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Multiple scattering of light from one-dimensional random rough metallic surfaces is numerically stud-
ied by means of a Monte Carlo simulation method based on the extinction-theorem boundary conditions.
Angular and integrated distributions of the mean scattered intensity are computed for several values of
the angle of incidence, state of polarization, surface statistical parameters, and dielectric permittivity.
Two main regimes are addressed, depending on whether the surface correlation length T is larger or
smaller than the wavelength A. In the first case, we observe enhanced backscattering both for s and p
waves, whereas in the latter situation there exist substantial absorption effects under p polarization,
linked to the excitation of surface polaritons. In addition, calculations are made of field enhancements
on the surface, owing either to surface-polariton excitation in the small-correlation-length case (T <A),
or to multiple scattering and generation of other kinds of surface wave in the large-correlation-length

case (T > A).

I. INTRODUCTION

In this paper we carry out a study of the scattering of
light from statistically rough metallic surfaces. We shall
pay special attention to the mean scattered (i.e., reflected)
intensity, as well as to effects associated with the excita-
tion of surface electromagnetic waves, and, in particular,
with surface polaritons (SP).

This classical subject’”? has undergone a considerable
advance in recent years. On the one hand, this has been
due to the development of controlled experiments from
well-characterized samples.’ > On the other hand, Monte
Carlo methods have been established for numerically
solving the scattering equations for one-dimensional sur-
faces z=D(x) [namely, D(x,y) being constant in the y
direction; the restriction to one-dimensional profiles has
been so far imposed by the limitations in computation
with a large number of sampling points].®!° Theory and
experiment have led to such results as the phenomenon of
enhanced backscattering (also related with that of weak
localization of photons in random media?~2® transmis-
sion effects in thin films and dielectrics, and enhanced
specular reflection from symmetric profiles, which were
not predictable with previous analytical theories [e.g., the
Kirschhoff approximation KA or the perturbation
method].?’ 38

In this work we shall make use of the aforementioned
numerical procedures to address multiple light scattering
from deeply rough random metallic surfaces with one-
dimensional profile. The problem is stated in Sec. II. In
Sec. III we address the results for the mean scattered in-
tensity. Section IV is devoted to the study of the field on
the surface for specific sample profiles. Finally, the main
conclusions are briefly synthesized in Sec. V.

Three regimes are considered depending on whether
the correlation length T of the surface is larger, equal, or
smaller than the wavelength A. In the first two cases, we
make a comparison, not yet done, with experimental re-
sults,” whereas in the latter we discuss effects associated
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with the excitation of SP under p polarization.*>*° These
modes have been shown*' ~* to play a basic role both in
the existence of a tiny backscatter peak when T <A and
o << A, and also in the existence of substantial absorption
effects in the reflected light from gratings.>*%%445 How-
ever, we shall show that the absorption in the case of sta-
tistical surfaces is not so strong as observed in metallic
gratings, nor it is so critical with the angle of incidence.
This is due to the fact that, since a random profile can be
considered as a superposition of gratings, many different
surface modes are simultaneously present.

Moreover, in studies of light diffraction from metallic
gratings, the existence of SP has been linked to that of
field enhancements in the selvedge for p polariza-
tion.*674° The large values taken on by the field ampli-
tude on metallic surfaces play a fundamental role in, e.g.,
second-harmonic generation and surface-enhanced Ra-
man spectroscopy.** We shall see here that these
enhancements also exist in statistical surfaces, although,
once again, they are not so dramatic as in the case of
gratings. This is discussed in Sec. IV. In this section we
shall also analyze the relative influence on these enhance-
ments associated with SP excitation due to both the sur-
face roughness and to the (much weaker) coupling with
evanescent waves created by diffraction from the sample
edges (also present in flat surface samples).

Finally, we have also observed surface field enhance-
ment for both s and p polarization in surface samples
with T> A and large roughness, o > A; this last result is
as well obtained by means of an iterative treatment up to
double scattering of the integral equation governing the
scattering from a perfect conductor, as used in the calcu-
lation of double, and even triple, scattering to the far field
in Refs. 10 and 50-55. On the other hand, this enhance-
ment bears a connection both with previous observations
of strong line shapes in the nonradiative region in this
range of statistical parameters and polarization,'® and
with the presence of field enhancements in the selvedge of
deep metallic gratings under s polarization,’® this sug-
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gesting the existence of some sort of surface electromag-
netic waves in this regime.

II. FORMULATION OF THE SCATTERING
PROBLEM

A. Scattering equations

The physical problem under consideration is the fol-
lowing: a one-dimensional rough surface z=D(x)
separates the vacuum [z > D(x)] from an isotropic and
homogeneous medium of  dielectric constant
elw)=eg(w)tie (w) occupying the half-space
[z <D(x)], where €g and €; denote real and imaginary
parts, respectively.

