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Dynamical processes involving charge exchange betwen atoms and solid surfaces are studied within an

Anderson-Newns model. We performed a perturbative treatment of the correlation term starting from a

time-dependent Hartree-Pock basis, and calculated the probabilities of the final atomic charge states by

using the Green-function formalism for irreversible processes. We analyzed the negative-ion fraction,
assuming an Anderson symmetric case, and considering the electronic correlation effects up to a second

perturbative order, for two "extreme" model systems: the two-level one, and a solid within the wide-

band approximation.

I. INTRODUCTION

Electronic charge exchange between atoms and solid
surfaces taking place in processes like atom-surface
collisions, desorption, and secondary-ion emission,
represents a typically nonadiabatic phenomenon. ' In
all these processes there is an atom moving at low or
moderate velocities which interacts with the surface, hav-
ing, far from this, nonzero probabilities of being in ion-
ized or excited states. The main objective of any theoreti-
cal model for a description of these phenomena is the cal-
culation of the outgoing-atom charge-state probabilities.
In recent years, the work done on the subject has grown
rapidly, following two main lines. One approach is to
consider a description of the substrate in which an equa-
tion of motion for fermionic operators within an
Anderson-Newns model is formulated; the other ap-
proach is to support, on a cluster, a representation of the
system in which a dynamical wave-function formalism
may be used. ' ' The electron-electron interaction is
neglected in almost all the theoretical models, making
possible the resolution of the problem in a simpler way.
Although this approach is an oversimplification, the
probabilities obtained in this way present a qualitative
agreement with experimental data concerning the adatom
velocity, the substrate work function, the temperature,
and other similar parameters. Nevertheless, the intra-
atomic correlation should be taken into account, because
it afFects the adatom electronic states as they approach
the atomic limit. Thus the calculation of the different
final-charge-state probabilities makes sense only when all
the possible ionization channels for the atom are treated
on an equal footing in the dynamical evolution descrip-
tion of a system, where the intra-atomic Coulomb repul-
sion is present.

Several approaches have been used to treat the prob-
lem including the effects of the correlation terms, al-
though a good understanding has still not been

achieved. ' ' An exact calculation of the Anderson-
Newns Hamiltonian for a small four-atom cluster has
been performed, ' showing in this case that for large
values of the correlation parameter, the negative and pos-
itive ionizations may be treated as independent processes
as long as the adatom level is either empty or singly occu-
pied. The single-occupation assumption is equivalent to
the limit of an infinite correlation parameter. ' In a
tight-binding formulation where the dynamical wave
function is solved through an equation of motion for the
evolution operator, the double occupation can be partial-
ly suppressed by considering adequate energy shifts. '

In the present work, we perform a perturbative treat-
ment of the correlation term within the Keldysh formal-
ism. ' Taking the Hartree-Fock time-dependent solution
as the zeroth-order approximation, we arrive at a pertur-
bative expansion of the dynamical wave function includ-
ing the successive correction terms due to the intra-
atomic correlation. In a Green-function formalism, this
involves a calculation of the self-energies by a perturba-
tion theory, starting from a time-dependent Hartree-Fock
basis. Explicit expressions of the self-energies calculated
up to a second order in the correlation parameter are
given. The atomic charge-state probabilities are obtained
from the asymptotic behavior of average values of fer-
mionic operators taken at different times.

This is, from our point of view, an interesting formula-
tion of the problem which allow us to treat those cases
where negative and positive ionizations play equivalent
roles, i.e., for small values of the correlation parameter.

