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One, two, and three layers of hydrogen display a rich variety of features, some intrinsic to ultrathin
films, others essentially manifestations of crystalline H behavior. We present calculations, in the frame-
work of local-density-functional theory, of the structure-energy behavior of 22 molecular and atomiclike
H films in a variety of hexagonal, square, and rectangular symmetries. The equilibrium phases are
molecular in character, subject to some modifications to account for the two-dimensional space group.
Thus, the energetically flavored three-layer configuration (the low aspect ratio, ¢ /a < 1, hexagonal sys-
tem) does not break up-down symmetry (one short and one long interlayer spacing, analogous with a
possible linear H; geometry) because relaxation to this configuration is incompatible with the drastically
different equilibrium intraplanar lattice spacings of the two possible component dilayers. Within the
space groups and stackings considered, even the most energetically favored three-layer configuration
(hexagonal with overhead stacking) is unbound with respect to the most-bound two-layer and one-layer
configurations, an indication that layer-by-layer buildup of crystalline H will involve an intricate se-
quence of symmetries rather than simple epitaxy. The insulator-metal transition and two versions of the
atomic-molecular ordering transition are investigated. For the monolayer transition from (molecular,
square) to [monatomic, fcc (100)] ordering, the lattice constants change smoothly, whereas for the di-
layer transition from molecularlike (c/a < 1) to atomiclike ordering (c/a >1) the lattice constants
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change discontinuously.

I. INTRODUCTION

Zero-pressure solid hydrogen is a molecular crystal.
As far back as 1935, Wigner and Huntington' proposed
that instability at high pressures would lead to an atomic,
metallic phase. As the lightest possible alkali metal, the
large zero-point motion of crystalline atomic H suggests
strong electron-phonon coupling, hence the possibility of
high-7, BCS superconductivity.? This occurrence of
complex physical behavior in a system of very simple in-
gredients has made the sequence of crystalline phases of
solid H a problem of continuing theoretical and computa-
tional interest. Monatomic structures (i.e., those in
which the H atoms are translationally identical), molecu-
lar structures, and the associated ordering transitions in
both crystals and one-dimensional (1D) chains have been
treated.3> '* Here we can summarize only the results
most directly related to the present work.

Brovman, Kagan, and Kholas® systematically exam-
ined all possible lattices for the crystal structure of metal-
lic hydrogen at T=0 K using a general many-body per-
turbation theory model. They found a trend toward less
and less symmetric structure with decreasing pressure
and predicted that the Bravais systems would exhibit tri-
angular (i.e., hexagonal) in-plane order and multiple,
nearly degenerate interplanar spacings separated by small
energy barriers. In particular, they found that all the
Bravais structures have energy minima both at c¢/a <1
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(the so-called filamentary family) and c¢/a >1 (the so-
called planar family), with a the intraplanar lattice con-
stant and c the interplanar one. In every Bravais struc-
ture the filamentary case was predicted to be energetical-
ly favored. With increasing pressure, both minima shift
toward the ideal value of ¢ /a.

Wigner and Huntington' had conjectured the existence
of metastable layered lattices intermediate in structural
complexity and density between the high-pressure atomic
phase and the P =0 molecular crystal. From their
description it seems clear that these weakly bound layer
structures are the planar structures of Ref. 3. Recently,
Barbee et al.”® have predicted that a filamentary
primitive-hexagonal phase with ¢ /a =0.6 is most stable
in the intermediate-density regime, a finding in good
agreement with the prediction of Ref. 3.