Upon this surface, a monochromatic, linearly polar-
ized, plane electromagnetic wave impinges at an angle of
incidence 6, with respect to the z axis. Notice that,
inasmuch as the surface height does not depend on the y
coordinate and the incident wave is linearly polarized
with the wave vector in the xz plane, we reduce our ini-
tial geometry to a two-dimensional one. Furthermore, no
depolarization exists, i.e., s-TE (respectively, p-TM) in-
cident waves cannot be scattered to p (respectively, s)
waves. Consequently, the electromagnetic field is com-
pletely described by its transversal component using a
scalar treatment. For the sake of simplicity, we define a
wave-field function U(r) which stands for the y Cartesian
component of the electric (or magnetic) field for s (or p)
polarization. Therefore we write the incident wave field
in the form

Ur)=3U" exp(iKy1) . 1)

In Eq. (1) r=(x,z), § is the unit vector along OY. We
denote the incident and reflected wave vectors as K and
K, respectively,

Ko=(Kg, —qo)=kg( sinby,0, — costy) , (2a)
K=(K,q)=k(sind,0, cosf) , (2b)
where
K=K =k2 =2 = |27 2 (3)
0 0T 2 Y ’

A being the wavelength of the incident plane wave. 0,
and O are the incidence and observation angles above the
surface. As customary, we omit a time-dependent factor
exp( —iwt) in the fields throughout.

We aim to determine the field scattered from the rough
metallic interface [ez(w) <0, €;(w)>0]. By using the ex-
tinction theorem*~37 as a nonlocal boundary condition,
we obtain the scattered field in the vacuum region in
terms of the source functions U(x) and W(x ), which are
defined by

U°x,D(x))

U= ylinx, D(x))
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’ aU(out)(r)
on z=Dx)
W(X)= 4 |auie) , (5)
a on z2=D'"x)

where the continuity relations across the interface have
been accounted for. The superscripts (out) and (in) mean
inside vacuum and metal, respectively. D"’ and D™’
denote the surface profile when approached from above
(vacuum) and below (metal), respectively. The normal
derivative is 3/dn =7V, 7 being the local outward nor-
mal vector

E%({—d[D(x)]/dx},l), ®)
where y=(1+{d[D(x)]/dx}*)!/2. The constant a de-

pends on the polarization
a=1 for s polarization , (7a)
a=€(w) for p polarization . (7b)

The source functions U(x) and W(x), as given by Egs.
(4) and (5), as well as the far field and its corresponding
intensity, are obtained following the analysis and the nu-
merical method described in Refs. 10 and 16.

B. Surface model

We assume for the surface-profile function z=D(x) a
statistically homogeneous and isotropic random process
with zero mean [{(D(x))=0] and normal probability
density function, o being its rms deviation. In addition, a
Gaussian correlation function c¢(7) is considered as fol-
lows:

c(7)=%(D(x )D(x +7))= exp
o

2
2] e
T denotes the correlation length.

We apply the Monte Carlo method employed in Ref.
19 to simulate the surface profile (see also Refs. 8 and 16).
In this procedure, a sequence of random numbers, uni-
formly distributed between [0,1], and directly generated
by the computer, is transformed into a sequence (typical-
ly 10° numbers) with normal statistics, zero mean, and
unity variance. Finally, in order to obtain a correlation
function as given by Eq. (8), the latter sequence is corre-
lated with a Gaussian function with the appropriate
width T, and scaled to the desired rms o.

C. Numerical calculation

Considering a surface sample of length L consisting of
N points, and a plane wave, either s or p polarized, in-
cident at a given angle 6, with the normal to the mean
plane, then, by means of a quadrature scheme, the in-
tegration over the surface is converted into a summation
fromn=1toN[x,=—L/2+(n—1)L/N].'*'¢

After repeating the same process for a certain number
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of samples, and averaging the squared modulus of the re-
sulting far fields, the mean scattered intensity is calculat-
ed for a given incident angle 6,. It is useful to carry on
the calculation for both 6, and —6,. In this way, we
manage to double the effective number of samples over
which the average is performed, without doubling the
computer time.® It should be mentioned that, as expect-
ed, this procedure does not alter significantly the angular
distribution of mean intensity with respect to that ob-
tained at 6, only, but contributes indeed to a faster con-
vergence of the results when the number of samples is in-
creased. Moreover, it constitutes a simple way of sym-
metrizing the scattered far field for normal incidence.

Calculations were carried out on a CDC-Cyber
180/855 computer and on a VAX 9210 computer. We
employ from 220 up to 300 sampling points for each
profile (we have checked that, generally, the choice of 300
points does not appreciably modify the results). Besides,
three different regimes of surface correlation length T are
submitted to study as both the angle of incidence 6, and
the rms o vary. For T = A, the surface profiles have a
length L=72.81A. In this case, our choice of N =300
yields about ten sampling points per wavelength, which is
adequate for accuracy of the numerical results.>® For
T <A, L=22A, and using N =220 implies ten sampling
points per wavelength, but two points per correlation
length. Even so, the results exhibit a high enough degree
of accuracy and consistency, as checked on comparison
with other authors’ computations,*>%!° among whom
some take a much larger sampling point record (cf. Ref.
58) by means of a very wide beam simulation method.
The minimum effective number of surface records over
which the average is performed is 200. We have ob-
served, however, that making this number double or tri-
ple indeed smooths the angular distributions of scattered
intensity, though the main features are not significantly
modified. Generally, the following angles of incidence
are considered: 6,=0°, 10°, 20°, 30°, 40°, 50°, 60°, and 70°.
The adequacy of the results, inherently noisy due to the
limited number of samples in the averaging, is tested on
the basis of different criteria. First, the numerical con-
vergency of the mean intensity as the number of surface
samples increases. Second, the mean total reflectance R
can by no means exceed the unity value. This constitutes
the energy conservation criterion. Third, the results cal-
culated with different lengths L should be consistent with
each other. Finally, we check the reciprocity law: The
scattered intensity for the fixed direction of incidence K,
and of observation K must be equal to that for the in-
cident direction —K and of observation —K,. This law
is readily derived from the invariance of the scattering
matrix under time reversal.

