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Hole-bound-state calculation for semiconductor quantum wells

Z. Ikonic
Faculty ofElectrical Engineering, University ofBelgrade, Bulevar Revolucije 73, 11000Belgrade, Yugoslavia

V. Milanovic
Faculty ofElectrical Engineering, University ofBelgrade, Bulevar Revolucij e 73, 11000Belgrade, Yugoslavia

and High Technical Post, Telegraph and Telephone School, Zdravka Celara 16, 11000Belgrade, Yugoslavia

(Received 19 November 1991)

A method for finding bound states in quantum systems described by coupled Schrodinger equations is

discussed, and applied to the case of hole-state quantization in semiconductor quantum wells, within the
axial approximation.

The conventional one-dimensional Schrodinger equa-
tion for a confining potential (quantum well) may be
solved numerically for the bound-state energies and wave
functions with the following method that has been widely
applied due to its simplicity, obtainable accuracy, and
low computer-memory requirements. Taking an asymp-
totically flat confining potential, for example, exp(+kz)
type of solutions outside the well, one starts from a point
z =l, left of the well and, recognizing the fact that a
bound-state wave function may include only the
decaying-to-left solution exp(ktz), kt )0, numerically in-

tegrates the Schrodinger equation with initial conditions
g'( I)=ki P(1) and g(l) = 1, say, with the energy E variable
as a parameter. Away from the exact bound-state ener-
gies, the calculated wave function at a point z =r, right
of the well, will be composed of both the decaying-to-
right I exp(k„z), k„&0], and the growing-to-right,
exp( —k„z) solutions, the latter tending to vanish as ener-

gy E approaches a bound-state energy, and make the
wave function satisfy g'(r) —k„g(r)=0 (with k„&0). By
refining the energy interval where the zero crossing of
this expression occurs, bound-state energies may be found
with high accuracy, limited essentially by the accuracy of
the numerical integration procedure. There are
numerous variations of this procedure, designed to fit the
particular problem, but it always reduces to a one-
dimensional search for energy where the target function
undergoes a zero crossing (e.g. , Ref. 1).

In cases where a set of basis states is used to describe a
quantum system, the corresponding set of coupled
Schrodinger equations (in terms of basis-state amplitudes)
has to be solved, and it is somewhat less obvious how to
apply the present method, since a bound state may be
composed of a number of basis states, the relative ampli-
tudes of which are not known in advance at any point.

This type of problem emerges in finding hole-bound
states in semiconductor quantum wells, where two (or
more) coupled equations have to be solved. As far as we
know, the method under discussion has not been applied
to this system. A finite-difference-scheme-based method,
usable for arbitrary potentials U(z), has been discussed in
Ref. 2. Energies and wave functions are found by diago-
nalization of the matrix emerging from the finite-

lR[=(V 3/2)(y2+y3)k, , lS[=2+3y3k, k, ,

2 k2+k2
t x y

(2)

where the factor A' /2mo is absorbed in the Luttinger pa-
rameters y&, y2, and y3. In the constant-potential bulk
(or the asymptotic barrier regions away from the well,
with U=Ut or U„), Eqs. (1) and (2) maybe solved analyt-
ically for the k, (E,k, ) dependence (given, e.g. , in Ref. 3).
The two pairs of (generally complex-valued) solutions, k„
and k, 2 correspond to heavy-hole-like and light-hole-like
states. Considering the bound states in a quantum well,
none of them should be purely real (otherwise bound
states cannot exist at that energy) and should describe an
exponentially decaying and exponentially growing state
within each pair. The state vector corresponding to a
particular k, is obtained from Eq. (1) as

P g R E+U- — —
P+g —R E+U—

(the form we prefer for calculating state vectors, since it
never leads to an identity-zero vector for any value of E
and k, ). Certainly, at exact bound-state energies only the
outward decaying states exist in bulk regions surrounding

difference representation of coupled differential equa-
tions. Increasing accuracy demands obviously require
finer meshes (i.e., larger matrix) and thereby increasing
computer-memory requirements and computation time.
However, as we discuss below, the present method may
be used here with equal efficiency as the conventional,
single-component Schrodinger equation, and may provide
very high accuracies without the excessive memory re-
quirements typical for the matrix methods.

Within the axial approximation, the heavy- and light-
hole Hamiltonian, with z chosen as the quantization axis,
reads (e.g. , Ref. 2)

P+Q R Fi F,
=(E —U)

L

with

P =y, (k,'+k,'), g =y, (k,' —2k,'), R = IRI —ilsl,
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ing wave function is found by integrating (4) with the ini-
tial conditions at z =1, including both kI& and

k~~
states,

with relative weights given by C2 ' —C', and C2 C&",
respectively [i.e., by the null-space vector of the matrix
(7) that becomes singular at bound-state energies ].

A sample calculation of heavy- and light-hole bound-
state dispersion, within the axial approximation, is given

in Fig. 1.
This method may be straightforwardly generalized to

more complex systems, e.g., for heavy and light holes,
without the axial approximation, or with the split-off
band included as well, etc. The only difference is that all
(or most oP the steps discussed above would have to be
performed numerically.
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