Chakravarty et al.’ performed self-consistent calcula-
tions using density-functional theory in the local-density
approximation (LDA). Their calculation used a spherical
Wigner-Seitz cell for each molecule with the potential of
the molecule initially averaged over rotations. Molecular
symmetry was reintroduced perturbatively. Their most
important prediction in the present context was that
metallization is by band overlap in the molecular phase
(prior to the transition to atomic ordering). Min, Jansen,
and Freeman® have studied the structural properties and
transitions of crystalline H using both the full-potential
linearized augmented-plane-wave and linear-muffin-tin-
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orbital methods to solve the LDA equations. They pre-
dict the simple cubic (sc) structure as the equilibrium
paramagnetic atomic system,%® and pressure-induced
metallization within the molecular phase at P=1.7£0.2
Mbar with the passage to the metallic atomic phase at
411 Mbar®® (thus confirming Ref. 5).

There is also a lengthy tradition of investigating the
molecular to atomic-ordering transition and related prop-
erties of solid H via calculations on periodically bounded
linear chains.®!* In general, these calculations repro-
duce the properties of the crystal insofar as any crystal
can have a faithful linear analog. Offhand, the same anal-
ogy might seem to hold for the relation of ultrathin layers
of H to its crystalline phases. However, ultrathin systems
with translational order in two dimensions and
molecular-scale thickness in the third are known to have
different properties from either their counterpart crystals
or linear analogs.!® It is immediately obvious that two
kinds of molecular bonding are possible in ordered films.
One, analogous to the molecular crystal, is the case in
which not all atomic sites are equivalent by direct lattice
translations. The other is the case in which an interlayer
atomic distance is close to the H, bond length and not-
ably smaller than the fundamental lattice translations.

For H these distinctions between crystals and free, or-
dered films raise questions as to how the molecular- to
atomic-ordering transition will take place in an n-layer
(n=1,2,3) configuration. Does filamentary structure
dominate energetically even in an intrinsically layered
system? Are the ordering transitions dominated by
changes in interplanar or intraplanar bonding and are
they strongly dependent on n or the 2D space group or
both? Is there metallization in the molecularly ordered
systems and, if so, how does it depend on n? Since the
monatomic equilibrium phase is simple cubic while the
H,; linear molecule may have two drastically different
bond lengths (the matter appears to be unresolved experi-
mentally), does the H three-layer configuration (3L) ex-
hibit a broken up-down symmetry? How similar are H
and Li n-layer configurations, especially in the case of
atomic ordering?

Except for our own preliminary report,'® we are
unaware of any previous work which deals with the de-
tailed structure-energy relationships of H thin films.
Here we consider both monatomic and molecular struc-
tures, the transition between them, and the onset of me-
tallic behavior. For completeness, some results from Ref.
16 are included. In a subsequent paper!’ we shall present
calculated proton stopping powers for these films.

II. METHODOLOGY AND SYSTEMS

Each system has two-dimensional translation symme-
try (square, rectangular, hexagonal, graphitic) which is
the same in all of its planes. The intraplanar lattice pa-
rameters are a and b, the interplanar lattice parameters
are ¢; (i=1,2) or simply ¢, as appropriate. Molecular
bond lengths (“interproton” distances in some of the
literature) are denoted by /;. Hartree atomic units are
used except where iondicated (1 hartree = 27.2116 eV, 1
a.u.=0.529177 A). The  linear-combination-of-
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Gaussian-type-orbitals, fitting-function (LCGTO-FF)
techniques'® used to solve the Kohn-Sham (KS) equations
(with Hedin-Lundqvist exchange-correlation potential)
have been discussed elsewhere.!®> The method is all elec-
tron and full potential. All calculations reported here are
paramagnetic. The current version of FILMS, the com-
puter code embodying these techniques, differs primarily
from previous versions in using improved numerical in-
tegral techniques.

The most important choices for a LCGTO-FF calcula-
tion are the three basis sets required. There is one for the
KS orbitals, another for the charge density (‘“Q basis”),
and a third for the LDA exchange-correlation kernels
(“XC basis”). Several recent studies have shown the utili-
ty of using identical Q and XC bases, denoted hereafter as
the F basis.