As shown in Ref. 8, the choice of a Gaussian beam!’
instead of a plane wave as incident field does not
significantly affect the results; the noise due to the averag-
ing process is generally larger than that introduced by
edge effects. Only in the case where T and o are smaller
than A, and there exists an intense specular peak, the side
lobes of this peak can swamp the values of the diffuse
halo in the vicinity of the specular direction; nevertheless,
this is avoided by subtracting the coherent part in order
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to uniquely evaluate the angular distribution of the
diffuse component.

III. RESULTS FOR THE MEAN SCATTERED
INTENSITY

In this section we report the numerical results of our
scattering simulation for the angular distribution of mean
scattered intensity and of its diffuse component as well as
for the reflectance.'® We have calculated these values for
three different dielectric constants €(w) in the metallic re-
gion:® e(w)=—4.12+i1.29 (gold at A=516.6 nm),
e(w)=—9.89+i1.05 (gold at A=652.6 nm), and
€(w)=—17.2+i0.498 (silver at A=652.6 nm).

A. Large correlation length (7> 1)

Within this regime, we chose T=3.16A in order to
compare our numerical results with the existing measure-
ments reported in Ref. 4 and 5. Figure 1 shows the an-
gular distribution of mean scattered intensity from a gold
surface with e=—9.89+i1.05, T=3.16A, and o0 =1.9A.
In what follows, we denote the backscattering direction
by a solid vertical line on the left, whereas a dashed verti-
cal line on the right is used to indicate the specular direc-
tion. Note that, owing to the large roughness, no
coherent component appears. By contrast, a remarkable
peak arises in the backscattering direction, which is
clearly observable for 6, up to 30° in p polarization, and
for 6, up to 40° in s polarization. For the sake of brevity,
we only plot here the curves for 40°.

The results of Fig. 1 agree well with the experiments
performed with one-dimensional gold surfaces with the
same statistical parameters as here (cf. Figs. 8 and 9 in
Ref. 5, taking into account the different convention there
for incidence and observation angle and for the normali-
zation). It should be pointed out that if the medium is as-

R,=0.95
0:1.9}\ 4
T=3.16\
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FIG. 1. Angular distribution of mean scattered intensity
(I(8)) /I, from a metal surface with 7=3.16A, o0 =1.9A and
€=—9.89+i1.05, at 6,=40°, averaged over 400 samples.
Dashed line: s polarization. Solid line: p polarization. The
average reflectance for each polarization is a shown. The specu-
lar direction is marked by the dashed vertical line. The back-
scattering direction is shown by the solid vertical line.
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sumed to be a perfect conductor, the resulting numerical
calculation using the extinction theorems (ET) exhibits a
considerable departure from the experimental curves for
increasing angle of incidence. In fact, the angular distri-
butions for perfect conductors at such angles of incidence
behave as quasi-Lambertian for both polarizations.>® By
contrast, those for a real metal resemble more accurately
the tendency towards the backscattering direction mani-
fested by the experimental curves, and reproduce the
slight differences existing between s and p polarization. A
comparison between our numerical calculations (Fig. 1)
and the aforementioned experimental results at 40° yields
a degree of agreement surpassing those of numerical re-
sults similar to that of Fig. 1 which have been previously
reported™ %8 regarding this regime of surface statistical
parameters.

If we change the dielectric constant of the metal, the
behavior of the angular distributions of scattered intensi-
ty for p waves is slightly more affected than for s waves;
however, the backscatter peak structure is preserved in
spite of the larger or smaller height reached by the peak,
which depends on the degree of absorption undergone by
the incident beam. This narrow peak has been found
even in dielectric interfaces with high enough permittivi-
ty (e> 4)'4,10,16, 17

Figure 2 shows the average reflectance versus rms o
for the three dielectric constants mentioned above, keep-
ing T=3.16A and 6,=20° fixed. The reflectance exhibits
a very slight and monotonous decrease as o increases.
Moreover, although not shown here, the reflectance
versus 6, for a particular choice of T, o and € follows the
plane (o0 =0) result, given by the Fresnel coefficients for
e(w) (cf. Ref. 60), but slightly shifted downwards by an
amount that increases with o. This behavior looks
reasonable on the basis of geometrical optics (GO). The
net absorption characterized by the imaginary part of
€(w) is related to the number of hits suffered by the in-
cident wave. Double scattering introduces an event of
absorption onto the metallic surface additional to that of
single scattering. Therefore the absorption slightly in-
creases with o, thus decreasing the reflectance. Besides,
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FIG. 2. Average reflectance from 200 samples vs roughness
o/A for T=3.16A at 6,=20°. With asterisks p polarization;
unadorned, s polarization.
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we have observed that changing the angle of incidence
does not modify significantly the absorbed energy by a
given rough surface, since the number of scattering
events hardly varies with 6, (except near grazing in-
cidence, at which there exists only specular reflection).