In Sec. II A we describe how to calculate the different
charge-state probabilities within an Anderson-Newns
model, using the Keldysh formalism. The perturbative
scheme for treating the intra-atomic correlation is
developed in Sec. II B. In Sec. III we apply this formal-
ism to a two-atom chain, and to an atom-solid system de-
scribed in the wide-band limit. In Sec. IV we discuss the
results.
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II. THEORY

A. Use of the Keldysh formalism for calculating
atomic charge-state probabilities

Starting with the Anderson-Newns Hamiltonian

H=QE;n; +E„gn„~+Urn„n„

+ g ViA (ci+CA~+cAoclo ),

& c„(t')c„(t)&
=

& g (t') fc„U(t', t )c„ lg"(t) &, (3)

where
f g (t ') ) = U( t ', to ) f 1(0 ) is the time-dependent

wave function for the ¹lectron system, and U(t', t) is
the time evolution operator. Introducing in (3) the com-
plete basis set of eigenstates for the system with X —1

electrons at the initial time to,

fatti

'), and taking into
account that g '(t) ) = U(t, to) fg ') denotes the
time evolution of the (N —1)-electron system when it is
assumed to be in the eigenstate fP ') at time to, we can
rewrite Eq. (3) as

(c„'.(t')c„.(t)) = g (p"(t')Ic„'.fbi.
" '(t'))

x(ti'i(t)lc„ lofti (t)) . (4)

Going over to the expansion of the time-dependent wave
function for the system with N(N —1) electrons in Slater
determinants D, ' ", which is a good basis set to de-
scribe the uncoupled atom-substrate limit:

f/~(t)) = ga, (t)D; exp( iE, t), —

where V;„(t) is a time-dependent interaction between
substrate (i) and adatom (A) levels, E, ,E„being the
respective energies, and U is the intra-atomic Coulomb
interaction assumed constant in the present case. In Eq.
(1), c,c are the usual creation and annihilation Fermi
operators, respectively, therefore n =c~c; and 0. indicates
the spin projection.

We are interested in the probability calculation of the
different charge states of the atom far from the solid sur-
face, that is when the interaction V;„(t) tends to zero.
Let us consider the correlation function of the two
Heisenberg operators c„(t)and c„(t'):

(c„(t')c~ (t)) =(Qofc„(t')c„(t)f/0) .

Going over to operators in the Schrodinger representa-
tion we can write

(c c), , „=g fa;(oo)f exp[i(E)~ ' E—; )(t —t')]

The energy differences E; —E ' give E„ for all the
configuration states D; having one electron in the atomic
state; and Ez + U for all these having two electrons in the
atomic state. Then, we can write the final expression as

(etc), , „=g fa, f'exp[ iE„(t——t')]

+ g la I exp[ i (E—„+U)(t t')] . —
J

Thus g f a; f
represents the probability of having one

electron with spin projection cr, while g faj f
is the prob-

ability of having two electrons, in the adatom far from
the substrate, irrespectively of the substrate electronic
configurations involved.

Therefore, from the asymptotic behavior of the corre-
lation function of the operators c~t (t') and c„(t),taken
at different instants of time, we can extract the probabili-
ties of the charge states of the atom.

Average values of operators can be evaluated using the
diagrammatic technique introduced by Keldysh to deal
with nonequilibrium problems. ' Without entering into
details, for which the reader is refered to Ref. 17, a
Dyson equation in a matrix form is obtained:

G =Go+ GOXG, (9)

where G, Go, and X are 2 X 2 matrices defined as follows:

G++ G+ — y++ y+—
G-+ G-- & ~ + (10)

Go can be referred either to the system without interac-
tions, or to the system including some interactions treat-
ed in an exact way. In this case we are looking for aver-
age values of the operators c„and c~ at different times;
then the functions G ~ are defined as

G+ (t, t') =i (0
f
U(t„t')c„U(t', t )c„U(t,t, ) f0),

G +(t, t')= —i(0f U(t„t)c„U(t,t')c„U(t', t, )10),
(11)

x f(D fc' fD" ') f'

For each value of i the sum over j reduces to only one
term which corresponds to

fD" '&=c„ ID

'{t))=gb (t)D 'exp( . iE, . 't), —
j

E, ' " being the total energies corresponding to the
many-body states D,-

' ", and assuming time values in
the asymptotic limit, that is, t and t sufficiently large as
to justify a zero coupling between adatom and substrate,
we have that

g b ( oo )b., ( oo ) =b

G++{t,t')=B(t t')G +(t, t')+—B(t' t)G+ (t, t')—,

G (t, t')=B(t —t')G+ (t, t')+B(t' t)G +(t, t') . —

Only 6+ and G + are independent functions. Explicit
reduction of Eq. (10) to two independent equations is car-
ried through the canonical transformation:

1 —1 1 1A=
1 1

(A/2)

and consequently Thus the functions G and X become
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0 6' 0 X'
Ol' F yQ P

(12)

where retarded and advanced functions are defined as

6"=6++—6+ G'=G++ —G (13)

and the new self-energies are related to the old ones by
means of the relations

both functions containing equivalent information; one is
the Hermitian conjugate of the other. The function F is
given by

F=6+++6

B. Perturbative treatment of the electronic correlation term

H(r) =Ho(r)+H (19)

with

Since we are interested in the weak-correlation regime,
i.e., for small values of the parameter U, we perform a
perturbative treatment calculation up to the second order
in U. The zeroth-order Hamiltonian Ho(t) describes the
dynamical evolution of the system in the Hartree-Fock
approximation. This means that

yf y++ yg+-
ya y++ ~y —+

0=2+++2
(15)

Ho(t)= gE;n; + g(E„+U(n„&)n„
1 ~CT cr

+ g V;„(t)(c; cz +c„c; ) U(n—„&(n„&,
(20)

H =U(n„—(n„&}(n„—(n„&) .
The components of the Dyson equation can now be writ-
ten as

6'= 6'+6'r'6'
0

6'= 6'+ 6"X"6",0 0

F=F0(1+X'G')+ Go(QG'+ X "F) .

(16)

The dynamical wave function can be written as

~ g(r ) &
=

~ P,(t) &+ I51i(i) &,

$0(t) being the solution of

(21)

The asymptotic behaviors of F(t, t') and G'"'(t, t') al-
low one to determine the probabilities for the different
charge states of the atom when it is far from the surface,
in accordance with Eq. (8):

G '( t ~ co, t '~ m ) = i [ 2 1
—exp[ iE„(t —t '

) ]—

+ A2exp[ i(E„+U—)(t —t')]],
(17)F(t~ 00, t'~ 00 )=i [B,exp[ iE„(t t—')]—

+B2exp[ i(E„+U)(—t —t')]J,

(22)

The zeroth-order wave function 1(o(t) is a Slater deter-
minant built with dynamical one-electron states [X„(t)J,
which describe the time evolution from the initially occu-
pied molecular orbitals I P„(to)J; this means

= U(r, r, )det[p„(t, )] .

Then it is also verified that

where iX„(&)&
= U(r, ro)lp. (r, ) & . (23)

A) =P +P+,
A =P +P

8) =P —P+,
82=P —P

P, (P +P ), and P being the probabilities of hav-

ing, respectively, zero, one, and two electrons in the
atomic state. This is an important result which shows
that the asymptotic behaviors of 6' and F related with a
given spin projection operator determine the probabilities
for all the possible atomic-state electronic configurations.

We consider the following expansion for 5$(t):

(24)

where [f~(t)} is a complete basis set for the ¹lectron
system in an independent-particle model; it includes the
time evolution of the ground level go and of all the possi-
ble excitations which can be constructed from the
molecular-orbital basis set at time to. Solving the time-
dependent Schrodinger equation, with H(t} given by (19)
and f(t) by (21), and introducing also Eq. (24), we arrive
at the following expression for the coefficient c&(t) in a
second perturbative order:

c((r)= i f dr(—Pp(r)/H /@0(r)& —g f dr(zP((r)/H /@ (r)& f dr'(@ (r'}/H f@o(r'}& (25)

and for the time-dependent wave function we have

g(r ) =@0(t)—i g f (&)f dr(g (r)JH ]@0(r)&
—g @ (t ) g f dr(f (r)[H f@p(ri & f 'dr'& @p(v')fH fg(r') & . - (26)
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G'=G'+G'r' G'
0 U

F=F()(1+XUG')+ G()(QUG'+ XUF) .

