fiwy) with wy=E,(0) the plasmon frequency at
q=0 and E; the Fermi energy. If we use the free-
electron gas expression for Er in terms of the electron
density p and substitute for p the value of the mean elec-
tron density in Si we find a=0.45.

The results for a least-squares fit for ¢ are given in
Table I(a). In this table we make a distinction between
the dispersion along the A axis (a,) and the dispersion
along the A axis (a,). In the fit we have excluded the
part of the dispersion relation at large |q|, where the cal-
culated plasmon energies start to deviate considerably
from the experimental value. Accordingly, the plasmon
energies at wave vectors up to |q|=0.93 A™' were in-
cluded in the fits for a, and the plasmon energies at wave
vectors up to |q|=0.8 A ™! were included in the fits for
a,.
Table I(a) shows that our LDA calculation reproduces
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TABLE 1. Values for the dimensionless dispersion coefficient
a in Eq. (8). a, and a, are the coefficients for the dispersion
along the A and A axes, respectively. The calculated plasmon
energies up to |q|=0.93 A~ were included in the fits for @, and
the plasmon energies up to |q| =0.80 A7 in the fits for a,. The
value for a, obtained by fitting to the EPM plasmon dispersion
relation is marked with an * because this dispersion relation
could not very well be described with Eq. (8). In (b) values ob-
tained by other authors as well as the experimental values are
given. (a) Calculated values from Ref. 15; (bl) calculated RPA
values from Ref. 7; (b2) calculated values from Ref. 7 including
exchange correlation; (c) experimental values from Ref. 16,
Table 7.4.

2 Qax

(a) Calculation

(15,59) LDA 0.49 0.37
(27,113) LDA 0.39 0.32
(15,59) EPM 0.59 0.69*
(b) Comparison with other work and experiment
(a) 0.60 0.49
(b1) 0.49 0.49
(b2) 0.38 0.38
(c) 0.41 0.32

the experimentally observed anisotropy in the plasmon
dispersion along the A and A axes. As remarked before,
the EPM calculation does not reproduce this anisotropy.
Besides, the EPM plasmon dispersion relation along the
A axis cannot very well be described with Eq. (8). The
first three rows of Table I(b) contain the values for a ob-
tained in Refs. 15 and 7. The values of Ref. 15 have been
obtained in a calculation in which the crystal potential
was treated perturbatively. This calculation, which from
a theoretical point of view is simpler than ours, also leads
to an anisotropic dispersion. The values for a, and a,,
however, are larger than the values obtained by us.

Because of the particular method of calculation, the
plasmon energies in Ref. 7 had to be defined as the first
moment (center of gravity) of the energy-loss function.
This deviant definition of plasmon energies makes com-
parison with our results and experimental values prob-
lematic. For example, the use of the LDA in Ref. 7
yields an isotropic plasmon dispersion by definition,
whereas our LDA calculation together with the common
experimental definition of plasmon energies leads to an
anisotropic dispersion.

Finally, the last row of Table I(b) contains the experi-
mentally determined values for a, and a, as given in
Ref. 16. The magnitude of the anisotropy in the values of
a obtained in the (27,113) LDA calculation is in good
agreement with the experimentally observed anisotropy.

In Figs. 2(a) and 2(b) we compare the calculated
plasmon-resonance line shapes ( Im[egk(k,®)] as a func-
tion of @) for k—0 with the experimental line shape of
Ref. 17. We have checked the convergence of our results
with respect to the size of the dielectric matrix as well as
with respect to the number of plane waves. It turned out
that as far as the loss function Im[egx(k—0,)] is con-
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cerned a (15,169) calculation yields converged results.

Figure 2(a) is the result of a (59,169) EPM calculation.
Figure 2(b) displays the results of two (15,169) LDA cal-
culations, one of which without exchange-correlation
corrections (full line) and the other with exchange-
correlation corrections (dotted line). Comparing Fig. 2(a)
with the full line in Fig. 2(b), we conclude that replacing
the EPM band structure with a LDA band structure,
without further inclusion of exchange-correlation effects,
improves the width and the strength of the plasmon reso-
nance as compared with experiment. The plasmon ener-
gy, however, is about 0.8 eV too large in both calcula-
tions. The dotted line in Fig. 2(b) shows that including
exchange-correlation corrections in the LDA scheme
does not give a further improvement; in fact, the agree-
ment with experiment worsens.