B. Correlation length equal to the wavelength (T =A)

Qualitatively, the angular distributions of mean scat-
tered intensity for T=A do not differ too much from
those for T'=3.16A, previously studied before. In partic-
ular, enhanced backscattering occurs provided that o
takes on a large enough value. For instance, o =0.5A en-
sures the existence of a backscatter peak for T=A. Logi-
cally, the peak is wider than that for T=3.16A, since its
angular width depends on A/T.>10

Figure 3 shows the reflectance versus o for T=A and
0,=20°. If one excludes the p polarization result for the
most  absorbing metals (e=—4.12+i1.29 and
€=—9.89+i1.05), the curves resemble those of Fig. 2.
Roughly speaking, the explanation of the absorption
given in connection with Fig. 2 also holds within this re-
gime of T. Nevertheless, a stranger contribution to the
absorption of energy arises in the case of Fig. 3, because
of the dissipation due to the excitation of SP.>** These
elementary surface modes can be only excited by p waves.
Once a SP is excited, it propagates along the surface until
it either becomes attenuated [owing to intrinsic loss
mechanisms within the metal such as interband transi-
tions, which are enclosed in €;(w)] or decays into a radia-
tive mode (photon). For an infinite flat surface, an in-
cident photon cannot couple to a SP because their disper-
sion relations never cross each other.’**® The probability
of excitation becomes nonzero if roughness is introduced
on the surface. Moreover, within an interpretation based
on a perturbative theory for weakly rough surfaces, this
probability is proportional to the power spectral density
of the surface’®3*%17 (namely, to exp(—K3pT?) for a
Gaussian correlation function as given by Eq. (8), where
Kp is the SP wave vector). Although this formulation is
only valid for T <A and o << T, it still provides a qualita-
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FIG. 3. Same as Fig. 2 for T=A.
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tive idea of the dependence on T of the SP probability of
excitation. The case T=3.16A, seen in Sec. III A, gives
an almost negligible probability of excitation,*! as implied
from a comparison between the reflectances for p and s
polarization in Fig. 2. Figure 3 reveals that p-wave ab-
sorption supers s-wave absorption. We interpret this ad-
ditional amount of absorbed energy for p polarization as
due to the roughness-induced excitation, and subsequent
damping, of SP, which is not possible for s polarization.
However, as this extra absorption is relatively small, we
can infer that the coupling photon SP is weak in this re-
gime of 7. By contrast, the excitation of SP does play a
more relevant role in the scattering from surfaces with
T << A, as we will see below.

C. Subwavelength correlation length (T <A.)

The surface-correlation length considered throughout
this section takes on the value T=0.2A. The rms o
ranges from =0 to 0.3A. For ¢ =1.5T our numerical
method starts to fail.

In Refs. 41-43 enhanced backscattering for p polariza-
tion was predicted for a surface with o =0.01A through a
diagrammatic addition of multiple-scattering contribu-
tions using both the Rayleigh hypothesis"’? and the ET
expressions.35 Later on, calculations based on the numeri-
cal solution from the ET confirmed the former predic-
tion.>!° The physical mechanism involved in producing
the backscatter peak was interpreted on the basis on the
excitation and deexcitation of SP.*"*? Since an s-
polarized photon cannot couple to a SP (this only holds
in one-dimensional surfaces), no backscatter peak appears
for s polarization.

In this work we concentrate on the area enclosed by
the angular distribution, namely, the reflectance for s and
p waves. In Fig. 4 the total (diffuse plus specular)
reflectance versus the angle of incidence is plotted for
€(w)=—9.89+i1.05 (T=0.2A, 0 =0.11), including the
reflectance for a plane (Fresnel coefficient). The net
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FIG. 4. Average reluctance from 200 samples vs 6, for
T=0.2A, 0 =0.1A, and €= —9.89+i1.05 (solid lines). The re-
sult for a plane (o0 =0, dashed lines) is also included. With as-
terisks, p polarization; unadorned s polarization.
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roughness-induced absorption for p polarization, ob-
tained on substracting the rough surface result from the
flat surface result, is maximum at normal incidence and
decreases continuously as 6, increases. For s polariza-
tion, it is very similar for both metals, and does not de-
pend on 6,. The behavior of the reflectance for p waves
agrees fairly well with that expected when the metal sur-
face supports SP.3%3*

