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Conductivity and magnetoresistance of magnetic multilayered structures
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We consider multilayered structures consisting of magnetic and nonmagnetic metals. We derive ana-

lytic expressions for the conductivities by treating the scattering at the interfaces between layers in the

same way as that throughout the layers (bulk). The application of an external magnetic field reorients

the magnetization in the magnetic layers, which in turn alter the mean free path of the conduction elec-

trons. This is the origin of the giant magnetoresistance seen in iron-chromium (Fe/Cr) superlattices.

We present analytic results on the magnetoresistance in limiting cases where either the mean free path is

much greater or less than the layer thickness, as well as numerical results for the realistic situation found

in Fe/Cr superlattices when they are comparable.

I. INTRODUCTION

Recently, giant magnetoresistance effects have been
found in Fe/Cr magnetically layered structures' for
current in the plane of the layers. One finds that as the
antiferromagnetically coupled adjacent layers of iron are
brought into parallel alignment by an external magnetic
field, the resistance drops. In some cases this decrease is
over 40%%uo. This phenomenon is distinct from the conven-
tional magnetoresistance due to the effect of magnetic
fields directly on the conduction electrons or on the
scattering of conduction electrons by local impurities.
Rather the extraordinary magnetoresistance in multilay-
ered structures comes from the reorientation of magnetic
moments by the field.

The theoretical understanding of this effect has been
based on the pioneering work of Fuchs and Sondheimer;
this was initially applied to the resistivity of thin films
due to surface roughness, and extended to multilayers by
Carcia and Suna. The basic idea in these treatments is
that the scattering at surfaces and interfaces can be
represented by a reflection coefficient p (not to be con-
fused with the p introduced in the article), which is zero
for perfectly rough surfaces and one for perfectly smooth
surfaces. The former corresponds to diffuse reflection (all
loss of directionality) and the latter to specular reflection,
i.e., not producing any resistance. A discussion of the
physics behind this approach is found in Ziman's book;
see Ref. 6. Recently the giant magnetoresistance of iron-
chromiurn multilayered structures was analyzed by using
this quasiclassical approach by including the spin-
dependent interface scattering as well as a spin-dependent
bulk scattering. This approach does not treat the inter-
face roughness scattering on an equal footing with that
coming from the bulk; therefore, inter alia, for Fe/Cr su-
perlattices with high resistivities (about 80 pQ cm) we find
it underestimates the contributions to the resistivity from
the interfaces when the layer thickness is smaller than the
mean free path.

The main drawback of the semiclassical approach is
that one treats the scattering of conduction electrons due
to the roughness of the interfaces (surfaces) differently
from scattering in the layers (bulk). That is, the interfa-
cial scattering is treated phenornenologically by introduc-
ing the proportions of electrons transmitted, reflected and
scattered from the interfaces. What is needed is a united
treatment of the scattering from the interfaces and bulk,
e.g., the approach used by Tesanovic, Jaric, and Mae-
kawa to discuss the resistivity of thin films coming from
the roughness of their surface. ' The extension of their
treatment to multilayered structures is complicated be-
cause (l) the spatial inhotnogeneities in layered struc-
tures, which produce the resistivity, cannot be reduced to
a homogeneous, translationally invariant, scattering po-
tential as is usually done by averaging over randomly sit-
uated impurities and (2) the conduction electrons are
scattered by magnetic impurities whose spin direction
vary from one layer to another. The combination of
these spatial and spin inhomogeneities leads to a
position-dependent conductivity that depends on the
orientation of the magnetization of the individual layers.
To determine the electrical transport properties of these
extended periodic structures we have extended the ap-
proach of Tesanovic, Jaric, and Maekawa in three ways:
(l) we consider the surface roughness scattering from a
periodic array of interfaces, not just one, (2) we make the
scattering dependent on spin, and (3) we explicitly solve
for the conductivity to all orders of the surface scattering,
i.e., we do not limit ourselves to lowest order. By using
the Kubo formalism, we have succeeded in deriving the
position-dependent conductivity for layered structures.

While our primary intention is to apply our result to
periodic superlattices, with dimensions L much greater
than the mean free path of the electrons A, , our formalism
is equally applicable to cases where there is no periodicity
and to sandwich structures of finite thickness, L ~ A., e.g.,
Fe/Cr/Fe (Refs. 3, 4, and 8) We find, inter alia, that,
while the translationally invariant homogeneous trans-
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II. LONGITUDINAL CONDUCTIVITY

Due to the inhomogeneous nature of multilayered
structures, the application of a uniform electric field does
not ensure that the internal field is uniform. For a field
parallel to the layers uniformity is maintained; however,
perpendicular to the layers the internal field varies from
one layer to the next. Therefore, even when the local
conductivity tensor is isotropic, as it would be for cubic
metals such as iron and chromium, one finds that the glo-
bal or measured conductivity is anisotropic, i.e., different
for electric fields parallel and perpendicular to the layers.

We consider the layers to be the x-y plane and to be
stacked along the z direction. In general the current is
given as

J(q)= f dq'o(q, q'} E(q') . (2.1)

For a uniform electric field parallel to the layers, e.g. ,
along the x direction, the current in this direction is

J„(q)=o„„(q,O}E .

In the x-y plane the system is homogeneous, and

cr„,(q, O) =cr(v}5@0,

(2.2)

(2.3)

where o.(v):—o. „(q„O),q:—q~q~, and v—:q, . The longi-
tudinal conductivity for a sample of macroscopic dimen-
sions is o(V=O). As we presently show one cannot
directly calculate o(V=O), but we can find its Fourier
transform,

Lo.(z) = e'"' (vo)dv,
27T

(2.4)

where L is the length of the sample in the z direction. We
define the current in the layer planes (CIP) conductivity
as

port properties of these inhomogeneous structures are
characterized by a mean free path that is related to the
diagonal part of the conduction-electron Green's func-
tion, their position dependence comes from the oQ
diagonal parts of the Green's function. Also we find in-
terfacial scattering contributions to the mean free path,
while in the quasiclassical approach, the mean free path
is due solely to bulk scattering.

In the next section we introduce the local position-
dependent conductivity cr(z) and relate it to the conduc-
tivities measured for currents parallel to the layers of
these structures. Then we derive o (z) for magnetic mul-
tilayered structures. In Sec. IV we consider various limit-
ing cases of our formalism and show that our results
reduce to the conventional wisdom. Next we apply our
formalism to the effect of magnetic fields on the transport
in magnetic superlattices. In Sec. VI we apply our result
to analyze the magnetoresistance of iron-chromium su-
perlattices in terms of the spin-dependent bulk (in the lay-
er) and interfacial scattering present in these superlat-
tices. We close by discussing our results and indicating
how our formalism applies to multilayered structures
other than the superlattices we have explicitly worked
out in detail.

1
o =— o(z)dz . (2.&)

This average is synonomous with o(v=O); as we are un-
able to directly evaluate o(v=O) in closed form, we
proceed as indicated above to find o.

~~.