For the atomically ordered systems, the choices were
identical 3s-1p KS and F sets, with s exponents of
0.151398, 0.681444, 4.5018, and a p exponent of 1.0.
Some augmentation and refinement of the F basis was re-
quired as well. The s basis is from van Duijneveldt, ! the
p basis from previous experience. !® Although it had not
been customary to use identical KS and F bases, extensive
testing on the square monolayer (1L) showed that doing
so gave the best results (in the sense of least total energy
and most accurate exchange-correlation fitting). Basis-set
quality also may be judged from two other comparisons.
First, for the square monatomic 1L at a =2.65 a.u., the
total energy per atom from the 3s-1p basis and from a
6s-2p basis were —0.5339585 hartree/atom and
—0.5373041 hartree/atom, respectively [using a
Brillouin-zone (BZ) mesh of 21 points in the irreducible
wedge]. Second, at a =30.0 a.u., the 3s-1p basis gives
—0.441 887 6 hartree/atom, while an independent atomic
calculation with a 10s basis and no fitting functions gives
the isolated paramagnetic atomic energy as —0.449034 3
hartree.

In the molecularly ordered systems, the F basis was
augmented with an extra p-type function with exponent
0.8 aligned with the molecular axis at each nuclear site
and contracted between sites with opposite sign. The nu-
merical shift from this augmentation is illustrated by the
case of a square molecular 1L with the molecular axis
aligned along the square diagonal. When the molecular
bond length is half the diagonal [fcc(100)], the difference
due to augmentation (which should be zero) is less than
0.001 mhartree. At more realistic molecular bond
lengths, the improvement from augmentation is more
than three orders of magnitude larger. For those 3L’s
with up-down symmetry, the p-type fitting functions asso-
ciated with the two outer layers were contracted into
symmetric and antisymmetric pairs. In the c¢; >c, cases,
bond-centered s-type-fitting-basis functions with ex-
ponents 1.000 and 0.800 (for the c¢; and ¢, midpoint sites,
respectively) were used as well.

In the special case of dense square 1L’s, approximate
linear dependencies intrude for atomic areal densities
greater than about 0.208 atom/a.u.?. Therefore, above
0.208 atom/a.u.?, in the square 1L only, the exponents of
both the KS and F bases were increased by 0.0065. Table
I shows this and similar additional basis-set consolidation
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TABLE I. Incremental shifts in basis-set exponents as a func-
tion of areal density in the square 1L (only). The shifts are not
cumulative.

Areal density Exponent increment

(atom/bohr?) (bohr™?)
0.2081 0.0065
0.0222 0.0172
0.2378 0.0320
0.2551 0.0420
0.2664 0.0500
0.2743 0.0570
0.2958 0.0740

S

a a

M(R, a)
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required with increasing areal density. There is no evi-
dence that the consolidation introduced any significant
biases or discontinuities in calculated system properties
as functions of lattice spacings.

All together, 22 kinds of films (i.e., combinations of
layer number and symmetry) were treated. The labeling
convention adopted is as follows: M denotes monolayer,
D denotes dilayer, T denotes trilayer, a denotes atomic, m
denotes molecular, R denotes rectangular, S denotes
square, H denotes hexagonal, G denotes graphitic, Op
denotes open, Ov denotes overhead, and E denotes
eclipsed. Subscripts “>” and “<” indicate ¢ >a or
¢ <a, respectively. Thus D, (S,0p) denotes a two-layer
structure (2L) with ¢ > a, square symmetry, and open re-
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FIG. 1. Diagrammatic representation of the systems treated. Solid dots represent the atoms in a single unit cell. (a) Monatomic
structures; (b) molecular structures. Note that D . (H,Op) at ¢ =0 (which turns out to be the energetically preferred value) is the
same as M (G, m).
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gistry of the two nuclear planes. The list is as follows.