We end this section with Fig. 3 in which we have plot-
ted the complex plasmon energies z(k) which are defined
as the solutions of

det[e(k,z)]=0. 9)

In Ref. 1 we called this the theoretical definition. The
full lines in the figure have been obtained by neglecting
LFE, that is by disregarding the nondiagonal elements of
€in Eq. (9). This reduces Eq. (9) to the simpler equation

GKK(k,z)=0 . (10)

The solutions on the full line are labeled by the value of
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FIG. 2. Comparison of the results for Im[eg'(k,®)] at
k=(0,0.029,0.029) with experiment. The value of k is such
that |k| =0.067 A~' equals the value of the momentum transfer
at which the experiments were performed. (a) (59,169) EPM cal-
culation. (b) (15,169) LDA calculation. , no exchange-
correlation corrections; - - - -, RPA with exchange-correlation
corrections according to Eq. (3); O, experimental values ac-
cording to Ref. 17.
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k+K=(t,t,¢t), which is the plasmon wave vector
(momentum). The LFE couples two plasmons which
have wave vectors differing a reciprocal-lattice vector and
if a LFE is taken into account through solving Eq. (9) the
“no-LFE” plasmon dispersion curve splits into two
branches (plasmon bands) which are plotted as the dotted
curves in Fig. 3. The labels on this two-branched dotted
curve give the value of k=/(t,t,1).

We observe that the effect of the LFE on the plasmon
lifetime is qualitatively the same in the EPM and the
LDA calculations: the lifetime of the “no-LFE plasmon™
with a wave vector within the 1BZ decreases ( the abso-
lute value of the imaginary part of the solution increases)
and the lifetime of the “no-LFE plasmon” with a wave
vector outside the 1BZ increases. However, especially
near the 1BZ edge, the effect is much larger in the EPM
calculation. This is reflected in Fig. 4 in which the total
energy-loss function at k=k; =(0.5,0.5,0.5) is analyzed
in its two plasmon contributions according to (see Ref. 1)

R go(k)
w—z(k)

R2(k)
0—2z,(k)

Im[ex!(k,0)]~ Im . (11)

Im(z) (eV)

19 20 21 22 23 24
Re(z) (eV)
0
(b)
Im(z) (eV)
e, 03
e
18 20 22 24 26
Re(z) (eV)

FIG. 3. Complex plasmon energies for k along the A axes.
(a) has been obtained with an EPM calculation and (b) with a
LDA calculation. The plasmon energies marked with + sym-
bols have been obtained by neglecting local-field effects, that is,
they are the solutions of egg(k,z)=0. The numbers marking
the + symbols give the value of g=k+K=(z,7,¢). The ® sym-
bols in (a) are the solutions of det[e(k,z)]=0 using a (15,59)
dielectric matrix. The O symbols in (b) were obtained using a
(27,113) dielectric matrix. In these cases the labels give
k=(1,1,1).
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FIG. 4. This figure illustrates to what extent Im[exk(k,®)]
and thus the energy-loss spectrum can be analyzed in plasmon
resonances according to Eq. (11). The full lines in the figure
correspond to Im[ég'(k,)]. The dotted line and short-long-
dashed line are the two terms of the right-hand side of Eq. (11);
the long-dashed line is the sum of both. The figures correspond
to the following calculations: (a) (15,59) EPM; k=(0.5,0.5,0.5).
(b) (27,113) LDA; k=(0.5,0.5,0.5).

In this equation z,(k) and z,(k) are the solutions of Eq.
(9), which were plotted in Fig. 3. R} (k) and R},(k) are
the residues of the corresponding poles in € .

Figure 4(a) is identical to Fig. 9 of Ref. 1 and Fig. 4(b)
is the analogous LDA figure. Due to the large difference
in lifetime of the two EPM plasmons at k; —compare
the two solutions at k=(0.5,0.5,0.5) in Fig. 3(a)—the
first-band plasmon can hardly be recognized as a reso-
nance in the energy-loss function of Fig. 4(a). In Fig. 4(b)
we see that also in the LDA calculation, the contribution
of the second-band plasmon is larger than the first-band
plasmon contribution; the effect, however, is much less
pronounced than in the EPM case.

