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Existing quantum Monte Carlo algorithms suffer from the so-called minus-sign problem. We pro-

pose a stochastic algorithm to compute ground-state properties of quantum lattice models that is free
of minus-sign problems. Illustrative results for the two-dimensional Hubbard model are presented.

Numerical techniques to investigate models of interact-
ing fermions employ either standard diagonalization algo-
rithms or combine the Trotter-Suzuki (path-integral)
product formula and the Metropolis Monte Carlo or a
molecular-dynamics technique to study the system. The
former approach yields numerically exact results for the
ground state. It requires storage for at least two wave
functions. These wave functions are represented as linear
combinations of basis states, the number of which grows
very fast with the system size. This characteristic feature
limits the applicability of the diagonalization approach to
small systems. In the latter approach, the quantum sta-
tistical problem involving very large (& l06X10, say)
matrices is replaced by a multidimensional integral (or
sum). ' In principle, estimators of physical quantities can
be obtained by the standard importance-sampling tech-
niques used to study classical statistical-mechanical sys-
tems. Unfortunately, when applied to quantum prob-
lems, the usefulness of these simulation techniques is re-
duced considerably. The most fundamental problem is
that the integrand may become negative. ' Conventional
importance-sampling techniques require the integrand to
be positive (see below). Moreover, the appearance of non-
positive distributions is a generic feature of the formalism
and is not limited to fermion systems. This fundamental
problem is usually referred to as the minus-sign prob-
lem ''

Below we propose a different method for computing the
ground state of (fermion) lattice models. Our method is

numerically exact in the sense that it can be proven to
yield the exact ground state, in principle. It collects states
by means of importance sampling, is numerically stable,
and is free of minus-sign problems. In addition, our
method is sufficiently general to apply to a large class of
quantum lattice problems.

Our scheme is based on the following considerations. If

the exact ground state of a quantum system is a superposi-
tion of many (say, & 10s) basis states, the model may be
considered as being numerically unsolvable if all these
basis states are needed to obtain a good approximation to
the ground state. As in previous work in this field, we

adopt the basic assumption that an accurate representa-
tion of the ground state can be constructed by carefully
selecting a limited set of basis states which are "impor-
tant. " In quantum Monte Carlo (QMC) work one typi-
cally samples of the order of 10 states, most of which are
not linearly independent.

Conventional importance-sampling techniques such
as finite-temperature QMC, ' ' projector QMC
(PQMC), and Green's-function Monte Carlo methods6
use Markov matrices to generate a random walk in the
(Hilbert) space of states. The elements of the Markov
matrix contain the ratio of the values of the integrand, ap-
pearing in the multidimensional integral, for two different
states (or configurations). In classical statistical
mechanics this ratio is always positive. In this case the
Perron-Frobenius theorem" assets that the Markov pro-
cess asymptotically generates states according to the prob-
ability distribution specified by the integrand. Then the
importance-sampling method will work, at least in princi-
ple. For quantum systems in general, and for fermion
models in particular, this ratio can take negative
values. ' ' This leads to the minus-sign problem, which
renders simulations at low temperatures and/or for large
systems extremely difficult. '

Instead of Markov matrices we propose to employ uni-
tary (orthogonal in practice) matrices to perform the walk
in Hilbert space and it is at this point that our approach is
conceptually completely different from others. In the case
of Markov-matrix-based methods there is no unique
prescription to relate the "weight" function (the in-
tegrand) to a transition probability, i.e., a non-negative
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matrix element, for going from one state to another. '

This freedom is present in our case as well and we exploit
it to devise an algorithm which can be used in practice.

Several criteria help eliminate candidates for unitary
matrices which may perform the task of generating the
ground state of the model Hamiltonian. Clearly any
method which requires memory proportional to the di-
mension of the Hilbert space should be rejected because in
that case the system sizes accessible would be too small
and there already exist very efficient methods anyhow. "
This in turn implies that the unitary matrices should have
a simple representation, the simplest one being a sequence
of two-by-two, plane rotation, matrices. " In practice this
will allow us to calculate the effect of successive applica-
tions of unitary transformations in a very efficient manner.
Finally we have to specify the plane rotation matrices.

