PHYSICAL REVIEW B

VOLUME 45, NUMBER 15

RAPID COMMUNICATIONS

15 APRIL 1992-1

Evidence for a first-order correction to the Boltzmann conductivity
of a disordered three-dimensional electron gas

P. W. Adams and D. A. Browne
Department of Physics and Astronomy, Louisiana State University,
Baton Rouge, Louisiana 70808

M. A. Paalanen
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
(Received 11 December 1991)

Analysis of data from several experimental groups on electron mobility in dense neutral gases
from 3 to 300 K reveals the existence of a correction to the mobility arising from incoherent multiple
scattering that is proportional to 1/k€,. This correction overwhelms the traditionally used 1/(k£,)?
term arising from coherent backscattering and dominates the gas density dependence of the mobility
of thermal electrons in helium. We also reanalyze Si:P data above the metal-insulator transition in

terms of these incoherent scattering corrections.

The past two decades have seen a varied and richly
productive research effort into electron transport in dis-
ordered media.l»2 Many of the ideas and formalisms de-
veloped to explain the behavior of disordered conductors
have spilled over into other fields such as acoustics, light
propagation,? and atomic physics.’ In the simplest pic-
ture one considers a noninteracting system with some in-
trinsic disorder. In 1958 Anderson® showed that, for suf-
ficiently strong disorder, electrons become completely lo-
calized with exponentially decaying wave functions. Fur-
ther work by Mott” revealed the existence of a mobility
edge or finite-energy threshold for conduction in pres-
ence of strong disorder. In the moderate disorder regime,
much work was devoted to studying the most singu-
lar perturbative corrections, commonly known as weak
localization. These corrections arise from constructive
interference between electron trajectories which are re-
lated by time-reversal symmetry and which lead to an
enhanced backscattering amplitude. The magnitude of
these corrections is determined in part by the dephas-
ing length Ly, which is the distance an electron travels
before losing phase coherence. In two dimensions, the
weak-localization terms give a conductivity of the form#8
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where kp is the electron Fermi wave vector, £, is the
elastic mean free path, and op is the Boltzmann conduc-
tivity. Equation (1) has been verified in several elegant
experiments® ! in which the effective electron dephasing
length is changed by applying a perpendicular magnetic
field, adding magnetic impurities, or changing the tem-
perature. Indeed, the great success of weak-localization
theory has been its explanation of the generic nature of
the observed scale dependencies of a wide variety of dis-
ordered two-dimensional (2D) electron systems in terms
of coherent scattering processes. The fact that these cor-
rections can be studied without varying the disorder of
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the sample has been one reason for the extensive experi-
mental work.

The evidence for weak localization in 3D transport is
much less clear than in 2D. In 3D there is known to exist
a finite impurity density mobility edge” at T=0 imply-
ing that perhaps the transport is no longer dominated
by the coherent (i.e., time-reversed) multiple-scattering
effects. A naive extrapolation of the 2D coherent scat-
tering formalism predicts a first-order correction to the
3D conductivity of the form®!2

Unfortunately, there is relatively little experimental data
directly measuring the first-order corrections to the 3D
conductivity. As a result of this, along with the historical
emphasis on 2D transport in the localization community,
there has been no rigorous test of Eq. (2) though it has
been extensively applied to the analysis of transport in
amorphous semiconductors.!'!?!3 In the present paper
we present irrevocable experimental evidence extracted
from electron-gas atom scattering data in the literature
and Si:P data taken by the authors that Eq. (2) is incor-
rect. We show that the data are instead consistent with
a first-order quantum correction proportional to 1/k£,,.

In the gas atom scattering experiments we will be con-
sidering one measures the drift velocity of thermalized
electrons injected into a neutral gas.!* These systems
are simpler to interpret than amorphous semiconductors
where there are complications due to spin-orbit scatter-
ing and electron-electron interaction effects.!'!> Further-
more, electron-gas atom scattering is highly elastic, phase
coherent, and almost purely s wave even at room tem-
perature. The classical electron mobility is'4

_ 4el, (3)
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The electron mean free path is £, = 1/4ma%p at all
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gas densities, where a is the electron-gas atom scatter-
ing length and p = ngkpT/(0P/0ny) is the mean-square
fluctuation density of a nonideal gas with density ny. The
effective number of scatterers is p so all of the data will
be a function of p and not n,.

There have been quite a number of experiments mea-
suring the mobility of electrons in Hy (Ref. 16) and He
(Ref. 17-20) in a range of temperatures from 3K to 300K.
These gases have a well known, positive scattering length
that is a relatively weak function of energy?! which sim-
plifies the analysis. There have also been recent measure-
ments in Ne,?? which we will not consider here because
Ne exhibits a strong energy dependence in the scattering
length which complicates our analysis.