Figure 5 shows the total reflectances versus o for the
three metals, with T=0.2A at 6,=20°. Whilst the s po-
larization result is not modified by the roughness, the p
polarization reflectance presents an outstanding struc-
ture. Initially, it decreases with the roughness. At a cer-
tain value of o, which depends on €, a minimum is
reached. Then the reflectance begins to grow again as o
increases further. A physical explanation of this behavior
can be given in terms of the excitation of SP.** When a
slight roughness is ruled on a metal surface, light weakly
excites SP, which are subsequently damped transferring
their energy within the metal on propagating along the
surface. As the roughness increases, so does the probabil-
ity of excitation, thus increasing the absorption through
these surface modes. However, the larger o is, the more
probable it becomes that SP are scattered by coupling
with propagating modes and thus that photons are
thrown back to the vacuum, producing an increase in the
reflectance. The minimum (respectively, the maximum)
value of the reflectance (respectively, of the absorption
curve) is due to a balance between both processes: excita-
tion (and then dissipative damping) and reradiation of SP.
If o exceeds this value at which there is maximum ab-
sorption, radiative damping prevents SP from being
efficiently excited, and subsequently dissipated: thus the
reflectance gradually increases. Finally, beyond a certain
high value of the roughness o, the radiative daming
should be so strong that the coupling between photons
and SP would become virtual; namely, SP would be
simultaneously created and destroyed so that, in practice,
no excitation would exist. Our calculation method does
not permit us to achieve accurate results for such rough
surfaces (o /T = 2), but we infer from our results that the
reflectance would then tend to a value similar to the one
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FIG. 5. Same as Fig. 2 for T=0.2A.
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FIG. 6. Same as Fig. 5 for the mean total incoherently scat-
tered energy (TISE) in arbitrary units.

it takes on for o =0.

If we wish to analyze the incoherent part, then the
mean total incoherently scattered energy (TISE) must be
calculated. Figure 6 shows the TISE versus o for the
three metal dielectric constants already used, keeping
T=0.2A and 6,=20° fixed. The curves for s polarization
manifest the expected behavior: the TISE, which is zero
for a plane surface, grows as the roughness increases, un-
like the coherent part, which simultaneously decreases
with 0. Beyond o =0.2A the scattered energy consists
only of the incoherent component: This is evident by
comparing the TISE with the reflectance (Fig. 5). For p
polarization the absorption due to the excitation of SP
affects considerably the behavior of the TISE. About the
regime of roughness where maximum absorption takes
place, a relative minimum of the TISE is observed. Nev-
ertheless, if the coherent component is calculated by sub-
stracting the TISE in Fig. 6 from the reflectance in Fig.
5, we find a very similar dependence on o for both polar-
izations. This indicates that the effects of the absorption
of light through surface modes take place mainly for the
diffusely scattered waves.

IV. SURFACE-FIELD ENHANCEMENTS

So far, we have discussed the distribution of scattered
field above the selvedge. In this section the values of the
wave field on the surface, given by the functions U(x)
and W(x), are submitted to study. The underlying physi-
cal mechanisms that give rise to phenomena such as
enhanced backscattering or excitation of SP may be inter-
preted in connection with the total field on the surface,
resulting from the scattering process. In fact, in the case
of light diffraction from gratings, it is well known that
the absorption of light due to the excitation of SP is
linked to the existence of field enhancements in the sel-
vedge and, in particular, in the surface.’46:48:49

In the case of a perfect conductor, the continuity con-
ditions impose that the tangential component of the elec-
tric field and the normal component of the magnetic field
must both vanish on the surface. Therefore, as a real
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metal approaches a perfect conductor, those quantities
tend to zero. We shall then define a surface current func-
tion J(x) as, either the normal derivative of the total
electric field for s polarization, or the total magnetic field
for p polarization, both evaluated on the surface. Name-

ly,

Js(x)=LW(x) , (9a)
ko
J,(x)=Ulx) . (9b)

The function J(x) allows us to compare quantitatively
surface fields of real metals and of perfect conductors,
when necessary. Throughout this section, we shall ad-
dress J(x) as obtained from the system of coupled in-
tegral equations of Refs. 10 and 16 for different segments
(of length L) of surface profiles.

A. Flat surface

We shall make first a theoretical analysis to give some
insight into the physical mechanisms underlying the nu-
merical results; then we shall discuss the consistency of
this interpretation with the exact numerical computa-
tions. For a infinite planar interface, the reflected surface
field is the incident field on the surface multiplied by the
corresponding Fresnel coefficient. If the metallic il-
luminated interface z=0 has a finite length L, then the
reflected surface field will be altered near the edges by
diffraction (let us denote the edge points by x =a and
x = —a, with L =2a). By means of the angular spectrum
representation, the scattered field for z > D ,, [D .. be-
ing the maximum value of z=D(x)] may be written in
the form

Un=[" AK)e'KxtadK (10

For a finitely extended incident plane wave, the angular
spectrum of the field reflected at the flat surface will be

A(K)=R(K)F(K,K,) , (1)
where F(K,K ) has the following shape:

FK,Kg)=L SPUE Kol (12)
s KK,
a is half the length of the surface, namely a =L /2. In
Eq. (11) R(K) denotes the Fresnel reflection coefficient
(cf. Ref. 60), which depends on the polarization as fol-
lows:

ﬁs(K)=-q—:£7 for s polarization , (13a)
9+g
R, (k )=M;q— for p polarization . (13b)

4 elw)g+gq’

K and q are defined in Egs. (2) and ¢'=[e(w)k3—K?]'%
It should be remarked that the equivalence made in this
theoretical analysis between illuminating an infinite sur-
face with a truncated plane wave and illuminating a trun-
cated surface is not strictly rigorous. One should intro-
duce currents on the surface edges to correctly account
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for edge-diffraction effects. We have glossed over this so
that in fact our theoretical analysis based on Eq. (11)
would actually correspond to using the KA for the edge-
diffraction effect. Since the extent of the illuminated sur-
face is much larger than the wavelength (L =221), we ex-
pect this approximation not to introduce a too strong
quantitative error in our theoretical interpretation. A
similar approach has been previously used, e.g. in Egs.
(6.4) and (6.5) of Ref. 10.