To this end we need the following theorem: Let 0
denote the eigenvector (ground state) of the Hamiltonian
H corresponding to the lowest eigenvalue (ground-state
energy) and let fy;1, i =1, . . . , n be a complete set of
states, with &y~ ~+&&0 and ordered such that

&

tidal

I H I pi & ~ & y2 I H I it » ~ ~ & y. IH I y. & .

For most systems of physical interest it is almost trivial to
satisfy these two conditions. Assume there exists an indexj) 1 such that &itr~(H~yi&aO. Application of the plane
rotation R chosen such that &i'~)R 'HRlittj&=0, yields

&yiiR HRiyi& (&yiiHiyi&. (2)

This process can be repeated, replacing 0 by the "rotat-
ed" Hamiltonian and taking different J"s until all but the
first element of the first row (or column) are zero. Then,
under fairly general conditions, the first element of the
first row converges to the ground-state energy and the
ground state can be obtained from the product of plane-
rotation matrices R,:

N M

I+&=Z U R.

where M denotes the number of rotations carried out and
N ~ M is the number of basis states used.

From a theoretical viewpoint our method is an alterna-
tive procedure to separate the ground state from the rest
of the spectrum, just as, for instance, the (inverse) power
method or the Lanczos scheme. '' Our scheme may be
viewed as a variant of the Jacobi method for diagonalizing
a real symmetric matrix. '' The main difference is that we
concentrate on the smallest eigenvalue (we could also con-
centrate on the largest eigenvalue, but from a physical
point of view that is less interesting). This has important
practical implications since our method, like the Lanczos
method, allows one to handle very large matrices without
having to store them.

The algorithm works as follows. First we choose a set
of basis states fy;) for which the matrix elements of the
Hamiltonian can be calculated efficiently and we order the
states according to condition (1). At each iteration step
we determine which element of the first row will yield the
largest reduction of the first element of that row. We then

apply to the matrix the plane rotation that reduces this

nondiagonal matrix element to zero and repeat this pro-
cedure until the changes of the (1,1) matrix element drop
below an acceptable level. The ground-state energy is
then given by the first element of the first row. A straight-
forward generalization of this idea allows us to separate
any (small) number of low-lying states. Instead of work-
ing on one row, we block diagonalize the matrix using the
scheme outlined above and at the same time diagonalize
the submatrix containing the low-lying states.

We have tested our algorithm on relatively small ma-
trices (( IOOOX1000), comparing the outcome with re-
sults obtained by standard diagonalization routines. Once
the correctness of the algorithm has been established the
next step is to implement it as an importance-sampling
scheme. This is done by enlarging the set of "important"
states gradually during the iterating towards the ground
state. A Monte Carlo process generates candidate basis
states. To decide whether a basis state is important or not
we calculate the effect on the (1,1) element of a plane ro-
tation involving this state. If the reduction of the (1,1)
element of the transformed Hamiltonian, i.e., the approxi-
mate ground-state energy, is sufficiently large the basis
state is added to the current set of states. Note that by
construction all of these states are linearly independent
and our scheme is variational in the sense that it generates
a strictly decreasing sequence of upperbounds to the exact
ground state. In practice this scheme requires storage for
the diagonal matrix elements, the first row of the trans-
formed matrix, and the angles of the plane rotations. It
scales linearly with the number of important basis states.

We have applied our method to the two-dimensional
single-band Hubbard model, the reference system for test-
ing methods for simulating fermions. It describes some
of the essential features of strongly correlated electrons
systems and has attracted considerable attention in con-
nection with the high-temperature superconductors. '

The model is defined by the Hamiltonian

H=t g (c;t~~ +cj ~; )+Urn;ln;1,
&i j),e i

where c;t (c; ) creates (annihilates) a fermion of spin
cJ= t, J at site i, t is the hopping matrix element, U repre-
sents the on-site Coulomb interaction strength, and the
sum over i and j is restricted to nearest neighbors. The
linear size in the x (y) direction will be denoted by L„
(L~). As usual, we adopt periodic boundary conditions.
In practice we have chosen to work in the wave number
instead of the real-space representation of model (1) to il-

lustrate that our method does not rely on a particular
choice of the representation. Depending on the model pa-
rameters it may, of course, be expedient to work in the
most appropriate representation, in order to minimize the
computational effort. Another appealing feature of our
approach is that models, such as the t-J model, can be
handled in exactly the same manner as (4).