All of the experiments we will be addressing show that
at low gas densities there are deviations from Eq. (3) that
are linear in p. At sufficiently high gas densities precip-
itous drops in mobility are seen with measured values
as low as several orders of magnitude below the classical
curve. For this reason we will consider the two density
regimes separately though, as we will discuss below, we
believe the two limiting behaviors are fundamentally con-
nected.

We show in Fig. 1 low-density helium data of Schwarz
in which the classical density dependence of the mobility
has been factored out. The data show a deviation from
the classical mobility, shown as horizontal curves in this
plot. The deviation is linear in the gas density, and dis-
agrees with the predicted 1/(k7¢,)? o p? dependence of
Eq. (2). Schwarz suggested that he was seeing a 1/kr¥4,
deviation, where kr = /2m.kgT/h is the electron ther-
mal wave vector, but the implications of his observations
were not appreciated by the localization community.

There has been work that interpreted deviations from
the classical mobility as arising from the energy depen-
dence of the either the electron self-energy?? or the scat-
tering cross section without invoking weak localization?4.
Quantum multiple-scattering contributions to the con-
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FIG. 1. Deviations from classical transport at low helium

gas densities, from Ref. 19. The dashed lines are the classical
dependence of Eq. (3). The solid lines are provided as a guide
to the eye.
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ductivity, or equivalently to the mobility, of thermal elec-
trons in a gas with low polarizability were first calcu-
lated by Atrazhev and Iakubov.2® They predicted a first-
order correction proportional to 1/krf,. More recently
Kirkpatrick and Belitz,?¢ correcting earlier work by Kirk-
patrick and Dorfman,?” have calculated the static, zero-
temperature,!” impurity corrections to the conductivity
of a noninteracting 3D electron gas and obtained re-
sults similar to those of Atrazhev and Iakubov.?% In both
these calculations the maximally crossed diagrams which
yield Eq. (2) are only a subset of the multiple-scattering
processes summed in the perturbation expansion. Kirk-
patrick and Belitz?® find that the lowest leading-order
corrections are

weonlioT (2 -4 2 21 krt,
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The last term is only a few percent of the 1/kg£, term for
all kp€, > 2 and can be neglected in the following anal-
yses. This result is completely different from the T'=0
extrapolation of Eq. (2) where one simply neglects the
£,/Ly term. To test the applicability of Eq. (4) to low
density gas atom scattering we have digitized the data
of several groups and plotted in Fig. 2 the normalized
mobility, p/pe, as a function of the dimensionless pa-
rameter x = 2/(kr€,) x p//T which is proportional to
the first order in term in Eq. (4). To properly normalize
the data we have included the weak energy dependence
of scattering lengths?! of He and H,. Note that all of
the data, taken over a temperature range of 3K to 300K,
fall on a universal linear curve. This behavior was dis-
covered by Schwarz!® in He data but at the time was
not understood. Also shown in Fig. 2 are the predicted
dependence of Eq. (2) for weak localization and the pre-
diction of Eq. (4). To apply the degenerate expressions
to the nondegenerate case we have integrated over all
wave vectors weighted by a Boltzmann distribution. For
instance, using Eq. (4) we have
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where E, = nm2x%kgT/9 = 272h%/(9m.£2) is a mobility
edge where the integrand of Eq. (5) vanishes. In the low-
density regime E, is small and the behavior of Eq. (5) is
dominated by the density dependence of the second term
in the integrand. The data agrees well with Eq. (4) and
suggests that the coherent backscattering processes in a
3D system are relatively unimportant. Moreover, Fig. 2
leaves little doubt that Eq. (2) does not describe the dc
conductivity and cannot be extrapolated to T'=0. We
have also observed similar though less direct evidence
for incoherent scattering effects in gas atom scattering
of 2D electrons on hydrogen.?® Unfortunately, the static
impurity scattering theory breaks down?® in 2D and we
have no perturbative estimate of any terms other than
Eq. (1).

In strong disorder, ie., x > 1, Eq. (5) falls off as



45 EVIDENCE FOR A FIRST-ORDER CORRECTION TO THE. ..

exp(—E./kpT) = exp(—m2x2%/9). In Fig. 3 we have plot-
ted the normalized mobility of several experiments in the
literature as a function of x2. The solid line is the pre-
diction of Eq. (5). Note that the data falls on a nearly
linear universal curve. The three order-of-magnitude de-
crease below the classical mobility arises solely from the
dependence of the mobility edge on gas density. While
we estimated E. above using Eq. (3) for the mobility,
one also finds E. o« p? with about the same prefactor
when Eq. (2) is used. This is a consequence of the fact
that the high-density data is a probe3® of the behavior
of the mobility edge, which is determined by k4, =~ 1. In
fact, the same dependence of E. on p can be obtained
by estimating the maximum binding energy of quantum
wells formed out of random fluctuations in the helium
gas density.?®

Early investigators interpreted the strong density de-
pendence in Fig. 3 as evidence for formation of elec-
tron bubbles in the gas.!*3! This interpretation has been
criticized,!® and given the complete collapse of the data
onto a universal localization curve, we contend that there
is no definitive evidence for bubble formation in these ex-
periments. The saturation of the mobility for x2 > 5 is
a consequence of the finite mass of the gas atoms which
is ignored in the present model. Even the most deeply
localized electrons, whether they are trapped in random
density fluctuations, in bubbles, or as negative ions, will
have a finite mobility owing to gas atom diffusion.

