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This paper extends the result of Gell-Mann and Brueckner to include spin polarization. The contribu-
tions to the correlation energy of a spin-polarized electron gas that do not vanish in the high-density lim-

it are evaluated exactly. In the process a closed-form expression is given for the generalization of an in-

tegral that has previously been evaluated numerically.

The spin-polarized electron gas is characterized by two
quantities: the Wigner-Seitz radius r„defined in terms
of the number density p by

p
'= ar4m

0 s

where ao =R /me is the Bohr radius, and the spin polar-
ization g, defined in terms of the spin number densities

p+ andp, by

p+ p—

The ground-state energy of this system is conveniently
expressed as a function of these two parameters.

At high electron densities, where the Wigner-Seitz ra-
dius becomes small, the correlation energy per electron in
the ground state of a spin-polarized electron gas can be
expanded in r, as

cally for /=0 to be Co= —0.096+0.002. A scaling ar-
gument then yields a value for (= 1 of
C& = —0.053+0.001. The higher-order terms represent-
ed by the ellipsis in Eq. (3) vanish in the limit of high den-
sities. This paper presents an exact evaluation of the
function C& for all spin polarizations. In the process, an
integral is evaluated analytically that has, until now, been
evaluated only numerically.

The correlation energy can be separated into three
terms:

4
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— ( Eb + +ss)s
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The first term, c,&
', is the second-order exchange term,

evaluated to be

—0.040:
me4

s, =
2 (A&lnr, +C&+ ) .
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The function A
&

has been evaluated recently to be
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where x, =(1—g)' and x2=(1+/)'~. The function

C& is the coefficient of r, . It has been evaluated numeri-
FIG. l. C& as a function of g. The inset shows greater detail

of the maximum near /=0. 996.
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The second term is given by '

r, Q&(q, u)

(XK q
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2 2(x, —q/2) +u
x, +q/2—u arctan
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where a= (9m. /4)'/ and Q&(q, u ) is defined by
2

Q~(q, u)= ,' f—dte""q g fs=1 p(x
lp+ql )x,

x —
q /4+u

=m g
2q

x, —q/2
+arctan

(6)

+x, (8)

The final quantity in Eq. (5), es, vanishes in the limit of r, ~0 and so is not considered any more.
Of interest is the r, ~0 limit of c„and hence, of c„. Simply letting r, vanish in the integrand of c„however, leads to

a divergent integral due to the behavior of the integrand in the q ~0 limit. The proper approach is to separate the in-
tegral over q into two parts at some arbitrary, but small, value of q, denoted by P. For q greater than P, it is proper to
let r, vanish in the integrand, after which the remaining integrations can be solved in closed form. For q less than P, the
integrand is replaced by its small-q limit, after which the integration over q can be performed explicitly. After this is
done, r, is allowed to vanish and the remaining integrals performed. The two parts of the integral are then recombined
and the limit P—+0 is taken.

For small q,

Qg(q, u) 4irR-((u) as q~0,
where

1/3 ( 1 /-)1/3
R (u)= — (1—g)' —u arctan ( 1+ )1/3

+ (1+/)' —u arctan (10)

4r, Rr(u)

CX&q

T»s «n«ion is independent of q, simplifying subsequent integrations significantly. Therefore, assuining p to be small,

3a2 p 3 4r, R~(u)
limf du f q dq ln 1+
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1 ~dq
qu asr, 0
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where A c is given by Eq. (4) and

f du R&(u)ln[R&(u)]
(lnR, ).„=

du R&(u)

The final integral can be evaluated in closed form. Using the definition of Q&(q, u) in the first line of Eq. (8),

f du Q&(q, u)= —QI(q;x„s,.),
oo qss

where

(12}

(13}
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I(q;x„x,') =
p &x

/p+q/ &x,
p &x

/p'+q/ & x, ,

dI' f d p
1

q.(q+p+p')
(14)