In the repulsive case U&0 and for a non-half-filled
band all known simulation methods suffer from severe
minus-sign problems, ' especially at low temperature. In

particular for band-fillings (excluding the half-filled band
case) corresponding to open-shell situations, it can be ex-
tremely difficult to obtain reliable results for the ground-
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TABLE I. Comparison between ground-state energies as ob-
tained from the Monte Carlo diagonalization (MCD) method

proposed in this paper, from exact numerical diagonalization
(Exact), and from projector quantum Monte Carlo (PQMC)
simulation.

(l.„C,.) U (nt n~) Exact PQMC MCD

3x3
3X3
3x3
3x3
4x4
4x4
4x4
4x4
4x4
4x4
4x4
4x4
4x4
4x4
8x8
gxg
8xg
8x8
gxg

4
20
4
8
4
4
4
4
4
4
4

—4
—4
4
3
4
6
4
4

(3,4)
(3,4)
(4,S)
(4,5)
(2,2)
(3,3)
(4,4)
(s,s)
(6,6)
(7,7)
(8,8)
(s,s)
(8,8)

(1,13)
(s,s)
(s,s)
(s,s)
(9,9)

(13,13)

—7.915
—6.122
—6.210
—3.545
—11 ~ 53
—15.14

—19.58 '

—15.74"'
—13.62"'

—7.063

—17.3
—19.6

—15.7
—13.6
—32.6
—45.4

—34.5
—34.3
—34. 1

—54.6

—7.915
—6.120
—6.203
—3.545

—11 ~ 53
—15.14
—17.53
—19.57
—17.70
—15.45
—13.42
—32.64
—45.35
—7.063

—34.49
—34.31
—34.03
—54.37
—66.05

"'Reference 15.

state properties. For the attractive model U &0 the in-
tegrand is positive and accurate quantum Monte Carlo re-
sults can be obtained.

To illustrate the power of our method we have per-
formed Monte Carlo diagonalizations for systems of vari-
ous sizes, fillings, and interactions U (t = I in our numeri-
cal work). A comparison of our results and those obtained
from exact numerical diagonalization and projector quan-
tum Monte Carlo simulation is given in Table I. In gen-
eral, good agreement is found. The error on the MCD
and PQMC results is of the same order of magnitude
(= 1%). The difference between the exact diagonaliza-
tion and MCD data is less than 2.5%. The number of im-
portant basis states gathered by our method never exceed-
ed 70000. This suggests that the crucial assumption,
namely, that good results can be obtained with a (small)
fraction of all basis states, may hold. To appreciate the
importance-sampling aspect of our scheme it is of interest
to consider the number of states involved. Disregarding

reductions due to symmetry a 4X4 lattice with five spin-
up and five spin-down electrons has more than 19& 10
states. A 4X4 lattice with eight spin-up and eight spin-
down electrons has more than 16x 10 states. The former
corresponds to the closed-shell situation, the latter to an
open-shell case, the number of degenerate Fermi seas be-
ing 56. Apparently our method is able to select the most
important states out of this large number. The data of
Table I further suggest that to reach the same level of ac-
curacy, open-shell systems require more basis states than
closed-shell cases. To investigate the effect of the degen-
eracy in the noninteracting case we have also implemented
a block-diagonalization variant of our algorithm. We
found that our technique has no problems dealing with
highly degenerate matrices, a feature which it seems to
share with the Jacobi method. "

At the end of the calculation, the many-body ground-
state wave function can be reconstructed from the se-
quence of plane rotations. " Thus, any correlation func-
tion of interest can be computed. For model (4) we have
computed the momentum distribution and the s-wave
pairing correlation function. Our method reproduces
PQMC results' ' for the on-site s-wave pairing correla-
tion function, supporting the idea that the repulsive
single-band Hubbard model exhibits no superconductivity
in this channel. As our method directly yields the ground
state, the argument that the temperature used in quantum
Monte Carlo simulations work may be too high does not
apply.

To summarize, we have presented a Monte Carlo
scheme to determine ground-state properties of quantum
systems. It uses a sequence of orthogonal transformation
to perform a walk on the space of basis states, collects im-
portant basis states during the walk, and does not suffer
from minus-sign problems. We have demonstrated that
our algorithm can be used to study quantum systems
which are not amenable to exact numerical diagonaliza-
tion.
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