PHYSICAL REVIEW B

VOLUME 45, NUMBER 15

RAPID COMMUNICATIONS

15 APRIL 1992-1

Quasiparticle effective mass and enhanced g factor for a
two-dimensional electron gas at intermediate magnetic fields

A. P. Smith* and A. H. MacDonald
Department of Physics, Indiana University, Bloomington, Indiana 47405

G. Gumbs
Department of Physics, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10021
(Received 10 January 1992)

The single-particle self-energy in a Landau quantized two-dimensional electron gas has been eval-
uated in magnetic fields corresponding to arbitrarily large integer filling factors using the random-
phase approximation. Quasiparticle energy separations have been determined for Landau levels near
the Fermi level and comparisons are made with values determined from recent activation energy mea-
surements on integral quantum Hall plateaus. Conclusions are drawn concerning the field strengths
required for the validity of commonly adopted strong-field approximations. A series of transitions
characterized by jumps in the spin polarization is predicted to occur near odd filling factors for

sufficiently low densities.

The effect of electron-electron interactions on many
properties of an electron-gas system can be expressed in
terms of the shifts produced in the positions of poles in
the one-particle Green’s function. Usually it is only the
relative changes in the positions of poles near the Fermi
level which are physically relevant. In the absence of a
magnetic field these may be expressed in terms of two
parameters:
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Here E,(k) is the quasiparicle energy at which the
Green’s function poles occur and £, (k) is the electron en-
ergy in the absence of interactions. m and ¢ are the bare
electron mass and g factor, respectively, and m/m* and
g*/g measure the enhancement of the wave vector and
spin dependence of the quasiparticle energy, respectively.
(kp is the Fermi wave vector.) Note that the cyclotron
effective mass measured by infrared spectroscopy is, like
the zero-field plasma frequency, a property of the whole
electron gas at long wavelengths, and is not directly re-
lated to the the quasiparticle effective mass calculated
here. In particular, Kohn’s theorem! implies that the
cyclotron mass, unlike the quasiparticle mass, is not al-
tered by electron-electron interactions.

The evaluation of these two quantities has long? been
a central problem of the application of many-body per-
turbative techniques to the electron gas. In the two-
dimensional (2D) case there have been numerous3™ cal-
culations of m/m* and g*/g at zero and weak magnetic
fields following the early work of Janak!? showing a large
exchange enhancement of g* at low density. At stronger
magnetic fields, in 2D, Landau quantization becomes im-
portant and it is known experimentally!!™15 that the g-

©)

45

factor enhancement can become extremely large when-
ever the Fermi level lies between spin-split Landau lev-
els. The large enhancements are explained qualitatively
by the calculation of Ando and Uemura!® who evalu-
ated the self-energy including Landau quantization in a
static screening approximation. In the extreme strong-
field limit, at least for integer filling factors,!” the impor-
tance of interaction effects is reduced again because of
the suppression of density fluctuations by kinetic-energy
quantization which creates an energetic separatation be-
tween occupied and empty Landau levels. In this pa-
per we present the first calculations of quasiparticle en-
ergy differences near the Fermi level using a dynamic
screening approximation which is expected to be reli-
able at arbitrary field strength. We find that quanti-
tatively important corrections to the commonly adopted
strong-magnetic-field approximation, in which Landau-
level mixing is neglected, occur at typical densities for
all integral filling factors larger than 1. At weak fields we
recover results obtained from zero-field calculations. At
stronger fields good agreement with values determined
from recent activation energy measurements!® on inte-
gral quantum Hall plateaus is obtained.

We consider a 2D electron gas in a perpendicular mag-
netic field, with electrons interacting via a Coulomb in-
teraction and calculate the corrections to the quasipar-
ticle energy of electrons in each Landau level resulting
from many-body effects. At zero temperature and inte-
ger filling factor, ¥ = n, the ground state in the absence
of interactions is a single Slater determinant and the sys-
tem has a finite excitation gap equal to the Landau-level
separation. To lowest order the self-energy has only the
exchange contribution of the Hartree-Fock (HF) approx-
imation which can be evaluated exactly.!® We approxi-
mate the correlation contributions to the self-energy us-
ing the random-phase approximation (RPA) in which the
interaction in the exchange term is dynamically screened.
The frequency dependence is quantitatively important at
all fields, although qualitatively similar results can be
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obtained in a static screening approximation. For the
frequency-dependence we use a single-pole approxima-
tion as was done at zero field for 2D by Vinter.®