When we include the spin, each spin direction contrib-
utes independently, at least at low enough temperature so
that there is no spin-flip scattering by spin waves; then
the total conductivity is the sum from each direction, i.e.,

o= go(s) . (2.6)

As long as we neglect spin-orbit coupling this result (in
our model) is independent of the direction of the current
because then the direction of the spin is decoupled from
the direction of the electron motion.

III. CALCULATIONS OF CONDUCTIVITY

(3.1)

where r—:p, z (z is normal to the layers), R, is the position
of an impurity or defect, z& is the position of the lth
Fe/Cr interface, f (p=x,y) represents interface rough-
ness, the sum over i is per unit volume, and sum over l is
per unit length. The spin-dependent potentials are writ-
ten as

To calculate the position-dependent local conductivity
o (z), see Eq. (2.4), we model the transport properties of
magnetic multilayered structures by considering
conduction-electron subject to bulk scattering, which
occurs throughout the sample, and interfacial roughness
scattering, which occurs at the interfaces between the
iron and chromium layers. We confine ourselves to low
temperatures and neglect phonon and magnon scattering;
the latter should determine the temperature dependence
of the magnetoresistance. Here we explicitly refer to
Fe/Cr superlattices; the main idea is to consider mul-
tilayered structures with alternating magnetic and non-
magnetic layers. The extension to aperiodic layered
structures is straightforward. The scattering at the inter-
faces comes from their roughness; iron atoms find them-
selves in the chromium layer and vice versa. As the iron
layers are magnetized this produces spin-dependent inter-
facial roughness scattering. ' The bulk scattering comes
from imperfections and impurities in the iron and
chromium layers.

By following Tesanovic, Jaric, and Maekawa" we
represent the interface roughness scattering by a poten-
tial that is random in the plane of the interface and a 5
function in the third dimension. We consider the iron
and chromium layers to be parallel to the x-y plane and
to be stacked along the z direction. We denote the thick-
ness of the iron (magnetic) and chromium (nominally
nonmagnetic) layers a and b, and in order to consider an-
tiferromagnetic ordering we take the period of the super-
lattice (along z) to be T:2(a +b). The sc—attering poten-
tial giving rise to resistivity is

V(r, o )= g V;"(o )5(r—R, )+ g VI'(tr)fl(p)5(z —zI),
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V(&)—=U+jMF, o, (3.2)
& (kco,&)~, =— —im. g A, (&)e

where the operator cr represents the Pauli spin matrix,
and M„, is a unit vector in the direction of the magneti-
zation of an iron layer. For the interfaces we have v' and
j', while for the bulk the parameters are v F„Uc„and jF,.
The chromium layers are nominally nonmagnetic; there-
fore we set jc,=0 in these layers. While the bulk scatter-
ing is randomly distributed throughout the layers, the in-
terface scattering is confined to a plane z =zi represent-
ing an Fe/Cr interface.

Our model Hamiltonian is

I—g Ekcgocg~ + g Vg~ g ~ cg~cg ~
ko kok'o'

(3.3}

The conduction electrons are subject to different poten-
tials in the iron and chromium layers, and, in principle,
one should determine their wave functions for a Kronig-
Penney-like potential representing the Fe/Cr superlat-
tice. However, when (1) the Fermi level is far from the
bottom of the potential for both metals, (2) there are no
gaps at Fermi level, e.g., in the chromium layers due to
the possibility of spin density waves, and (3) the size of
the sample in the z direction L and the lattice periodicity
(a+b) (if there would be significant scattering from the
Kronig-Penney-like potential) are much greater than the
mean free path A, (so that there are no quantum well
effects), it is reasonable to use plane waves to represent
conduction electrons in calculating the transport proper-
ties of Fe/Cr superlattices. Therefore we take ck for free
electrons which is, inter alia, spherical.

The position-dependent scattering [Eq. (3.1)] breaks
the translational invariance of the system. However, by
taking an average over the impurities that are situated at
random within a layer and by using a random function

f (p } to represent the roughness of the interfaces, one re-
stores this symmetry in the plane (x-y) of the layers.

The self-energy or t matrix to first order in the scatter-
ing is real, and we will subsume it by shifting the energy.
To second order in the scattering the t matrix near the
Fermi surface is

+ g 6'i(&)e
1

(3.4)

where

(3.5)

1
o (v}=—lim —Imil(v, ci))

co~0 CO

(3.6)

where

k=(k, v) has been used, i.e., k —=k, k has the directions
in reciprocal space parallel to the layers, v—:k, is normal
to the layers, v= v —v', and p(eF ) is the density of states
of conduction electrons at the Fermi surface. To arrive
at this form we averaged the bulk scattering potential
V; (o ) over a random distribution of impurities in a plane
t parallel to the layers, and we used a "white noise" sur-
face profile for the uncorrelated atomically rough Fe/Cr
interface, i.e., we take ( ~ fi(k) ~

) a constant independent
of k (Ref. 11). For the matrix elements of the scattering
potential to exist for all vectors v, and not just those of
the reciprocal lattice of the superlattice, it is necessary
that the parameters b, 'i (b, ) are random. As the real
parts of these parameters have the periodicity of the su-
perlattice, we must make these parameters complex and
take their imaginary parts to be random. In addition, we
make the assumption that the 6's are independent of v
near the Fermi surface. In normal metal, i.e., no Kondo
effect or resonant scattering at Fermi surface, this is an
entirely reasonable approximation.

The loss of translational invariance requires us to cal-
culate the current at finite q even though we apply a uni-
form electric field. We calculate the conductivity o(z)
rather than its Fourier transform, by using the Kubo for-
malism' in which the current response is given in terms
of Matsubara Green's functions,

1 e
II(v, o~) =—

2 m g —g G +(k iv +,ice )G„. (k iv )~, +,o,
ku, o' vv' i v

for the CIP conductivity cr~~(v). G,„, (k, ice) is a Matsu-
bara Green's function, which is diagonal in the indices
k =k„,k but has off-diagonal elements vv'(k, k', ). This
property follows directly from the translational invari-
ance of the superlattices in a direction parallel to the lay-
ers. To arrive at the electron-hole correlation function
II(v, co) we assumed there are no vertex corrections, i.e.,
that the function can be written as the product of elec-
tron and hole correlation functions.

While it is not possible for us to find an exact solution
for the Green's function, we have made a number of plau-
sible assumptions (key approximations) so that we do find

the Fourier transforms of o(v). Before we derive our re-
sult, we list them: (i) we assume the concentration of
scattering centers is low (the dilute limit) —this is plausi-
ble in the given context, (ii) in our self-energy [Eqs. (3.16)
and (3.17)] we neglect interference terms from scattering
at different sites —these are quite small, (iii) to derive Eq.
(3.19) we assumed the averages are independent of the
momentum v near the Fermi surface, (iv) we use a spheri-
cal Fermi surface to evaluate the sum [Eq. (3.29)] over
the Fermi sea, and finally (v) as we are considering only
plane-wave states in our present calculation the mean free
paths must be small compared to the thickness of the
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sandwich or superlattice structure, i.e., A, &&L, or if there
is scattering due to the Kronig-Penney potential, com-
pared to the period of the lattice (o +5); otherwise, one
must consider the confinement potential in the growth
direction (z), and the attendant effects due to the quanti-
zation of the states.