(1) 1L, rectangular; atomic, M(R,a); (2) 1L, square;
atomic, M(S,a); (3) 1L, hexagonal; atomic, M (H,a); (4)
1L, hexagonal graphitic; molecular [the planar limit of
D _(H,0p)], M(G,m); (5) 1L, rectangular; molecular,
with the molecule centered at the lattice site and aligned
along the a axis, SM(R,m); (6) 1L, square; molecular, (a)
the molecule is centered at the lattice site and is aligned
along the a axis, OM (S, m); (b) the molecule is centered at
the lattice site and is aligned along the square diagonal,
$M(S,m); (7) 2L and 3L, square 2D Bravais lattice; over-
head orientation of the two or three planes, specified c /a:
D _(S,0v), T _(S,0v), D, (S,0v), T, (S,0v); (8) 2L and
3L, square 2D Bravais lattice; open orientation of the two
planes (i.e., the atomic nuclei in one layer reside directly
above the square center in the other layer) and eclipsed
orientation of three planes (i.e., the atomic nuclei in the
first and third layers reside directly above and below the
square center in the midlayer), c¢/a>1: D (S,Op),
T.(S,E); (9) 2L and 3L, hexagonal 2D Bravais lattice;
overhead orientation of the two or three planes, specified
c¢/a: D _(H,Ov), T_(H,Ov), D, (H,Ov), T, (H,Ov)
(10) 2L and 3L, hexagonal 2D Bravais lattice; open orien-
tation for the 2L and eclipsed orientation for the 3L,
specified c¢/a: D _(H,Op), D, (H,Op), T, (H,E); (11)
2L, rectangular 2D Bravais lattice; overhead orientation,
essentially a 2L of two SM(R,m)’s: °D(R,0v); (12) 2L,
rectangular 2D Bravais lattice; bridge orientation with
respect to one Bravais axis, a different way to make a 2L
from two °M(R,m)’s: °D(R,B). Note that we are com-
pelled to classify the monolayer graphitic structure as
molecular, although the bond length is much longer than
in any of the other molecular systems.

The systems are diagramed in Figs. 1(a) (atomic sys-
tems) and 1(b) (molecular systems). (It turns out that
¢, =c, for the energetic.minima of the 3L’s; see below.)
We have investigated two kinds of structural phase tran-
sition. In the 2L systems this was from ¢ <a toc>a. In
the 1L the transition is from the 45° molecular orienta-
tion to the fcc(100) monatomic structure.

The simple observation that fcc(100) with edge length a
is the same as a simple square (100) with edge length
a /V'2 suggests the importance of the corresponding rela-
tionship among various Brillouin-zone irreducible seg-
ments associated with the differing systems. At issue is
the extreme sensitivity of calculated total energies and
optimized lattice parameters to the number of BZ points,
a problem already emphasized in solid H by Min, Jansen,
and Freeman.®® The diversity of n layers all requiring
the same precision makes the problem at least as acute
for this work. [Irreducible regions for all cases except
4SM(S,m) are given explicitly by Terzibaschian and En-
derlein. %)

Figure 2 illustrates the issue. It shows the lattice struc-
ture, the irreducible BZ wedge, and the two rather natu-
ral BZ choices for the M (S, m) configuration in the spe-
cial case I =a /V'2 with a the fcc(100) lattice parameter.
The smaller BZ corresponds to primitive translations
R,=a(1,0), R,=a(0,1) and two atoms per cell at either

the conventional fcc sites [@(0,0) and a(4,3)] or at the
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FIG. 2. (a) Lattice-structure and (b) associated BZ choices
for the *M (S,m) configuration. The solid square is the BZ
boundary for the M (S,m) lattice and two atoms per cell; the
dashed square is the corresponding BZ for the fcc(100) treated
as one atom per cell. The shaded irreducible wedge and associ-
ated labeled symmetry points are for the smaller BZ.

equivalent but more molecular-appearing a(%,1) and
—a(4,1); only the latter choice is illustrated. That small-
er BZ is the square bounded by a solid line in Fig. 2(b)
and the corresponding irreducible region is one-half of
the cross-hatched BZ quadrant. The dashed square
shows the other natural BZ boundary for the fcc(100)
configuration, namely for one atom per unit cell on the
simple  square lattice [primitive  translations
Ri=(a/2)(1,1), R3=(a/2)(—1,1)]. Clearly, some quite
different BZ scans and precisions can occur for systems
that are, in fact, identical unless due care is taken.