Due to the restrictions on the integrations, it is necessary to specify the quantities x & =min(x„x, ) and
x & =max(x„x, .). The function I(q;x„x,. ) is symmetric in the two arguments x, and x, , so this does not cause any
dif5culties in what follows. Using the coordinate transformation defined by Macke, the integrals over p and p are
readily performed to yield

11x & + 18x &x & + 18x & x & + 11x & x & +x &

q

2(x& 5x&x& 5x&x&+x&)
15

in[1 —
q /(x&+x & ) ]

(x&+x& )
—

qx &ln
x& —

q /4

(x&+x& ) —
q+x &ln

x& —
q /4

4 X2 3

+ q+ .q

2 4

x & +q/2
ln +

96 x &
—q/2

x &q x &q q5 x&+q/2+ — ln
2 4 96 x& —q/2

(x —x )q
2

(x &+x & )q q5 x&+x&+q+ ln
3 30 x&+x& —

q
q &2X&', (15a)

I(q;x&,x& )= llx&x&(x&+x& )q x&(lgx&+llx& )q x&x&q
15 30 15

x, q' 2(x', —5x', x', —5x', x', +x', )

40 15
ln[1+q/(x & +x & ) ]

2(x& 5x&x&+5x&x& x&)
15

ln[1+q/(x &
—x & )]

2x&q (x&+q) x& x&q x&q3q/4 — 24 q/2+x &
ln

96 q/2 —x &

(x& —x&) q 2x

3

(x & +x & )q q5

3 +30 '" x& +x&+q
2x& (q&2X&

x& x& +q

22x & x & (x & +x & )q 2x & x & q
3

I(q;x &,x & )=
15

+
15

(15b)

(x& —x&) q (x&+x&)q q5 q~ —(x&+x )2

+ ln
2 3 q

—(x& —x& )

2(x &
—5x &x &

—5x &x3& +x~ ) 2(x3 +x3 )q2

15 3
ln

q+x& +x &

q
—(x& +x& )

2(x5& 5x &x & +5x &x & x & ) 2(x —x )q

15
+

3

The integral over q is readily performed assuming p to be small. To order p,
q 2 , [) (xi,xi )+r(x2 x2)+2y(x„x, )]8~' — ~ q 8m

q+x& —x&

q
—(x& —x&)
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where

(x, +x~) +2x, +2x~~
+2A&lnP— p2+

32m (xi+x2)
(16)
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and Li2(z) is the dilogarithm function, given by

Li2(z) = —f ~ ln(1 t)—
dt .

o t
In the special case where x &

=x
& =1,Eq. (16}takes the much simpler form

(17}

(18)
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8~' -- p q
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C&= —,'ln(2) — g(3)+A& ln +(inR&),„——— [y(xi,xi)+y(x2, x2)+2y(xi, x2)] .3 4 1 3
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Although ( lnR
& ),„must still be evaluated numerically, this can be done to high precision. The denominator of Eq. (12)

can be evaluated in closed form, and the numerator can be conve~ed to an integral over a fnlte range. Equation (20)
can be evaluated exactly, for all intents and purposes.

For /=0, Eq. (20) becomes

(20)

= —2[0.025 68—0.062 18 lnP+ 0.006 333P ] . (19)
This may be compared with the numerical result of Pines.

Putting everything together, the correlation energy is indeed found to have the form presented in Eq. (3). The
coefficient of lnr, is found to be A &, as required, and

Co= —,'ln(2) — g(3)+ [1—ln(2)] ln +(lnRo),„——3 2 4 1

= —0.093 841 .

3 2 — + 321n(2) —Bin (2)
2772 ' 3

I

(21)

For g= 1, Eq. (20}becomes

Ci =
—,'ln(2) — g(3)+ [1—ln(2)] ln

3 1

27r2 rr'

2
[1—ln(2}]ln(2) = —0.051 475 .

3

4 +(im ) ———1

am 1 av
3 + —"ln(2) ——' ln (2)9 3 9 3

These two values are in accord with the scaling relation of Misawa. The function C& is plotted in Fig. 1. It is interest-
ing to note the maxima near /=+0. 996.
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