It remains for us to find the off-diagonal Green's func-
tion 6 „.These functions satisfy the equation

G (k, co) =G,(k, to)5„„5

and

A, (k, E)= —ImG (k, s)=n5(e —
ek ), (3.15)

A „=m.5(E—s„„)/26(E„„).

The self-energy can be written as

To obtain this expression we assumed that the spectral
density of the conduction electrons is represented by a 5
function, ' i.e.,

+G„(k,co) T„~ (k, co)G, (k, co), (3.7) (3.16)

where we have used G „„=G 5„„5 ~ for free electrons,
i.e., inter alia, we neglect the effect of the magnetic field
on the conduction electrons; only the effect of the field on
the local moments is considered in T ~ . While similar in
some aspects to the surface scattering problem solved by
Tesanovic, Jaric, and Maekawa, ' see their Eq. (5), the
presence of several scattering interfaces in this multilayer
problem does not allow us to write the scattering poten-
tial Eq. (3.1) in a separable form,

I

V„, (k —k')= pe 'Vi(k —k')
I

Wf,f'V(k —k') . (3.8)

Only when there is a single scattering surface can one
l VZI

write f,=e ' and proceed as in Ref. 10. Therefore, to
obtain a solution to Eq. (3.7) we separate the self-energy
into diagonal and ogdiogono/ parts (reverting to opera-
tor form instead of matrix elements),

X=X+X' . (3.9)

Then the Green's function Eq. (3.7) is written as

G
1 —GX'

where

G —[(GO)
—1 f ]

—I

(3.10)

(3.11)

The Green's function G has only diagonal matrix ele-
ments which are written as

1Go'

sk„+tbk (to)—
where

(3.12)

b,„=——ImX (k, co) .
7T

(3.13)

k

X k, v+v;o.
2

1 kv;o. ~

1 —ReGX'

(3.14)

By placing the Green's functions Eq. (3.10) in the ex-
pression for the conductivity [Eq. (3.6)] and carrying out
the indicated operations, we find

1 e df (sk. )
(r(v) =—

2 m k 2Q (Ez ) BEk„

X=
1 —GX' (3.17)

By multiplying both sides by the Green's function G and
then by (1—GX') we eventually find

k, v+ v,'cr
2

1
k, v,'o

1 —ReGX'

= k, v+v, o. 1
k, v; o. , 3.18

1 —ReGt'

where t' is the off-diagonal (vAO) part of the t-matrix Eq.
(3.4).

Equation (3.18) is a formal solution to our problem
and, in principle, one only need v=O for o i, see Eq. (2.5),
however it is not possible to evaluate it. It represents an
infinite series containing o8'-diagonal t matrices. We do
not know how to decouple the repeated products of Gt'
in momentum space. However, we can decouple these
products by taking their Fourier transform with respect
to the variable v and by averaging over the variable v.
We find

1 kF L
J 'dv f" dve '"' v+-v;o

kF 0 2w

1
v;o

1 —ReGt'

= o' o, (3.19)
1

( —Re( Gt )(z) )'
where

«t'&(z)=-
kF 0 2m

XU .t...(1—6...),
(3.20)

and we consider G& and t „as operators in spin space,
i.e., they represent 2X2 matrices with elements G&6
and t ~ . To arrive at this approximate solution we have
made the approximation

((Gt')")(z)= [(Gt')(z)]" . (3.21)

By using the t matrix Eq. (3.4), we find the spin matrix
element in Eq. (3.19) can be written as

as we have taken the average of the scattering potential V
to be zero. The large brackets refer to the average over
the random distribution in the planes parallel to the lay-
ers. Equation (3.16) is similar but not identical to Eq. (4)
of Ref. 10. One subset of all contribution to the self-
energy can be rewritten in terms of the t matrix, Eq (3.4. ),
as
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1
C7

CT

1 —Re(Gt')(z) a a b—b
(3.22)

1 —(z —z, ~/X
a (z}= QReb, , e

which represents the inversion of a 2 X2 matrix where we
have defined the matrix elements of the spin operator as

(5 .+Re(Gt') ):a—5 .+b (1—5 ) &3 23)

where we have temporarily suppressed the indices k v and
z for clarity; the coeScients a and b are,

a = QReh, E, (lz —ztl/~ )
1

and

+ QReh( e
I

b (z)= QReh, e

+ QReb, , e

(3.31}

(3.32)

+ +Reh& E~(lz —z~l/~ )
1

b = Q Red, , E, (~z —z, ~/A, )
1

(3.24)

+ g Red ( E) ( ~z
—z( ~

/A, )
1

(3.25)

where

(Eg =EF)

g Red, , + g Red,
&

1

taL lcL

=6 +6

(3.27)

(3.28)

which represents the bulk and surface scattering contri-
butions to A, .

By placing Eq. (3.22) into Eq. (3.14), and performing
the sum over the two-dimensional k and v, we find

g k 5(E&,—EF )=—', kFp(eF ),
kv

(3.29)

where k~=(3m. n)' . The position-dependent conduc-
tivity is given as

ne + a (z)
a (z)a (z) b(z)b (z)—(3.30)

Another decoupling scheme which is less accurate but
leads to a simpler result is to evaluate the v dependence
of the matrix element Eq. (3.18}at the Fermi level instead
of averaging it as in Eq. (3.20); this yields a simple ex-
ponential expression for a and b

and E,(x)=f„"e «/y dy is the exponential integral of
the first order. From the t matrix [see Eqs. (3.2), (3.4),
and (3.5)], we find

Red, , (eF)=m, (o ~(1+p, +2p, o M, )lo'),
Red, , (eF)=w, (o ~(1+p, +2p&o M&)~o'.), (3.26)

where p =j /v, tv, —= ( v, )p( zs), w&
= ( v& )p( ez ) ( f& ), and

the mean free path is derived from the diagonal part of
the self-energy

The conductivity Eq. (3.30) is our main result. We
note that both bulk 6, and surface b& scattering contrib-
ute on equal footing. From Eqs. (3.27) and (3.28) we note
they both contribute to the mean free path; this is deter-
mined only from the diagonal part of the self-energy.
The a+diagonal part of the self-energy controls the posi
tion dependence of the conductivity and resistivity. For
layered structures it is this off-diagonality which de-
scribes their inhomogeneities. In Appendix A we discuss
the conductivities in limiting cases where simple con-
clusions can be drawn.