In the following we use quasiatomic units with aj =
h%e,/mye? as the length unit, and the unit of energy is
2Ry = e?/¢qay, with m, the band mass and ¢, the bulk
dielectric constant. The bare one-particle energies of the
states in Landau level n with spin o (= :i:%) are given by

Wn,o = (2n + gerro)7, 3)

where geg = gmy/m, and v = hw,./2 R} is the dimension-
less magnetic field. The RPA self-energy approximation
i1s summarized diagramatically in Fig. 1. Using finite-
temperature perturbation theory,
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FIG. 1. Feynman diagrams. (a) is the bubble diagram in
the density-density response, and (b) is the diagram used for
the self-energy calculation.
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where w, is a Boson Matsubara frequency, ¢, is a
Fermion Matsubara frequency, V.(¢q) = 27/q is the two-
dimensional Coulomb interaction, and e(q,w) = 1 —
V.(¢)II°(g,w) is the frequency-dependent dielectric func-
tion. Here I1°(q,w) is the polarization function for a non-
interacting electron system,
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P, n' is proportional to the total oscillator strength for
transitions from any state in Landau level n to any state
in Landau level n':

Poni(z) =] < n'[e97|n > |?
= (=)™ e L (2)LP T (2), (6)

where z = ¢%1%2/2, and f(¢) is the Fermi function. Details
on the efficient evaluation of €(q, iw,) and other numeri-
cal aspects of this work will appear elsewhere.

In the HF approximation ( II° = 0) the ¢ integral
for each n’ can be evaluated analytically!® and takes the
form

er 1
Yoo = _szn,n’f(wn‘,a)v (7)

where X,  is a real number depending only on n and
n’. To evaluate the remaining contribution to the self-
energy, £:°7 (w), we must perform a sum over Matsubara
frequencies. Because we ultimately wish to analytically
continue the result to real frequencies it is desirable to
perform the sum analytically. This is possible, using the
standard contour integration method, provided we know
the locations and residues of the poles of the summand.
Aside from the pole coming from the Green’s function
this means finding the poles in the complex frequency
plane of 1/¢(q,w) — 1. Fortunately, the most impor-
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tant of these is that at the real frequency correspond-
ing to the magnetoplasmon. We will, in the following,
use a “magnetoplasmon-pole” approximation, in analogy
to the plasmon-pole approximation used in the zero-field
calculation of Vinter.® Thus we approximate

1 a 1 1
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Following Ref. 6 we choose a and w, in order to satisfy
the zero-frequency Kramers-Kronig relation and the f
sum rule. We find

a(q) = —wp(g)® = —mng, (9)

where n is the density of the 2D electron gas, and

2 _ a(q)
“0 = [Weq, 0~ 1 1o

The resulting pole frequency is shown in Fig. 2. This
approximation for the frequency dependence can be sys-
tematically improved by finding higher-order Padé ap-
proximants to the frequency dependence of 1/¢ — 1 and
the frequency sums can still be analytically evaluated.
We have found that this improved approximation does
not significantly change our results.

The correlation correction to the HF self-energy in the
plasmon pole approximation is

zcw(e)_z / dqPn n(4*1%/2) -
x( £1(9,9nt0)
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where
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~ e2/el ~ V/B so that m/m* — 1 ~ 1/V/B. The cor-
relation correction to this quantity increases as the field
is lowered. In the weak-field limit it is known [and can
be seen from Fig. 3(a)] that because of cancellations be-
tween contributions from the wave vector and frequency
dependence of the self-energy m/m* is always quite close
to and, for typical densities, smaller than 1. Typical
. GaAs 2D electron densities are 0.01-1.0 in our units; we
see from Fig. 3(a) that in this density region the strong-
3 field HF behavior holds only for v = 1.

Our results for odd filling factors for the effective g
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Pole frequency vs. q
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i v=1 | factor are shown in Fig. 3(b), where gz is defined by
1= - Ent—EnN,| = wcgiz/2, with N the highest filled Landau

- . level. At low temperatures when the chemical potential

W U —> oo § lies between spin-split Landau levels (i.e., for v odd), the

L i system is partially polarized, and the g factor becomes
very strongly enhanced due to exchange effects. (The

¥ T T i bare value of geg is only 0.029 in GaAs and this remains

OO ' ) - 5 nearly unchanged for even v.) We again see from Fig.

q
FIG 2. The pla.smon pole frequency Of Eq (8) In this e ”‘”“! ' l””“l ' ‘””“l ' I”””l T