Figures 3(a)-3(d) show the sensitivity of various calcu-
lated quantities to BZ mesh density as measured by the
number of triangles in the irreducible BZ (FILMS uses the
linear triangle analog of the linear analytical tetrahedron
method). Figures 3(a) and 3(b) show the mesh-density
dependence of the optimized lattice constant and the Fer-
mi energy € for M(S,a). Both stabilize smoothly, but at
a relatively high number of points in the BZ.

Figure 3(c) shows the dependence of E, /N on mesh
density for four different /,a pairs in the *M (S,m) sys-
tem. The two more extensive curves (long-dashed and
solid) are for the special case /=a/V2 with a the
fcc(100) lattice parameter. From these one sees that
E, . /N stabilizes at a lower BZ mesh density for the ener-
getically favored case (¢ =4.38 a.u., the long-dashed
curve) than for the unfavored, compressed case (a =2.8
a.u., the solid curve). When [ is energy optimized the
trend is even stronger [note that the dotted curve in Fig.
3(c) is shifted upward by 0.04 hartree/atom in order to
get it into the same figure]. In both cases the increased
|V,e jkl that accompanies compression is the source of the
increased sensitivity to mesh density.

Figure 3(d) shows the dependence of the calculated
minimum-energy molecular bond length for fixed a =2.8
a.u. in M (S,m). Evidently, one of the most demanding
tasks is to determine the molecular bond length corre-
sponding to a specified a, especially at high atomic areal
densities.
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FIG. 3. Sensitivity of calculated quantities to BZ mesh density. (a) Optimized lattice constant of the M (S,a) system; (b) Fermi en-
ergy er for M(S,a) at a=2.46 a.u., the calculated equilibrium value; (c) total energy per atom E,, /N for M (S,m): long-dashed
curve is @ =4.38 a.u. with /=a /V'2, solid curve is for the same special case but with a =2.8 a.u., dotted curve (raised by 0.04
hartree/atom) is for a=5.7 a.u. and the energy-optimized /, dash-dotted curve is for a =2.8 a.u. and the energy-optimized /; (d)
minimum-energy molecular bond length for M (S, m) with fixed @ =2.8 a.u. The kink at 1.68 a.u. is due to the discontinuity of poly-

nomial fitting points chosen.

The calculations reported used up through 361 trian-
gles in the irreducible quarter of the BZ for M (S,a) at an
areal density of 0.295 atom/a.u.? and 324 triangles for
%M (S,m) at an areal density of 0.274 atom/a.u.2. We es-
timate the imprecision of total energies due to the BZ
mesh as 0.5 mhartree. The corresponding uncertainty
in the optimized lattice parameters is +0.02 a.u. The
mesh-induced error in the ¢alculated molecular bond
length tends to be larger, especially in a region near the
transition from molecular to atomic behavior, where it
may be as much as +0.05 a.u. Optimized lattice con-
stants and bond lengths were determined by a quadratic
fit to the nearest three points since, for some cases, the
energy valleys are narrow and shallow, thus requiring
that the fitting points be chosen quite close to the energy
minimum.