IV. MAGNETORKSISTANCE
OF MULTILAYERED STRUCTURES

As mentioned in the Introduction, the extraordinary

magneto resistance found in multilayered structures
comes from the reorientation of the magnetization of the
layers. For this effect to occur for currents in the layer
planes it is necessary that the mean free path of the elec-
trons be larger than the spacing between the magnetic
layers, i.e., the thickness of the nominally nonmagnetic
layers I, & do. This result can be understood when one re-
lates the mean free path to the spatial extent over which
the velocity or momentum of the plane waves, which
represent the electrons, remain well defined, i.e., k is a
measure of the size of the wave packet that represents an
electron. For currents parallel to the layers, these wave
packets sample in the transverse direction those layers
within a distance A, from their center. Therefore, if
A, &)d;„(the characteristic length scale for the inhomo-
geneities in the multilayered structure), it is irrelevant
where one places the center of the wave packet because
one always samples the same distribution of inhomo-
geneities; the CIP conductivity is independent of position
z in this limit. When the mean free path is less than the
spacing between magnetic layers, a wave packet does not
see more than one magnetized layer. As one is free to
choose the axis of spin quantization for the conduction
electrons spin parallel to the magnetization of that indi-
vidual layer, which the wave packet samples, the applica-
tion of an external magnetic field, which merely rotates
the magnetization, will not alter the conductivity of a su-
perlattice in this limit. In other words, a wave packet
must sample two or more magnetized layers, which
reorient themselves relative to one another, for there to
be a magnetoresistive effect of the type we are discussing;
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i.e., it is necessary for the electron to see an internal re-
orientation of the magnetized layers. A uniform rotation
of all the magnetized layers, without any internal rear-
rangement, does not produce magnetoresistance.

In the present treatment the effect of an external mag-
netic field on the conductivity enters through the orienta-
tion of the magnetizations MI, M, in the scattering terms
[Eqs. (3.26)]; i.e., we do not consider any effect of the field
on the orbits of the conduction electrons, or in altering
the magnetization of the layers. So that the mean free
path [Eq. (3.27)] is diagonal in spin space, it is necessary
to choose the axis of quantization for the spin so that

Reh = 0 w, 1+p +2pM, 0.

ty [Eq. (3.30)] for arbitrary angles 8 and for all ranges of
layer thickness compared to the mean free path are
unwieldy; in the next section we present our numerical
results. However, in the limiting cases treated in Appen-
dix A, A, »d;„and A. «do, there are relatively simple re-
sults. When A, «do the magnetoresistance is zero, as the
spin scattering in each region can be considered indepen-
dently of the others. For X »d;„ the z dependence of the
conductivity disappears, as the structure looks homo-
geneous for electrons with extremely long mean free
paths. Then, as we have shown in the Appendix A,

a (z)—+b, b (z)~0,
and

+ x w, (1+p, +2p, M, &) e'),
I

(4.1)
ne 1

a)((z)~

(pi, wb+p, w, )(M „+M&), (4.3)

where w& and w, represent the bulk and interfacial
scatterings. In other words, one must choose the axis
parallel to the resultant of the magnetizations; in the ab-
sence of crystalline anisotrojiy this is parallel to the direc-
tion of the external field & ~)H.

With this choice of quantization the matrix elements
[Eqs. (3.26)] entering Eqs. (3.31) and (3.32) for a bipartite
superlattice with alternating magnetic and nonmagnetic
layers are

is diagonal. As can be seen from Eqs. (3.26) and (3.28),
this requires us to choose the cr parallel to

Xprw, M, + gpIwiMI . (4.2)
I

In general, this is quite different from the resultant of the
individual magnetizations. However, for a bipartite su-
perlattice where only one layer is magnetic, i.e., Fe/Cr,
this reduces to

b, =—g b, '„(cr)+—g b,,'(o )=bi, +&, ,
1, 1

T rcT IET

where for iron layers,

5i,'—w p, (1+pp, +2o p„,cos8),

for chromium layers, where pc, =0,

kb Wc

and for the interfaces

6I =w, (1+p, +2ap, cos8) .

(4.7)

(4.8)

Note we used the fact that cosOI=cos8, =cosO for the
axis of spin quantization chosen in the way described ear-
lier. By placing these expressions in Eq. (4.7) we find

In this limit the conductivity is "self-averaging. "
In this limit (lI, ))d;„) the scattering is given by b,

[Eq. (3.28)]; for a bipartite lattice as Fe/Cr we can replace
the sum over the entire lattice by summing over one
period of the magnetic unit cell T=2(a +b—),

and

Red; (8)=w;(1+p; +2p;cr cos8;)

(4.4)

2a /ao 2b /bo
wp, (1+pp, +2o'pp, cos8)+ wc„,

Red, ; (8)=2w;p;sin8;

where i = t, 1 and 8, I are the angles the magnetization in
the layers make with respect to the axis o'~~H, i.e.,

cos8, —=& Q,

and

w, (1+p, +2op, cos8),4
2 a+b

(4.9)

and (4.5)

sin8;:—
~

o' X M,. ~
.

As the spin-dependent scattering depends on 0; and this
in turn depends on the field strength, one obtains a mag-
netoresistive effect. A check on our results for the spin-
dependent conductivity expression [Eq. (3.30)] is given in
Appendix B, where we show that in the case
M„+M& =0, i.e., antiferromagnetic ordering between
layers, the conductivity is independent of our choice of
the axis of quantization for spin.

The expressions for the position dependent conductivi-

neo(H)=
m a —p cos 8(H)

where

1a= [(a/ao)(1+pp, )wp, +(b/bo)wc,a+b
+2(1+p, )w, ],

(4.10)

where ao bo are the distance between atomic planes [for
the bcc structure of iron and chromium in the (100) direc-
tion this is —,

' the lattice constant], so that a lao, blbo are
the number of the atomic planes or monolayers in the
layers a and b For the condu. ctivity [Eq. (4.6)] we find
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and

2
[(a/ao}pF wF +2p. w. ] .a+b

(b /ao )w„
R(p =1)= 1+

2[(a lao}wb+2w, ]

—2

(4.17)

Even for this relatively restrictive example there are
many parameters that enter. After choosing the thickness
of the layers a and b, there are Pve "adjustable" parame-
ters: pp„p„wF„wc„and w, . As the origin of the po-
tential scattering (v) in the layers is similar we take
w F, =wc, =wb,

' furthermore as the spin-dependent
scattering at the interfaces as well as in the iron layers is
related to chromium or other impurities, we set pF, =p,
in order to reduce the number of unknown parameters to
three. Thus

a= wb+ w, + wb+2w,
ao a+b ' a+b ao

I

and

(4.11)

P= wb+2w,2p a
a+b ao

From Eq. (4.10) we note the resistivity is

11l
p(H) = a — cos 8(H)

ne a (4.12)

In the absence of anisotropy, one finds cosO is propor-
tional to H, and one would predict p(H) ~ A BH . —
However, from the existing data on p(H), ' this is by
and large not observed; we conclude that one should not
use the simple relation cosH ~H. If one models the mag-
netic layers as uniformly and rigidly ordered, one can use
the experimentally observed magnetization versus field
curves and from the relation

M (H) =2Mocos8(H), (4.13)

In the limit that we are considering A, &&d;„,we find from
Eq. (4.12),

obtain 8(H). In the next section we present some results
on p(H) for realistic cases when A, is comparable to dc, .