(28)

(29)

On the other hand, G0" and F0 are solutions of the fol-
lowing Dyson equations:

Within this perturbative scheme the Dyson equation
(9) involves Green functions Go~ referred to the Hartree-
Fock time evolution, and self-energies X ~ which take
into account higher-order corrections due to the electron-
ic correlation. A second-order calculation leads to the
following expressions for X ~:

X+U(t, t')= —U'Go+ (t, t'}Go+ (t, t')G,:+(t', t),
XU+(t, t'}=—U'G, +(t, t')G,:+ (t, t')Go+: (t', t),
X+U+(t, t') = X+—(t, t'),

XU (t, t')= X+ —(t, t'),

XU++(t, t')= X+—(t, t'),

X~ (t, t')= X+(—t, t'), t (t'.
Going back to the Dyson equations (16) for G'(t, t') and
F(t, t'), and assuming the electronic correlation as a per-
turbation over a time-dependent system of independent
particles, we can write them as

of F(t, t') at each instant of time only requires the
knowledge of F for times before.

III. APPLICATION OF THE FORMALISM

Q v(t, t') =i y gk„(t, t')—
k occupied k empty

where the function gk„(t, t') is defined as

%'e apply this formalism to the calculation of the prob-
abilities of negative- and positive-ion emission for two
"extreme" cases: a two-atom chain, and an atom ad-
sorbed in a solid within the wide-band limit.

For simplicity we restrict ourselves to the so-called An-
derson symmetric model, in which E~ = —U/2; and we
also consider a restricted Hartree-Fock for the time evo-
lution of the zeroth-order wave function fo(t), then hav-
ing

(+ (t))RHF (+ (t))RHF 0 5

From the motion equations which result for Fo(t, t') and
Go(t, t') the following expressions for X"„(t,t') and
Qv(t, t') are obtained:

X" (t, t')= ie(t—t') g—g„„(t,t'),
k

(33)

G «(a) «(~) + «(~) y «(a)G «(t2)
0 g0 g0 v 0

F() =f()(1+XvG())+g()(QvG(')+XvF()),
(30} kkA(t t } VkA(t)vkA(t )expl. '(Ek sA )(t

(34)

where go(' and fo refer to the system without interac-
tions, and Xv, Qz are the self-energies corresponding to
the one-body time-dependent potential V;z(t) By intr. o-
ducing in Eqs. (28) and (29) the expressions of Go and Fo
given by (30), we get

k states being the substrate eigenstates; and
s„=E&+U(n„(t)), which, in the Anderson sym-
metric case and for a restricted Hartree-Fock, is equal to
zero for any instant of time.

The functions Go~(t, t') are obtained through the fol-
lowing relations:

Gr(a) r(a) + r(a)(Xr(a)+Xr{a))Gr(a)go go V U

F go(Xv+Xv)F+go(Qv+Qv)G

+f()(1+XvG'+XUG') .

(31) Go (t, t')=i g G„"„(t,—~ )Gak( —~,t'),
k occupied

Go+(t t'}=—t X
k empty

g() 'F=(X"v+X"(J)F+(Qv+QU)G',

where we have used the differential operator g0
'..

g 'g =5(t t'), g 'f =0.—

(32)

Dyson equations written in the differential form show the
independence on the initial distribution given through fo.
Thus solutions of Eqs. (32) are determined uniquely and
independently of the distribution at t = —00.

In summary, we calculate G'(t, t') through the
differential equations (32) in the following way: fixing t
at a sufficiently large time, we evaluate G'(t, t') for t go-
ing from t' to a negative value to, and then F(t, t') is in-
tegrated for t values going from t0 to t'. The calculation

Finally, it is possible to write Eqs. (31) in differential
form:

g() 'G'=5(t t')+(Xv+XU)—G',

G()(t, t')= ie(t —t') g—G„"k(t,—ao )G'„k( —ao, t') .
k

Here there is involved only the calculation of the func-
tion Gz'k"'(t, —ao ), which for a one-body time-dependent
potential, is straightforward.

Let us write these all quantities for the two cases that
we are going to analyze.