III. RESULTS

A. Optimized structures at zero stress

The calculated equilibrium lattice constants and total
energies per atom for all the atomic and molecular H
nL’s are shown in Table II. First among the striking
features is that the most-bound 2L’s °D(R,B) and

°D(R,Ov) are barely bound (within calculational pre-
cision) with respect to two molecularly ordered 1L’s.
None of the high-symmetry 3L’s treated here is bound
with respect to separation to three of the molecularly or-
dered 1L’s, nor are they bound with respect to the com-
bination of either of the two most-bound high-symmetry
2L’s, D _.(H,0Ov) and D _(S,0v), plus one of the (nearly
degenerate) energetically favored 1L’s.

Clearly, the in-plane H, chains characteristic of all the
molecular 1L’s and of the energetically preferred 2L’s are
favored in comparison with even a dimerized 2L, whose
molecules are aligned perpendicular to the translational
symmetry plane. Everything we have seen argues for the
dominance of filamentary structures at all levels of aggre-
gation. The calculations thus suggest that formation of
crystalline H is not by simple atomic epitaxial growth on
either a hexagonal or square 2D atomiclike lattice. While
for technical reasons none of the 2L or 3L structures con-
sidered here is a slice from the Pa3 crystal (the known
ground state for crystalline ortho-H,), our results are also
consistent with the general finding that molecular order-
ing is always preferred in cases of zero stress.

Table II also shows two notable 2L features. For a
given stacking (open or overhead) and ¢ /a class (filamen-
tary, planar), the higher symmetry 2L’s are energetically
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TABLE I1. Calculated equilibrium total energies per atom (E,,, /N; hartree per atom) and lattice pa-
rameters (a.u.) for H nL’s, ordered from the most to the least bound within each family. The intrapla-
nar lattice parameters are a and b, [ is the H, bond length, s is the intermolecular spacing (end to end)
along the molecular axis, and c is the interplanar spacing. Note that / was optimized for the rectangu-
lar 1L’s, then that value was held fixed for the rectangular 2L’s. M (G,m) and D _(H,Op) are marked
with an asterisk because, while they are conceptually different, they turn out to be degenerate. See text

for structure labeling.

System a b c c/a ) s —E./N
SM(R,m) 5.05 5.47 1.45 3.60 0.5713
OM(S,m) 5.33 5.33 1.46 3.87 0.5711
SM (S, m) 5.62 5.62 1.45 6.50 0.5706
M(R,a) 4.84 1.91 0.5582
M(G,m)* 3.88 2.24 4.48 0.5549
M(H,a) 2.61 0.5434
M(S,a) 2.46 2.46 0.5428
9D(R,B) 5.06 5.53 4.89 0.97 1.45 3.60 0.5716
°D(R,Ov) 5.06 5.49 5.43 1.07 1.45 3.61 0.5715
D _(H,0v) 5.44 1.46 0.27 1.46 0.5697
D _(S,0v) 5.39 5.39 1.46 0.27 1.46 0.5695
D _(H,0p)* 3.88 0.00 0.00 2.24 448 0.5549
D, (H,0v) 2.62 4.37 1.67 0.5443
D, (H,Op) 2.62 4.37 1.67 0.5443
D, (S,0v) 2.48 2.48 423 1.71 0.5437
D, (S,0p) 2.47 2.47 4.32 1.75 0.5437
T . (H,0v) 3.80 1.78 0.47 0.5527
T .(S,0v) 3.70 3.70 1.77 0.48 0.5514
T, (H,0v) 2.62 422 1.61 0.5448
T.(H,E) 2.62 4.15 1.58 0.5447
T, (5,0v) 2.47 2.47 4.06 1.64 0.5442
T.(S,E) 2.47 2.47 4.11 1.66 0.5441

indifferent to the translational symmetry, square or hex-
agonal. Furthermore the 2L’s with ¢ >a and fixed
translational symmetry are energetically insensitive to the
stacking choice. Both features are signatures of the dom-
inance of molecular character in the structural energet-
ics.