(a) Effective mass vs. density -

figure and in the following figures the units are quasiatomic.
For GaAs the density n, = 1 corresponds to 9.7 x 10''cm™2,
temperature 7' = 0.1 to 12.8 K, and field y =1t0 6.4 T.
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At zero field the quasiparticle mass is defined in terms
of the rate of change of quasiparticle energy with momen-
tum. At finite field we no longer have a continuous excita-
tion spectrum, and it is natural to define an effective mass
in terms of the rate of change of quasiparticle energy with 06 o d i
the Landau-level index. [m/m* = (Eny1 — E'N.)/ﬁwc], 104 10 102 10-!
where N is the highest filled Landau level. (This mass n

v=1
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will approach the zero-field mass in the limit N — o0.)
The Dyson equation for the one-particle Green’s function
implies that20

En+ p=nw, + Re{ZX + Z°7(E,)} (13)
We have found that near the Fermi energy ¥5°™(E) tends
to be very close to linear, and therefore that it can be
approximated as
3ERPA

n
OFE

SRPAE) —SRPA(O)x E (14)

E=0
The effective mass can then be immediately obtained:

RPA
m* 1- <aEaE >
my 14 [AZex 4 AXcorr(0)]/w,’

where AY = Re{Zn4+1 — En} and the frequency deriva-
tive is a weighted average of the (real part of the) deriva-
tives at N and N + 1.

Figure 3(a) shows our results for the dependence of
the effective mass on density and filling factor. At
strong fields where the HF approximation is accurate the
Landau-level separation is enhanced by interactions by

(15)
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(a) The effective mass and (b) g factor vs density

for a range of filling factors v. Note that there are several
possible g2¢ values for odd filling factors greater than 1 at
low density, corresponding to different polarization states.
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3(b) that for physical densities, particularly for v > 1,
the strong-field HF value for the enhancement is sub-
stantially reduced by correlation contributions. Note also
that at low densities solutions of the Dyson equations can
be found for more than one spin polarization.

We note here that the correlation contribution in the
RPA comes solely from inter-Landau-level excitations,
since the bubble diagram of Fig. 1(a) is zero if n = n/,
and at zero temperature the contribution is zero unless
one of the levels {n,n’} is below er and one is above.
Thus any approximation that neglects inter-Landau-level
excitations is incorrect for filling factors where the corre-
lation contribution is important, i.e., in particular, for all
filling factors greater than 1 at typical physical densities.

Two important physical parameters have been ne-
glected thus far, but must be included for comparison
with experimental systems. These are the nonzero thick-
ness of the “2D” layer, and the disorder broadening of
the Landau levels. Modeling the first effect by a stan-
dard “form-factor”!® multiplying the Coulomb interac-
tion and the second by an effective temperature (scaling

with wiﬂ) the g-factor enhancements of Fig. 3(b) be-
come substantially reduced, and we obtain good agree-
ment with the experiments of Usher et al.'® as shown
in Fig. 4, for physically reasonable values of these two
parameters. Many other experiments'!™!* have studied
enhanced g factors at both weak and strong magnetic
fields. These should be well described by our theory, but
quantitative comparison is made difficult by the different
samples used with different thicknesses and mobilities,
and that these experiments used a tilted field geometry.

In conclusion, we find that the many-body effects as-
sociated with the screening of the Coulomb interaction
due to inter-Landau-level excitations are important for
v > 2 for physical ranges of electron density. The experi-
ments of Usher et al. on activation energies in the quan-
tum Hall effect are in the region of this crossover from
low-field (and low-density) many-body behavior to high-
field (high-density) HF behavior, as can be seen from Fig.
4, and we obtain good fits to their data by taking into
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FIG. 4. Calculated Landau-level separations compared to
the activation energies from Figs. 3 and 4 of Reference 15.
The v = 2 curve is scaled by I!E and shifted vertically 0.15
for clarity, and the v = 3 curve is shifted by 0.2. The X’s are
experimental points and the solid curves are fits using the 2
parameters of an effective thickness (31 A, 10 A, and 35 A for
v =1,2,3 — note aop = 101.5 A in GaAs) and broadening
factor [T' = (C’wc)l/2 with C = 0.33 K, 0.2 K, and 0.08 K].
The v = 2 fit was not very sensitive to the two parameters,
so these seem to give a consistent value for thickness and a
broadening parameter that decreases with v.

account finite thickness and level broadening effects. Al-
though these act to reduce the g-factor enhancement, it is
possible that the polarization transitions to be expected
from Fig. 3(b) may still be experimentally accessible.
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