A. Two-atom chain

Taking the time-dependent interaction as

V0, t (0
V(t)= '

Voexp( —
A, t ), t & 0,

the expressions (33}—(35) give in this case

x",(t, t ) = —ie(t —t') v(t) v(t'),

Qv(t, t') =0,
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Go+ (t, t') = i — (t')]j ,,
' —t/2)exp[i[f(t) —f

[f(t } f(t
G,"(t,t )= —ie(t —t cG" ' t t'—)cos[f(t) f—(t') ]

G (t, t') =( —i /2) exp —i ')]j ,

where

V()t, t &0
(t)= '

V 1—0[1—exp( At }]—/A, , t &0

The self-self-energies (27) assassociated with th - ic
obe

XU (t, t')=( iU—/8 exX+ ' = exp{3i[f(t)—f(t')]j,
X U+(t, t')=(iU /8)ex ]j.

en, according to E s.en
'

o qs. (15), we have

X""U(t, t')=( i U /4—)cos[3 t[f( } f(t }1j

Q U( t, t ') = (
—U /4)sinsin[3[f(t) —f(t')]j .

B. W'ide-band limit

The usua
1' it'fth

a approximati
t""tin th

Vk„(t)= Vku(t),

6(K)=irp(e)(
~ V„~k Ck=C

p being the density of states
dtob '

dis e independent of th
nsi er

e energy c. For u(t)

u(t)= '
1, t(0
exp( —

A,t), t &0.

x",(t, t )= —ie t—X", ' = i —t —t')2b, ~u(t)~'5(t —t'
t

Qi,(t, t')= liin
u t')(t t')—

[(t t')'—+ rt')

(t, t')=(ib /ir) de tde f t, e)f'(t', e),

G, +(t, t')=( ib, —/i rr d ', e),6 f(t, E)f (t

the function f ( t, e}being

f(t, e)= drur u(r)exp( ier—)G" t

with G' t y

0 t, r),
0 t, r) givenby

G","(t,r)= —ie(t —r — '
u xt —r)exp —f b, ~u(x dx

elf-enerThe s gies XU and 0 a
according to E s.

U are calculated in t

IV. RESULTTS AND DISCUSSION

The limiting cases' ' in wh'

-m, (ii) ~zero ecoupled from the s
i t equals zero (two-1

e substrate, and
o- evel system}

1 . I tll t
H

nstant atom-substrate ce coupling th
1 d s't f 1

e second-or

model ' ' i

'
ns or the d' 'n'"t

o ocal sin
e symmetric de

Expressions (33)—35
case:

—(35) give the followino owing results in this
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We obtained the following asymptotic behaviors of
G, (t, t') and F(t, t'):

[G'(t, t')]t, „= —i cos[U(t —t')/2],

[F(t,r')], , „=—B sin[ U(t —r')/2]

with B=P +P —P —P+ .

U *0.02 o.u.———U *0.03 o.u.———U*0.05 o.u.

These are the expected behaviors for the spin restricted
and symmetric case where P =P and P+=P . Ac-
cording to expressions (18), the negative (positive) ioniza-
tion probability is given by

-1.00
-100

I

120
I

340 560

time t (a.u. )

I

780

P (+)=(1 B)/4—.

1.00

r
o6o—

\
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I
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Figures 1 —3 show the behaviors of G, (t, t') and F(t, t')
as functions of time (t'~ co ), for different sets of parame-
ters and for the two analyzed cases: the two-level system
and the wide-band solid limit. In all the cases the atom-
substrate coupling decreases exponentially as

exp( kcvt), —with Ao= 1 a.u. From these figures we can
see the oscillatory behavior for large values of time t with
a period equal to 4n/U, w. ith amplitudes which for

G, (t, t ') are always equal to unity, while for F(t, I ') these
depend on the velocity, the correlation parameter, and
the interaction strength. Asymptotically G, (t, t') and
F(t, t') are out of phase in m/2. All these characteristics
are a good test for the numerical integration of the Dyson
equations. Also, the continuous functions along the time
obtained for both, G, and F, show a perfect matching be-
tween the different coupling regimes going from V;, to
zero.

FIG. 4. F(t, t') as a function of t for the wide-band approxi-
mation. 6=0.2 a.u. , A.0=1 a.u. , v =0.0125 a.u. , and U equals
0.02 a.u. ( },0.03 a.u. (

———), 0.05 a.u. ( ———).