The incoherent corrections seen in electron mobility in
dense gases should also be important in transport in de-
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FIG. 2. Normalized mobility as a function of the dimen-

sionless parameter x = 2/krf, x p/V/T from Ref. 19, open
circles, 2.7 K; open squares, 3.4 K; open triangles, 4.2 K; open
diamonds, 5.0 K; from Ref. 17, crosses, 7.3 K; solid circles,
18.1 K; from Ref. 18, solid squares, 20.3 K; from Ref.1¢, solid
triangles, 77 K; solid diamonds, 77 K (H2); from Ref. 20,
x 293 K. The dashed line is the prediction of the weak-
localization correction given in Eq. (2). The solid line is the
prediction of the static impurity corrections given in Eq. (4).

RAPID COMMUNICATIONS

8839

10°

10!

E:-’ 10-2
3
10-3]
104
0.0
FIG. 3. Normalized mobility as a function of x? at high

gas densities from Ref. 19, solid squares, 3.8 K; solid crosses,
4.2 K; solid circles, 5.0 K; Ref. 17, open squares, 7.3K; Ref. 18,
x, 20.3 K; from Ref. 16, solid triangles, 77 K. The solid line
is the prediction of Eq. (5) with E. = x*>x*kpT/9.

generate electron systems like doped semiconductors and
disordered metals. To demonstrate this we have analyzed
the density dependence of the zero-temperature conduc-
tivity of phosphorous doped silicon, Si:P. In uncompen-
sated Si:P, the ionized phosphorous donors also act as
scattering centers. The density of the scattering centers
can be increased over the free-electron density n by com-
pensating Si:P with acceptors such as boron. The metal-
insulator transition takes place in these silicon-based sys-
tems at a critical carrier density3? n, ~ 4 x 108 cm=3.
We analyze the density dependence of the Si:P data of
Thomanschefsky3® in Fig. 4 using the incoherent terms
from Eq. (4). The Boltzmann conductivity in Si:P is
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FIG. 4. Low-temperature conductivity of Si:P as a func-

tion of carrier density from Ref. 33 for three different compen-
sations K; solid squares, K = 0; plusses, K = 0.4; asterisks,
K = 0.5. The dashed lines are the prediction of Eq. (4) where
£, has been varied to fit the highest density data point at each
compensation. The inset shows the relative weakness of the
field dependence of the conductivity in Si:P.
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op = ve’k%l,/(3n%h), where k3 = 37°n/v, and v = 6 is
the valley degeneracy in Si. We assume as in Ref. 13 that
£, is independent of n and treat it as a fitting parame-
ter for the data taken at different compensation levels in
Fig. 4. Our analysis ignores important electron-electron
interaction effects but is nevertheless useful in estimat-
ing both the electron mean free path and the width of
the critical region of the metal-insulator transition. The
resulting curves are similar to those found by Bhatt and
Ramakrishnan!3® and Thomanschefsky®3 using Eq. (2),
but their fitted values of £, are 30% smaller than ours.
Our analysis indicates that the compensated samples do
not have a well-defined critical regime.

In the inset of Fig. 4 we have plotted the magneto-
conductance at T=3K of a Si:P sample with n = 1.25n,.
The Si:P system is complex and unexpectedly small posi-
tive magnetoconductances are often thought to be the re-
sult of weak-localization effects being offset by significant
electron-electron interaction effects which yield negative
magnetoconductances of the same order of magnitude.
However, given our analysis, an alternative interpreta-
tion of the data in the inset is that the backscattering
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terms are very small when set against the overall suppres-
sion of the conductivity by incoherent multiple-scattering
processes.

The results presented here conclusively show that the
leading-order corrections to the mobility in disordered 3D
systems vary as 1/k£, and arise from incoherent multiple-
scattering processes rather than coherent backscattering.
The weak-localization terms only describe the variation
in mobility with magnetic field or temperature, while the
incoherent scattering processes set the overall conductiv-
ity scale. We suggest that magnetoconductance measure-
ments on electrons in moderately dense gases will confirm
the small role played by coherent backscattering in 3D
disordered transport.
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