A measure of the magnetoresistive effect is the quantity
that is related to the amplitude of the effect,

R—=
p(H =0)—p(H =H, ) p(8=m/2) —p(8=0)

p(H =0) p(8=m/2)

(4.14)

As b ~0, or wb ~0 we obtain R = 1. Other limiting cases
are (1) if wb =0, i.e., only interfacial roughness scattering,

2
4 2

R (wb=0)=
( 1 +p2)2

P& PI
P~+P~

1

a+1 (4.18)

and (2) if w, =0, i.e., only bulk scattering,

4 2

R (w, =0)=
(1+p +b/a)

(4.19}

The presence of the ratio bla is understandable as it
represents the proportion of the multilayered structure
that is magnetically inert, i.e., the Cr layers are nonmag-
netic pc, =0, and they do not contribute to the magne-
toresistance. This ratio does not appear in Eq. (4.18) be-
cause all the interfacial scattering is spin dependent.

V. Fe/Cr SUPERLATTICES

From the above results, we note that even in the limit-
ing cases the expressions for o (H) or p(H) are rather
complicated and depend on at least three parameters p,
wb, and w„which characterize the ratio of spin to poten-
tial scattering, and set the scale of the bulk and interfacial
scattering. These two limits represent the minimum and
maximum values of the magnetoresistive effect, 0 & R & 1.
For realistic values of the mean free path relative to the
layer thicknesses, one is in between these limits. Then
the conductivity [Eq. (3.30)] is position dependent, and
the off-diagonal spin matrix elements [Eq. (3.32)] enter.
As general expressions for tr(z) or o

l
would be unwieldly,

we now present some numerical results for the cases that
have been studied in recent experiments on Fe/Cr super-
lattices. '

In cases where A, is about the same order as d;„, the ex-
pression for the mean free path A, defined by Eqs. (3.27)
and (3.28) is identical to that for the limit considered
above. The reason for this is that the mean free path is
determined from the diagonal part of the Green's func-
tion [Eq. (3.12)]. The self-energy hk„ is an average of the
scattering t matrix over the entire sample (or one period
if it is periodic); it does not depend on the details of the
inhomogeneities present in multilayered structures. It
must be the same for A, =d„as for A, &&d;„. Therefore,
from [Eq. (4.9)] with pF, =p, =p, wc, =wF„and ao=bo
we can immediately write

R=
a

(4.15) 1 1 1

ga go ger
b s

(5.1)

The magnitude of R is governed by the parameter p; see
Eqs. (4.11}. It is related to the ratio a—=p&/p& of the
resistivities for electrons with spin parallel to the magne-
tization to that for electrons with spin antiparallel

with

b (5.2}
&a—1p= &a+ I

(4.16)
1+ (p +2po cos8)a+b

As a ~ 1, the minimum p=0 gives R =0, while the Inax-
imum p = 1 (as a~~ ) yields

(a +bQ,',
2(1+p +2po cos8)

(5.3)
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where we defined XI, =aokf/mwt„and A,,'—:kz/mw, . As
before the magnitude of A, is determined primarily by
A, &, A,,' and its spin dependence by p, and 0(H). We note
that the mean free path from interfacial scattering de-
pends on the distances between interface (a +b) as well
as the strength of the scattering w, . On the contrary the
bulk mean free path depends only weakly on distances
a l(a +b) because for the cases of interest b « a.

The mean free path [Eq. (5.1)] sets the length scale for
the position dependence in the conductivity, see Eq.
(3.30). In Fig. 1 we show the CIP conductivity 0 I(z) for
an Fe/Cr superlattice with different amounts of scatter-
ing, and therefore different mean free paths. For Fig.
1(a), we used the parameters X&, A,,

'
and p, see Eqs. (5.2)

and (5.3), which best fit the magnetoresistance data of
Fert and co-workers' ' (see Fig. 4). The average of the
mean free paths in the ferromagnetic (F) configuration is

longer than in the antiferromagnetic (AF). This attenu-
ates the variation with position of the conductivity o (z)
in the F configuration relative to the AF, i.e., the shorter
the mean free paths, the larger the amplitude of the posi-
tion dependence of cr(z). Thus we note that when we
reduce the mean free paths, see Fig. 1(b), the amplitudes
of the variation increase; increasing the mean free paths
diminishes the amplitudes, Fig. 1(c).

In general, the conductivity is larger in the F state than
the AF; however, this is not universal. In the preceding

section we found for A, ))d;„ that the ratio R [Eq. (4.15)]
is always positive, i.e., o.~) O.A&. This is attributable to
the "short-circuit" effect present in the F state, in which
the mean free path for the minority spin direction A,F is
much larger than that for the majority spin direction A,F.
For the AF state both directions of spin have the same
mean free path with A,~ &A,A„& A,~; this readily yields
o-~&0-„„. However, when k=d;„we have found R &0
for some values of p„p&, A,,', and A.&. The values that
produce R&0 are not realistic in the context of the
FelCr superlattices that have been studied to date.
Therefore, while one can reasonably expect R&0 for
Fe/Cr superlattices, it should be kept in mind that for
other multilayered structures it is possible to have situa-
tions where R & 0, e.g., see Figs. 2 and 3.

In Fig. 2, we present the CIP magnetoresistance ratio
R

~~

as a function of the chromium layer with the iron lay-
er fixed at a=30 A. We present results for k,'= l. l and
A, &

=19 A (solid lines), as well as for different values of
A, &, A, &

=10 and 30 A (dashed lines). In Fig. 2(a) only the
bulk scattering is spin dependent (p& =0.55), and in Fig.
2(b) only the interface scattering is spin dependent
(p, =0.55). In case b (only spin-dependent scattering at
interfaces), R

i
decreases steeply with the thickness of

chromium. The length scale of the variation is A, &,
' this is
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FIG. 1. The position-dependent CIP conductivity of an
0 0

Fe/Cr superlattice with a=30 A and b= 12 A for one magnetic
unit cell, T=2(a+b)=84 A. (a) For the parameters A,,'= l. l,

0
A, b

= 19 A, and p= 0.55, which produce the best fit to the magne-
0

toresistance, see Fig. 4. The parameters yield A,„&=8.5 A,
o 0

A,+=5.3 A, and k&=44 A. (b) For the parameters A,,'=0.8,
0 0

A, b
= 12 A, and p =0.55. (c) For A,,' =2, kb =40 A, and p =0.55.

FIG. 2. The CIP magnetoresistance ratio R
~~

as a function of
0

the thickness of the chromium layers b for a =30 A, with

A,,'= l. l, and A, b =19 A (solid lines), A, b =10 A (lower dashed
lines), and kb=30 A (upper dashed lines). (a) Only the bulk

scattering is spin-dependent; p, =0 and pb =0.55. (b) Only the
interface scattering is spin-dependent; pb =0 and p, =0.55.
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0

seen by the steep decrease for A, b =10 A, and the gradual
0

decrease for kb=30 A. Also, R~~ is larger when kb is

larger because the proportion of spin-dependent to spin-
independent scattering is larger. In case a (only spin-
dependent scattering in the bulk), the dependence of R

i

on the thickness of chromium is more complicated and
difficult to explain by simple arguments. Note the nega-
tive Ri(p~) p~„) for p, =O and lb =10 A. This excep-
tion underscores the fact that there is no proof that R )0,
for all values of the parameters that enter our expres-
sions, i.e., in the limiting case considered in Sec. IV, we
found R )0; however, when the position-dependent fac-
tors entering the conductivity [Eq. (3.30)] are important,
it is not possible to prove o F & o AF.