For p polarization, the presence of resonant poles in
the Fresnel coefficient Eq. (13b) at K =1 Kgp produces a
weak excitation of SP. The integration of the equation,
resulting from introducing Egs. (11) and (12) into Eq.
(10), is done in the Appendix, and yields the scattered
field. By adding this result to the incident field U'”, in-
troducing it into Eq. (10), and evaluating both at z=0, we
finally obtain (see Appendix):

S__(x)+S, _(x), x<—a (14a)

[M+RE)UD(x)+S_ , (x)+S, _(x),
—a<xZa
S_4(x)+S,.4(x), x>a .

Jy(x)= (14b)

(14¢)

S__(x), S4_(x), S_,(x), and S, (x) are surface
waves (SP), as defined in the Appendix [cf. Egs. (A6),
(A7), (A10), and (A13) evaluated at z=0]. They are the
result of the coupling between evanescent waves produce
by edge diffraction due to the surface-illumination trun-
cation and the resonant-surface modes associated with
poles of 2,,(K ). Four SP are created near the point x =a
(respectively, x = —a) in the boundary, which propagate
in the forward direction S, , (x) [respectively, S_, (x)]
and in the backward direction S, _(x) [respectively,
S__(x)]. Within the surface, the field contains also the
incident and specularly reflected fields [cf. Eq. (14b)].

For s polarization, the absence of poles implies that no
SP are excited. The function J (x) then consists only of
incident and specularly reflected components

1 )
— 1= (i) <
Jx)= ko[ RKNIW D (x), |x|<a

0, [x|>a,

(15a)

(15b)

where W'(x) is the normal derivative of the incident
field—a plane wave —evaluated at z=0, i.e.,

W (x)=—igoUx)=—igee" " (16)
Equations (15) have been calculated following the same
procedure as in the Appendix for the electric field, but
without poles at K ==+Kgp, and then taking the normal
derivative.

In order to confirm this analytical interpretation based
on the angular spectrum representation of the wave
fields, J(x) [Egs. (9)] is computed by numerically solving
the exact (ET) equations.!® In Fig. 7 the modulus of J(x )
is shown in the zone |x|<a=11A for e=—9.89+i1.05
at normal incidence. For s waves, the edge effects are
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FIG. 7. Modulus of the surface current function J(x) for a
planar surface of length L =2a=22A for e=—9.89+i1.05 at
normal incident. Dashed line: s polarization. Solid lines: p po-
larization.

practically negligible. As expected, J (x) yields a
modulus close to 2 [exactly, 1—R (K,), cf. Eq. (13a),
R (Kg)=—1, and R,(Ky)=1 for a perfect conductor]
and a phase, not depicted here, about —7/2 due to the
—i factor in Eq. (16). For p waves, the interference be-
tween the weakly excited SP S_, (x) and S, _(x) gives
rise to a standing wave, clearly seen from the oscillations
in J,(x). These oscillations have small amplitudes, and
are centered about the values 1+R,(K,) for the
modulus, and about O for the phase, as predicted by Egs.
(14). According to Egs. (A7) and (A10), the wave vectors
of these surfaces modes should be, respectively, —Kgp
and Kgp. This coincides with the observed frequency of
the standing wave in Fig. 7 through the real part (K{)
of Kgp. Although not shown here, we have also analyzed
the behavior of J(x) for e=—4.12+i1.29. In this metal,
the SP attenuation length, which is equal to (2K D)™!
(KD is the imaginary part of Kgp), is very short. The SP
exponential decay takes place in a few wavelengths in
such a way that S, _ and S_, almost disappear before
they cross each other. This dissipative damping becomes
really relevant when SP are more efficiently excited
through surface roughness (7 <<A), thus producing a
large light absorption rate.

B. Surface-field enhancements due to the excitation
of SP via roughness

Let us consider a rough surface in the regime T <A
where the excitation of SP is significant and thus plays a
fundamental role. We simulate a surface record of length
L =2a =22A\ by extracting a segment of random numbers
from a sequence with T=0.2A and o0 =0.05A. Then J(x)
is obtained from Egs. (9a) and (9b), with U(x) and W(x)
numerically calculated following Refs. 10 and 16. Figure
8 shows the modulus and the phase of J(x) for
€=—9.89+i1.05 at normal incidence. The surface
profile in an arbitrary scale is included in between the
graphs. A comparison with Fig. 7 indicates that the
influence of the surface edges on the field enhancements
is much smaller than that of the roughness. Also, we ob-
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serve huge differences between both polarizations. The
surface current for s waves is very slightly modified by
the roughness, keeping an almost constant amplitude of
[1—R,(K,)] and a phase with value about — /2, both
modulated by the shape of the surface. In contrast, J,(x)
presents irregular oscillations of very large amplitude
that we interpret as strong SP excited through roughness.
In fact, we observe that the frequency of these oscilla-
tlons 1s related on average with the corresponding value
of K ) (cf. Ref. 10), and seems to be practically indepen-
dent of the surface shape. This point is confirmed by the
results obtained for the other metallic permittivities men-
tioned in the preceding section. As seen in Fig. 8, these
SP induce remarkable enhancements of the surface field.
In terms of |J(x)|?, enhancements of the order of 25 (nor-
malized to the incident field) are encountered at certain
points of the surface. The enhancement decreases on
average as the dissipative damping associated with €; in-
creases. This is closely linked with the great losses under-
gone by the total reflectance for the most absorbing met-
als discussed in Sec. III C (cf. Fig. 5). This phenomenon
has been studied in gratings,*¢ ™% where large reflectance