In Figs. 4 and 5 we show, in the wide-band solid case,
the time-dependent behavior of F(t, t') for three different
values of U, and for three different values of velocity, re-
spectively. The remaining parameters in each case are
fixed.

The negative ionization probability as a function of the
inverse of the atom velocity is shown in Figs. 6 and 7 for
b, values of 0.2 and 0.05 a.u. , respectively, and for various
U values in each case. We can observe from these figures
that the negative ionization probability is slightly depen-
dent on U and velocity. In order to understand the U
and velocity dependence of the negative ionization proba-
bility, it is necessary to take into account the relevant
features contained in the Anderson model for the sym-
metric case. There is a Coulomb energy U for two elec-
trons on the adsorbate site, and the energy of the two-
electron adsorbate state is equal to the Fermi energy.
Taking the bandwidth to infinity leaves only two indepen-
dent parameters: U and the hybridization width h. The
adsorbate spectral density has Lorentzian side peaks cen-
tered at energies (+ U/2) and ( —U/2) of width b„and a
central Kondo peak at the Fermi level of width Tk (Kon-
do temperature). This Tk is found to be given by the ex-

pression '
Tk =(1+1/2u )0.515u ' b, exp( —m u /8),
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where u = U/(re, ). The two side peaks can be under-
stood as lifetime-broadened resonances corresponding to
local quasiparticles with energies (+ U/2) and (

—U/2),
while the Kondo peak reflects those many-body effects
which cannot be given a simple interpretation.

For u ((1 the split between the three peaks is dimin-
ished, it being a good approximation to think of them as
merging into a single broadened peak centered at the Fer-
mi level. This corresponds to the Hartree-Fock limit sit-
uation. For u )&1 the Kondo peak becomes a very sharp
resonance at the Fermi level which accommodates a very
small fraction of localized electrons, but gives rise to
enormous enhancements of low-temperature thermo-
dynamic and transport quantities. ' This makes an im-
portant difference with the limit u = 00 in which the ad-
sorbate density of states around the Fermi level is zero.

The mechanism of charge transfer in the dynamical
process for this kind of system can be viewed as a reso-
nant tunneling of electrons through the potential barrier
between atom and solid. If only the two side peaks which
correspond to a local quasiparticle with lifetime l/b, (z)
were present, one would expect strong variations in the
negative ionization probability with the correlation pa-
rameter U and with the atom velocity v. The reason is
that, the larger is the relation U/b„ the smaller becomes
the tail of the broadened peak centered at U/2 around
the Fermi energy. This leads to a decreasing negative
emission as long as U/b, grows at constant velocity. For
a constant value of U, a larger velocity implies a shorter
interaction distance from the surface, and therefore a
larger width of the broadened side peaks. This should be
reflected in a growing ionization probability with the
atom velocity. However, the presence of the Kondo

peak, as a resonance at the Fermi energy, introduces im-
portant changes in this picture. This resonance favors
strongly the negative ionization, leading to very smooth
U and v dependences.

The second-order perturbation theory in the stationary
case gives the exact spectral density for u &1.2, and for
larger values it predicts a quahtatively correct struc-
ture. It seems natural to expect a similar validity range
for the dynamical process of charge transfer based on a
resonant tunneling mechanism.

In summary, our formalism reproduces the stationary
one for a constant coupling, and describes correctly the
limiting cases of U=O and 6=0. For finite values of
U/6 the behavior of the negative ionization probability
with U and v is consistent with the presence of the
characteristic resonance at the Fermi level, known as the
Kondo peak, for the symmetric Anderson case. Our for-
malisrn also gives the exact ionization probabilities for a
zero-bandwidth solid (two-level system), where it is
known that second-order perturbation theory reproduces
the exact self-energy in the static case.

The aim of this work was only to present the formalism
and some straightforward applications of it. We think it
opens interesting possibilities for treating dynamical
charge-transfer processes with correlation effects. Fur-
ther works on more realistic model systems are in pro-
gress.
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