In Fig. 3, we present the magnetoresistance ratio R
~~

as
a function of the thickness of the iron layer (a) with the
chromium layer (b) fixed at 12 A. The parameters are
the same as in Fig. 2; the solid line is for A, b

=19 A, and

the dashed lines are for A, b =10 and 30 A. When only the
interface scattering is spin dependent, Fig. 3(b), Rl de-

creases with a but more gradually than with b in Fig. 2.
The length scale of this variation is A, b,

' this is seen by
comparing the variation of R~~(a) for the three values of
A.b. When only bulk scattering is spin dependent, Fig.
3(a), R

~~

starts at zero for a=O, then increases with a, be-

cause the proportion of spin-dependent scattering in-

creases, presents a maximum, and becomes negative at
large values of a. As seen from the variation of R l(a) for

the different A, b the length scale of this variation is A, b.
To fit the experimental results on Fe/Cr superlat-

tices' shown in Fig. 4 we proceed in the following way.
First, we note that the large value of the experimental
values of R

~~

and also the shape of the variation with a,
which is intermediate between Figs. 3(a) and 3(b), are
strongly in favor of spin dependence for both bulk and in-
terface scattering. For simplicity we choose the same pa-
rameter p for interface and bulk scattering. The three pa-
rameters of the problem are thus p, A, b, and A,,'. First the
parameter kb is fixed to fit the dependence on b; A, b deter-
mine the length scale of this variation. Then, as the vari-
ation with a is very sensitive to the proportion of bulk to
interface scattering, we fix the ratio of A.,' to A, b to obtain
the Rl(a) that is experimentally observed with a broad
maximum at small values of a and then a slow decrease.
Third, we fix p to obtain the magnitude of the magne-
toresistance. We have obtained the best fit with the fol-
lowing parameters: p=0.55, A,,'=l. l, and A,b=19 A.
This fit is shown in Fig. 4, where we compare the experi-
mental and calculated dependencies of R~~ on the thick-
ness of Cr and Fe.

In order to fit the data of the magnetoresistance of
Fe/Cr superlattices' with a reasonable value of the pa-
rameter p we find the bulk and interface scattering are
about equally important, e.g., for a superlattice with
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FIG. 3. The CIP magnetoresistance ratio R
~~

as a function of
the thickness of the iron layers a for b= 12 A, with A,,' = l.l, and
A,b=19 A (solid lines), A,b=10 A (lower dashed lines), and
A, b =30 A (upper dashed lines). (a) Only the bulk scattering is
spin-dependent; p, =0 and pb=0. 55. (b) Only the interface
scattering is spin-dependent; pb =0 and p, =0.55.

FIG. 4. The magnetoresistance ratio R
~~

with the parameters
that produce the best fit to the experimental data at T=4.2 K
given in Refs. 1 and 2: A,,' = l.l, A,b

= 19 A, and p=0.55. (a) As a
function of thickness of the chromium layers b for a=30 A. (b)

0

As a function of thickness of the iron layers a for b=12 A.
Lines are our calculations, and squares are experimental points
from Refs. 1 and 2.
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7l =2X10 (pQcm )
kF

(5.4)

With this value, and by using the parameters that best fit
the magnetoresistance data, we find the longitudinal
resistivity for a sample with a=30 A and b=12 A for
H=O and T=O K is

a =30 A and b = 12 A the best fits are found with A, &
= 19

A and k, =2(a+b)A.,'=23 A. The value of @=0.55,
which produces the best fits to the data, corresponds to
a=12. This value is larger than a=6 found for chromi-
um impurities in iron; '" however, from recent band-
structure calculations for iron impurities in chromium, '

a = 12 at the interfaces looks quite reasonable.
A check on the parameters we use in our fits is the ab-

solute value of the resistivity they yield. To calculate the
absolute value of resistivity we need to determine the pre-
factor entering the conductivity, Eq. (3.30). We have es-

timated that

100 I I I I
i

I I I I
i

I I I I

80

60—

CO

100 I I I I
)

I I I I
i

I I I I
(

I I I I

80

40 I I I I I I I I I l I I 'I I I I I I I I I I I I

p&F
=83 pQ cm . (5.5) 60—

This is to be compared with the experimenta1 values
which vary between 40 and 80 pQ cm.

A further check on the appropriateness of our fit

comes from the parameter A,,
' which characterizes the

strength of the surface roughness scattering, see Eq. (3.5).
We may estimate the surface roughness ( f& ) by using

our best fit parameter A.,'. By assuming that the impurity
potential at the interface and in the bulk are the same,
and by using the fact that the resistivity of iron with l%%uo

of Cr impurities is 2.2 pQ cm, see Table 2 of Ref. 14, we
find from Eq. (3.5) that ((f& ) )' =2ao/5. This rms de-

viation of the interface, which is 40% of the distance be-
tween atomic planes, is quite reasonable.

Finally in Fig. 5 we show our results for pI(H) for
a =30 A, and b = 12 and 18 A. We used for p, A,,', and A, b

the values that produced the best fit to the data on
R I. ' ' On comparing our results for pI(H) with the field

dependent data of Baibich et al. ' we find the agreement
is excellent. As our expressions, Eqs. (2.5), (2.8), and
(3.30), yield p(8), we found e(H) by using the method
outlined in Sec. V. The data on the magnetization M (H}
is given in Ref. 2. To compare the jield dependence of the
resistivity for b= 18 A, we had to rescale the experimen-
tal resistivities so that R ~~(a=30 A, b=18 A}=0.23, in-

stead of the experimental value of 0.14.
Our procedure for extracting 8(H) is based on the hy-

potheses (1) that the magnetization in the iron layers ro-
tate rigidly and (2) that the chromium layer does not
change its state of magnetization as the antiferromagneti-
cally aligned iron layers are rotated into ferromagnetic
alignment by an external field. It is possible that the
magnetization in the iron layers do not uniformly rotate,
and our procedure is not entirely correct. Also from
some band-structure calculations of Fe/Cr superlat-
tices, ' there is an indication that the magnetic
configuration of the chromium layers is altered as the ad-
jacent iron layers are reoriented by an external field from
AF to F configurations; this would change the small
spin-dependent scattering in the chromium layers, that

40 I I I I I I I I I I I I I I I I I I I I I I I I

0 5 10 15 20 25

H(kG)

FIG. 5. The resistivity pl(H) for A.'=l. l, A, b =19 A, and

p=0.55. (a) For a=30 A and b=12 A (A,, =23 A). (b) For
0 0 0

a=30 A and b=18 A (A., =26 A). Lines are our calculations,
and squares are experimental data from Refs. 1 and 2. To com-

0

pare the 6eld dependence for b=18 A with experiment we res-

caled the experimental data so R
~~

=0.23.

we have neglected, as we set pc, =0. The good agree-
ment we have obtained for R ~~(a), RI(b), and pl(H} with

entirely reasonable parameters, leads us to believe that
the hypotheses on which we based our analysis are well
founded; the putative corrections, if they exist, are small.