2, AM\ WAL
\/Vvvvv TV \N\\/\[VV\/\/‘A\]VWV\

D(x)

y=

X
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phase(J(x))
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FIG. 8. Modulus and phase of J(x) for a sample of length
L =2a=22\ extracted from a sequence with T=0.2A and
0=0.05); 6,=0°. The sample profile in an arbitrary scale is in-
cluded in between. Dashed line: s polarization. Solid line: p
polarization.
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drops and enhancements of the surface field occur when a
nonpropagating diffraction order coincides with a SP.
On the other hand, the surface current calculated for
€= —4.12, not plotted in Fig. 8, reveals that indeed,
when the dissipative losses are minimized, the enhance-
ment for p waves reaches its maximum value; in this case,
the total reflectance, which has not been shown in Sec.
IIIC, yields a value similar to that for a flat surface, so
that no light absorption appears (€, =0).

C. Surface-field enhancements for T > A

We shall next consider rough surfaces with T>A. As
in Sec. IV B, a surface record of length L =2a is chosen
from a sequence of random numbers with given 7> A.
The surface current J(x ) induced on such a surface when
light impinges upon it at different angles of incidence is
numerically obtained once again from Egs. (9) and ac-
cording to Ref. 16.

In order to analyze the influence of multiple scattering
in this regime of statistical parameters, and hence, the ap-
pearance of surface-field enhancements in those situations
in which there is enhanced backscattering, we shall com-
pare the numerical results obtained from the extinction
theorem with those based on an iterative treatment of the
scattering equations corresponding to a perfectly conduc-
tive surface.!%:30753,53

Let us consider a surface sample with T=3.16A,
0=0.5A, and L =242 =27.81A. In this range of values of
T and o, the KA is valid and, thus, it gives an accurate
description of the scattering process.!* A comparison be-
tween the numerical results for the surface current J(x)
for real metals and the KA for perfect conductors, not
plotted here, manifests a good agreement except for the
SP weakly excited near the edges of the metallic surfaces
(cf. Fig. 7).

If the roughness is further increased, the double
scattering becomes relevant. Figure 9 shows |J(x)| at
6,=0° in two cases: gold with e=—9.89-+i1.05 (calcula-
tions via the extinction theorem), and a perfect conductor
up to the first iterate (single plus double scattering). At
the bottom of the figure, the surface profile is depicted in
an arbitrary scale. The agreement between both calcula-
tions is reasonably good. Note that, even though shadow-
ing>**% is not taken into account in the iterative method,
only at small portions of the surface slight discrepancies
arise (see the curves at points x on the left of the higher
peak).

The important fact in these curves is the observation of
large field enhancements [up to the value of 36 in terms
of |J(x)|? for normal incidence] for both polarizations,
accounted for by both methods. The fact that these
enhancements appear for both polarizations in metals as
well as in perfect conductors reveals that the excitation of
SP can by no means be the cause of these intense fields.
Actually, the reason must be the double-scattering contri-
bution [recall that the single-scattering term—KA —
only yields a value |J(x) 2=4 everywhere on the sur-
face]. From Fig. 9 it is evident that the larger values of
the fields lie on points x placed at both sides of the two
deep valleys of the surface profile record, which is exactly
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where one expects double scattering to contribute more
strongly. The occurrence of multiple scattering within
the cavities of the rough surface gives rise to enhance-
ments of both propagating and evanescent waves in the
selvedge. In this connection, it should be remarked that
intense line shapes in the nonradiative region have been
obtained for deep gratings both for s and p polarization in
this regime T > A.1%%6

In Sec. IIT A the phenomenon of enhanced backscatter-
ing was found by averaging the scattered intensity over
400 samples of metallic surfaces such as those of Fig. 9
(cf. Fig. 1). Therefore enhanced backscattering and the
aforementioned surface-field enhancements, produced
both by multiple scattering within the deep grooves of
the surface, are intimately related.

V. CONCLUSIONS

In this paper we have studied multiple-scattering
effects from one-dimensional randomly rough metallic
surfaces. It has been seen that, for statistical parameters

@
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FIG. 9. Modulus of J(x) for a sample length L =2a =27.81A
extracted from a sequence with T=3.16A and 0 =1.9A; 6,=0".
Two cases are plotted: a perfect conductor iteratively solved up
to double scattering, and the numerical result from the ET for
€=—9.89+i1.05. The sample profile in an arbitrary scale is in-
cluded in between. Dashed line: s polarization. Solid line: p
polarization.