IV. DISCUSSION AND CONCLUSIONS

We have presented the results of detailed LDA-based
calculations of plasmon resonances in Si. Comparison
with experiment clearly favors the use of a LDA band
structure above an EPM band structure to calculate
plasmon energies. In particular, in contrast to the EPM-
based plasmon dispersion relations, the LDA-based
plasmon dispersion relations along the A and A axes of
the 1BZ show the correct anisotropic behavior. The
LDA calculation, as well as the EPM calculation, gives
rise to a plasmon dispersion which is too strong at large
wave vectors.

In both calculations, EPM as well as LDA, there
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remains a discrepancy of about 0.8 eV between the mea-
sured and the calculated plasmon energy at k=0. This
difference cannot be explained by our neglect of the con-
tribution of the core electrons to the polarizability. Al-
though the correction on the plasmon energy due to these
core electrons has the proper sign, its estimated value of
—0.5% of the plasmon energy (—0.09 eV) as given in
Ref. 7 is too small to account for the observed discrepan-
cy. It is puzzling that the value of 16.6 eV, which is ob-
tained by using the simple formula Ep,=ﬁ(pe2/m €)'
for the plasmon energy of a homogeneous system with p
the mean electron density in Si, is much closer to the ex-
perimental 16.7 eV than our laboriously obtained value of
17.5 eV.

Concerning the shape of the loss function
Im[e€g'(k—0,)] we have seen that the LDA calcula-
tion leads to better agreement with experiment than the
EPM calculations. In this case inclusion of exchange-
correlation effects only changes the strength of the reso-
nance and in fact worsens the agreement with experi-
ment.

From our results it is clear that it is the mere replace-
ment in Eq. (4) of the EPM band structure by the LDA
band structure which yields the improved agreement with
experiment. The further inclusion, as in Eq. (3), of the
LDA-type exchange-correlation corrections in the dielec-
tric matrix either worsens the agreement with experi-
ment, as is the case with the loss function for k—0, or
hardly has any effect, as on the plasmon dispersion rela-
tion. This lack of effect on the plasmon dispersion rela-
tion, especially at large wave vectors, is probably due to
the aforementioned two shortcomings in our scheme for
including exchange-correlation corrections, which are the
o and k independence of the term (8V,_/8p).

The objection of the » independence of (8V,./8p) can
possibly be met by using the energy-dependent DFT as
described in Ref. 18. A way to use this theory in a LDA
framework is suggested in Ref. 19. In principle the k
dependence can be accounted for by doing a DFT calcu-
lation without making the LDA. Of course this requires
a suitable nonlocal exchange-correlation functional which
can for example be found in Ref. 20.
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As shown in Eq. (11) and Fig. 4 our method of calcula-
tion enables us to identify explicitly the plasmon poles in
the inverse dielectric matrix and to obtain the plasmon
contribution to the inverse dielectric matrix. This re-
minds one of the plasmon-pole models occurring in the
GW approximation, which has successfully been used in
semiconductor band-structure calculations (e.g., Refs.
21-23). However, contrary to the real-valued plasmon-
pole positions in those models, the pole positions as we
calculate them have a finite imaginary part corresponding
to the inverse resonance lifetime. Therefore, in the re-
gion of the plasmon energy, our representation in Eq. (11)
is a far better approximation to the inverse dielectric ma-
trix than the above-mentioned models. On the other
hand, the plasmon-pole models are not devised to de-
scribe the plasmon resonance in detail, but are meant to
give a convenient and accurate description of the inverse
dielectric matrix at low frequencies. In fact, the static
dielectric matrix is used as input to obtain the pole pa-
rameters. It is clear that the representation in Eq. (11)
does not make sense at frequencies too far from the
plasmon frequency, in particular not at low frequencies.
Therefore, considered from a GW point of view, our pole
parameters are not to be considered an improvement over
the parameters of the plasmon-pole models. However, in
Ref. 24 it is suggested how to extend the representation
in Eq. (11) in order to give it a larger range of validity.
Results illustrating this extended representation in a
one-dimensional model system can be found in Ref. 25.

To conclude, we think that we have come far in per-
forming an ab initio calculation of dielectric matrices and
related quantities of an inhomogeneous system like sil-
icon. The remaining discrepancies between our results
and experiments cannot be resolved by increasing the
number of plane waves or the size of the dielectric ma-
trix, but requires the use of more elaborate schemes to ac-
count for exchange-correlation corrections.
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