VI. DISCUSSION

In summary, the position dependence of the conduc-

tivity, see Eq. (3.30), plays an important role in obtaining

the proper dependence of the conductivity and magne-

toresistance as a function of the thickness of the layers.

While we have explicitly developed our formalism for an

extended periodic lattice, it is equally applicable to an ex-

tended lattice with no periodicity. Then the averages and
sums entering the conductivity are performed over the
whole lattice I.. For sandwich structures of finite thick-
ness, e.g., Fe/Cr/Fe, ' we replace the plane waves e' '
by states appropriate to the confinement (square well) po-
tential. Because of the translational invariance in the x-y
plane (parallel to the layers) this leads to two-dimensional

bands of states. ' '" The e8'ects of the confinement poten-
tial are felt when the thickness I. is comparable or small-

er than the mean free path of the electrons. While it has
been possible to produce thin films with A, &L, e.g.,
CoSi2, ' in which the effect of the confinemen potential
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are felt, this does not seem to be the case with most of the
Fe/Cr/Fe sandwich structures produced up till now.

Finally we have neglected the differences in the bot-
toms of the potential wells of the individual layers. To
date, we have found good agreement with the experimen-
tal data on the CIP magnetoresistance by considering
only plane waves, i.e., we have not considered the effects
of a periodic potential on the electrons.

The salient difference between the approach presented
here and the previous treatment of the magnetoresistance
of multilayered structures is that we treat the bulk and
interface scattering the same way. In the earlier Fuchs-
Sondheimer-like approach the interface scattering was
treated phenomenologically in terms of transmission,
reflection, and scattering coefficients. We have found
that applying this approach to Fe/Cr superlattices with
high resistivities (in the range of 80 pQ cm) leads to an
underestimate of the interfacial contribution to the resis-
tivity. To fit the magnetoresistance data in this approach
one needs unrealistically large mean free paths, i.e., an
aberrantly small bulk scattering. The drawback of as-
suming such an unrealistic value of A., apart from the
small absolute value of the resistivity, is the distortion of
the length scale that determines the thickness dependence
of the magnetoresistance.
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APPENDIX A: LIMITING CASES

The length scale A, inherent in o(z) plays a crucial
role in the CIP conductivity 0.

~~.
It is very different in the

limits A, «do (the minimum thickness of a layer) and
A, »d;„(the characteristic length scale for the inhomo-
geneities in the multilayered structure); we now consider
these limiting cases.

(1} A, »d;„. We consider a structure with m different
kinds of layers with self-energies Rehb =5b
(n = 1,2, . . . , m). Then the characteristic length scale of
the inhomogeneities is

replace the sum by an integral
—fz —z, frx~ I+ j ~

—fz —z, la~
y e

'" = " f'e '"
dz, ,L 0

(A3)

where

[N„j= 7d;„a„

and

L d;„a„
(A4)

a (z)lb.s,= g bb
d in n

As 5b is the scattering per atomic plane and d„ /a„ is the
number of planes per layer, it follows that
5b(d„/a„}=hb is the scattering from the nth layer.
Thus

1 „n 1
X b d

g~b=~b
in n n in

By comparing this result with Eq. (3.28) we find

lim a (z)lb„s, =5b .
A. »d.

(A5)

(A6)

Using a similar line of reasoning we find the same result
for the scattering from interfaces.

Now we must also determine the form of the off-

diagonal spin matrix elements b (z), Eq. (3.32}. In the
limit A, »d;„, the sum over 1 and t may be treated the
same way as a (z); i.e., the only difference between a (z)
and b isreplac'ng hr(I) by 6~(I) and therefore

lim b (z)= QReh, —+ QReh~&
1

L

that is, the number of n type layers in the structure multi-
plied by the number of atomic planes in a layer; a„ is the
distance between planes and [] indicates the integral part
of L/d;„. In the limit that the sample thickness is large
L —+00 one finds

—iz —z, [/A,

lim f e "
dz, =A,

gazoo Q ll

[N„j d„

d;„= gd„, (Al)
According to our choice of quantization for the operator
8 in spin space, see discussion after Eq. (3.11) and in Sec.
IY.

where d„ is the thickness of each layer, and from Eq.
(3.31)

&~lZl~ ) =~ s... . (A8)

m —)z —z, i/A,

a (z)lb]g
n =1

I t„ I

(A2}

Therefore

lim b (z)=0 .
A. »d. (A9)

where [t„j labels the atomic planes in the n type layers
throughout the structure. In the limit A, »d;„we can

Also, this result could have been intuited from the fact
that b(z} only exists for scattering potentials [Eq. (3.4)]
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with v&0; in the limit A, &&d;„only v=0 exists and it fol-
lows that b(z)=0. By inserting the limiting expressions
Eq. (A6) and (A9) in Eqs. (2.5) and (3.30), we find

ne 1

2m
(A 10)

This is to be expected because the inhomogeneities of the
system do not show up in this limit.

(2) A, «d, In this limit the mean free path is very small
compared to the thickness of each layer and as we now
show the integral in Eq. (2.5) can be replaced by a sum
over layers. In the limit of A, &&dn, where d„ is the thick-
ness of the nth-type layer, we have

l -
I —,l&~

lim e ' =5(z —z, ) .
o~

(A 1 1)

By placing this result in Eqs. (3.31) and (3.32), we find

a (z)= +5„5(z—z, ) (A12)

and

b (z)= +5„5(z—z, ),

where 5„:—Reh„. Hence the average CIP conductivi-

ty Eq. (2.5) and (3.30) is

lie 1 in a (z)a = dz
2m d;„o a (z)a (z) b(z)b —(z)

where

kF

Pl Wl

—tan 'e I/2&), (A16)

(A17)

represents the strength of interface scattering, which is
independent of a.

For finite bulk scattering the expressions (4.18) and
(4.19) are more complicated. Specifically, o

I
is not sim-

ply proportional to thickness a. In Fig. 6 we show the
resistivity as a function of thickness of the layers, where
we assume the bulk mean free paths are the same in each
layer, i.e., the bulk is considered homogeneous. For the
surface mean free path A,, =a) we used /=0. 2 and for
the bulk mean-free-path A, b =100 A; note that A., does
not vary with a, while A,, does. There are three regimes,
I, II, and III, corresponding to surface scattering domina-
tion (A., &A.b), intermediate domination (A,, =A,b), bulk
scattering domination (A,, » A, b ), respectively.