T and o larger than the wavelength, enhanced back-
scattering takes place, this being linked to double, and
higher-order, scattering for both polarizations. There-
fore, the state of polarization of the incident wave does
not play such an important role in this regime of values
of T. Moreover, the double-scattering contribution has
revealed it is capable of producing surface-field enhance-
ments especially noticeable in the cavities; this is also as-
sociated with the excitation of some kind of surface elec-
tromagnetic waves, although in the regime of T and o the
contribution of homogeneous (propagating) waves to
these enhancements is indeed large.

By contrast, when T and ¢ are smaller than the wave-
length, there are important effects due to the excitation of
SP for p polarization. We have shown that the observa-
tion, previously made, of a tiny backscatter peak in the
mean scattered intensity is also linked to the existence of
reflectance drops and of surface-field enhancements.
However, these phenomena, although appreciable in sta-
tistical surfaces, are not as remarkable as in the case of
metallic gratings, and neither is the angle of incident as
critical in this respect. Also, we have made a theoretical
interpretation (even if approximated) to account for the
influence of the surface sample edges on the scattering
from a flat interface in order to distinguish the effects due
to the presence of corrugation from those, much weaker,
produced by diffraction from the surface boundaries. A
comparison of this analysis with the exact numerical re-
sults has been made, too.
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APPENDIX

In this appendix we address the calculation of the field
above a flat interface z =0 from its angular spectrum rep-
resentation, Eq. (10), for an incident p-polarized, finitely
extended (i.e., of truncated wave front) plane wave. The
angular spectrum is expressed by Eq. (11), where the cor-
responding structure factor [Eq. (12)] and Fresnel
coefficient [Eq. (13b)] must be accounted for.

First, we rewrite 72,(K) (see, e.g., Ref. 10),

1 1
R (K)=C(K -
pK)=CUK) | m i | (A1)
where
_ 1 (eq—q')?
CK)=——-4"97 A
Ky 1—& (A2)

On introducing Egs. (11) and (12) into Eq. (10) one is led
to
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sin[(K—K)a]

ei(Kx+qz)
K _Ko

Un)=— [ dK 7, (K)

(A3)

We divide the integral of Eq. (A3) into two integrals by
expressing the sine function in terms of exponentials as
follows:

I1=1,+1,,
where
1 —1K a
L=5— “ dK R (K)—? eKixtalgiez (A4)
w o
zKoa
dKﬁ iK(x—a),iqz . A5
I,= 2mf— (K )K—Koe e (AS)

Both integrals I, and I, may be evaluated by analytic
continuation of the integrand and using an appropriate
contour in the complex K plane. When this is done, there
are three poles to be taken into account: one on the real
axis, K,=k,sinf,, and two others slightly shifted up-
wards (Kgp) and downwards ( —Kp), respectively, from
the real axis. Cauchy’s theorem can then be applied in a
contour of integration given by the real axis and a sem-
icircle of infinite radius, either in the lower or in the
upper half-plane, depending on the location of the point
x. We next discuss the result.

1. x<—a

We choose for both I, and I, the contour of integra-
tion in the lower half of the complex K plane, so that the
integrands have the appropriate behavior for |K|— o
through the factors e tkix+a) ang e*x=a) respectively.
Then, only the poles at K, and —Kgp contribute to the
integrals. Moreover, the residues from K =K in I, and
in I, cancel each other; thus one is left uniquely with the

contribution of the residue at K =—Kgp. As a result, we
arrive at
=S__(x,z)
_ C(—Kgp) o Kot “iKsplx+a) gz , (A6)
Ksgp+Kg
C(—Kgp) ikja —iKgpx—a) —qgpz
]2=S+4(x’z):me 0%, ~'hsp e 957
(A7)
gsp being
sp=(KZp—k3)'. (A8)
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Equations (A6) and (A7) represent SP propagating to the
left and starting at the boundaries x =—a [S__(x,z)]
and x=a [S,_(x,z)] of the illuminated segment of
length L =2a of the flat interface.

2. —a<x<a

In this case, care has to be taken in the choice of the
half-plane over which the contour of integration is used.
The upper half-plane gives the correct behavior for the
integrand of I, when |K|— o due to the factor e***),
Then the residues from K =K and K =K are calculat-
ed, thus yielding for I,

Ox +q0

=3R,(Kg)e +S_,(x,2), (A9)
where
C(Ksp) —iKja iK¢p(x+a) —qgpz
_i(x,z)=——T—e Ve SP e 'SP (A10)
N Ksp—K,

is a SP that propagates to the right from x = —a. On the
other hand, the first term in Eq. (A9) represents half the
contribution from the specularly reﬂected field (recall
that the incident field has the form e' qOZ))

In order to obtain /,, we integrate with the contour in
the lower half-plane and, on introducing the residues
from K =K and K = —K¢p, we arrive at

i(Kgx+gyz)

L, =1R,(Ky)e +5,_(x,2). (A11)

S, _(x,z) is the surface mode previously found in Eq.
(A7).

3. x>a

In this case, by integrating I, and I, over the contour
in the upper half-plane, the contributions from the resi-
dues at K =K ¢p give

1,=S_,(x,2), (A12)
12:S++(x,2)
__ C(Kep) o HiKoe Kspx—a) —aspz (A13)
Ksp—

S_ 4 (x,z) was defined in Eq. (A10) and S ; (x,z) is a SP
propagating to the right from x =a. The contribution
from K=K, vanishes, similarly to what occurs in the
zone x < —a.
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