The other case of interest is
(4) b, b »b, , ; i.e., the case when surface scatterings are

negligible, while we have two diferent bulk mean free
paths in the layered structure, e.g., A, , for odd layers and
A.z for even. For A. »a we find from Eq. (A10),

compared to interface scattering, we set Ab =0, and by
evaluating the integral in Eqs. (2.5) and (3.30) we find

( 3(
I /2g —I /2g

) ( t
—I I /2$2ne

Il m

(A13)

When z is located in an nth-type layer, a (z), b (z) as-

sume the values 5„,5„respectively, and we write

ne 1 5„
o = V Vd„;(A14)

ll 2~ d ~ ~ " gofrg —o —cr go —
op

—o.o.
fr n =1 n n n n

ne 2X]k2

kF k, +k2

while for A, « a we find froin Eq. (A15)

(A18)

i.e., the conductivity breaks up into the sum of conduc-
tivities of each layer. In the present case with A, &(dp we

are free to choose the axis of spin quantization for each
layer independent of the others; we choose 5„=0,and
the above expression reduces to

ne2 ] m dn
80—

t5

I I I
I

I I I
I

I I I
I

I I I

I

I I I

=100 A.

P, =0.2a A

where h„denotes the self-energy of the nth-type layer.
The physical interpretation of Eq. (A15}is that each layer
can be treated as an independent conductor, and the total
conductance is obtained by summing over the individual
conductances of each layer.

Up till now we have not focused on the origin of the
scattering, i.e., bulk versus interface. The bulk and inter-
face scatterings produce quite different effects on the con-
ductivity. Let us now consider some limiting cases of
bulk versus interface scattering for all ranges of mean
free path compared to layer thicknesses dn.

(3} b,, »b, b. For simplicity, we consider only spin-
independent scattering and assume that each layer has
the same thickness a. If the bulk scattering is very weak

10

0 I I I I I

0 200
I I I I I I I I I I I I I I

400 600 800 1000

Thickness of a layer (A)

FIG. 6. The CIP resistivity of nonmagnetic superlattices of
one metal with layers of equal thickness a dominated by interfa-
cial scattering.
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I I I

i
I I I

i
I I I

i
I I I

)
I I I M„+M~ =0, i.e., antiferromagnetic ordering between

layers, the conductivity is independent of our choice of
the axis of quantization for spin. First, if we choose the
axis colinear with the antiparallel moments we have
O„=O and O~=m. , so that cosO„~=+1 and sinO~ ~=0.
From Eqs. (3.31), (3.32), and (4.4) we find

10— a (z;8=0,m. }

~ W

N
~ PW

NS
IX

z, =so A

x, =zoo L

I I I I I I I I l I I I I

0 200 400 600 800 1000

and

=—g [1+p; +2a ( —1)'p; je ', (Bl)

b (z;8=0,ir}=0,

Thickness of a layer (A)

FIG. 7. The CIP resistivity of nonmagnetic superlattices
made up of metals with different mean-free-paths A, l and A,2. We
take the interface scattering to be zero.

where ( —1)'=cos8; for 8, =O, n, and we used the fact
that, for M„+M&=0, A, =A, is independent of 0.. For
the second choice of quantization we choose an axis per-
pendicular to the moments so that 8„s=+m /2. For this

choice we find

iie2 gi+ ill z

k~ 2 (A19)
a (z;8=+@'/2)= —g (1+p; )e

1

(B2)

p~~(A, &&a } (A i+ f2)

p(A, } 4A, ,A,

(A20)

We note that the difference in crI in the two limits Eqs.
(A18) and (A19) depends on the inhomogeneity of the
layers (A. ,AA, z). In Fig. 7 we show the variation of pI and

pi for A, i=50 A and A,2=200 A. From Eqs. (A18) and
(A19) we find the ratio of the resistivities is

and

2 t ~
Z Z

~
/A

b (z;8=+m/2)= —g ( —1)'p;e
l

By comparing the two expressions we find

a (z;8=0,n)

=a (z;8=+m/2)+orb (z;8=+m/2) . (B.3}

which for our example yield 25/16. The three regimes in
Fig. 7 correspond to case I A, „Az & a, II A, „A&=a, and III
A, ), A,2 (Q.

By placing this result in the expression for the conduc-
tivity Eq. (3.30), we find

APPENDIX 8: A CHECK cr(z;8=0, n ) =cr(z;8= km /2), (B4)

A check on our results for the spin-dependent conduc-
tivity expression Eq. (3.30) is to show that in the case

where we use the fact that a and b do not depend on the
spin index cr for this configuration.

'M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F.
Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chaze-
las, Phys. Rev. Lett. 61, 2472 (1988).

A. Barthelemy, A. Fert, M. N. Baibich, S. Hadjoudj, F. Petroff,
P. Etienne, R. Cabanel, S. Lequien, and G. Creuzet, J. Appl.
Phys. 67, 5908 (1990); F. Petroff et al. , J. Magn. Magn.
Mater. 93, 95 (1991).

G. Binach, P. Grunberg, F. Saurenbach, and W. Zinn, Phys.
Rev. B 39, 4828 (1989).

4J. J. Krebs, P. Lubitz, A. Chaiken, and G. A. Prinz, Phys. Rev.
Lett. 63, 1645 (1989).

5S. S. P. Parkin, N. More, and K. P. Roche, Phys. Rev. Lett. 64,
2304 (1990).

K. Fuchs, Proc. Philos. Camb. Soc. 34, 100 (1938); E. H. Son-

dheimer, Adv. Phys. 1, 1 (1952); J. M. Ziman, Electrons and
Phonons (Oxford University Press, London, 1972), pp.
451-469.

7P. F. Carcia and A. Suna, J.Appl. Phys. 54, 2000 (1983).
P. E. Camley and J. Barnas, Phys. Rev. Lett. 63, 664 (1989);J.

Barnas, A. Fuss, R. E.Camley, P. Grunberg, and W. Zinn,
Phys. Rev. B 42, 8110 (1990).

P. M. Levy, S. Zhang, and A. Fert, Phys. Rev. Lett. 65, 1643
(1990).
Z. Tesanovic, M. V. Jaric, and S. Maekawa, Phys. Rev. Lett.
57, 2760 (1986).

See Ref. 10; for a discussion of the profile of surface rough-
ness, also see G. Fishman and D. Calecki, Phys. Rev. Lett. 62,
1302 (1989).



8702 S. ZHANG, P. M. LEVY, AND A. FERT 45

G. D. Mahan, Many-Particle Physics (Plenum, New York,
1981), pp. 591—611; S. Doniach and E. H. Sondheimer,
Green 's Functions for Solid State Physicists

(Benjamin/Cummings, Reading, Mass. , 1974), pp. 92—93, and

Chap. 5.
N. Trivedi and N. W.Ashcroft, Phys. Rev. B 38, 12298 (1988).

~4A. Fert and I. A. Campbell, J. Phys. F 6, 849 (1976); I. A.
Campbell and A. Fert, in Ferromagnetic Materials, edited by

E. P. Wohlfarth (North-Holland, Amsterdam, 1982), Vol. 3,
p. 769.
V. I. Anisimov, V. P. Antropov, A. I. Liechtenstein, V. A. Gu-

banov, and A. V. Postnikov, Phys. Rev. 8 37, 5598 (1988);V.
P. Antropov, V. I. Anisimov, A. I. Liechtenstein, and A. V.
Postnikov, ibid. 37, 5603 (1988).
K. Ounadjela, C. B. Sommers, A. Fert, D. StoefBer, F. Gau-

tier, and V. L. Moruzzi, Europhys. Lett. 15, 875 (1991).