1. Monolayers

Among the atomic 1L’s, M(R,a) is analogous to a
structure of linear chains with intrachain spacing b and
interchain spacing a. Since interchain binding is weaker
than intrachain binding, its total energy is less sensitive
to changes of the interchain spacing than of intrachain
spacing. The M (R,a) structure is also geometrically
equivalent to a planar slice from an ordered linear-chain
bundle in bulk, with the slice parallel to the chain direc-
tion and interchain spacing a. Hence M (R,a) is a mona-
tomic 1L analog of the filamentary structures studied by
Brovman, Kagan, and Kholas.>

The fact that the atomic 1L’s are energetically ordered
as Epyra)<Epma,a) <Epms,ap i-€., a preference for one
bond substantially shorter than the other, already signals
the favored nature of a filamentary ordered structure.
The molecular 1L’s order as. E"Mu_z,m) ~E°1}{(s,m)
<Esspy5.m) <EmG,m) The penultimate difference in en-

ergies is within the limits of numerical precision, so that
the genuinely molecularly ordered 1L’s are predicted to

be nearly degenerate. [M(G,m) is an oddity from the
perspective of classification, an anomaly already men-
tioned.]

More importantly, Epx, ) < Epy,q) for all choices of
X, Y, rectangular, hexagonal, and square. Even at the 1L
level, the predominance of molecular bonding is quite evi-
dent. This predominance also shows up in the optimized
molecular bond length in all three genuinely molecular
1L’s. It is quite close to the experimental value for the
free H, molecule (1.401 a.u.).?! An interesting feature of
the molecular 1L’s is the suggestion of energetic advan-
tage for lowered symmetry, namely rectangular as op-
posed to square. Numerical precision limits the interpre-
tation.

2. Dilayers

Table II shows several notable 2L features. For a given
stacking (open or overhead) and c/a class (filamentary,
planar), the higher-symmetry 2L’s are energetically
indifferent to the translational symmetry, square or hex-
agonal. As noted at the outset of this section, the planar
2L’s are so dominated by molecular ordering that for a
given translational symmetry they are energetically in-
sensitive to the stacking choice. This is particularly strik-
ing in the two rectangular systems, which are essentially
a pair of slightly relaxed minimum-energy 1L’s.

The 20’s are energetically ordered as
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Eop g5~ Eoprov <Ep_m,00n~Ep_(500<Ep_(H0v)
:ED> (H,0p) <ED> s,on=Ep_(s,0p)- Intraplanar dimeri-

zation is built into the first two, while interplanar dimeri-

zation is unmistakable for the next pair. Thus, ¢ for

D _(H,Ov) and D _ (S,0v) are essentially identical with /
45 —

for "M(S,m): cD<(H,Ov)~CD<1S,Ov)~145M(Sym)_ 1.46 a.u.

All are rather close to the H, molecular bond length of
1.401 a.u. (Ref. 21). Another indicator of dimerization is
that the total energies per atom of °D(R,B), °D(R,0v),
D _(S,0v), D_(H,0v), ®M(S,m), °M(S,m), and
OM(R,m) differ over a range of only 2 mhartree while
they differ from the systems with atomic (layered) order-
ing by 20-28 mhartree.

Both filamentary hexagonal systems D _(H,Ov) and
D _(S,0v) are well bound with respect to a hexagonal 1L
but unbound with respect to the minimum-energy 1L,
OM(R,m). As noted, D _(H,Op) is an interesting case in
that its energy minimum occurs at the graphitic 1L, i.e.,
¢=0. Among the 2L’s, both the D _(S,0v) and
D _(H,Ov) structures have geometries corresponding to
slices perpendicular to the molecular chain for certain of
the predicted high-pressure phases of crystalline H,.”'®
D _(S,0v) and D (S,0v) are distinguished as are the
pair D _(H,Ov) and D . (H,Ov) because of the observa-
tions made by Brovman, Kagan, and Kholas® regarding
nearly degenerate structures with c¢/a values both >1
and <1.

To treat the interplanar binding energy for an nL use-
fully one must distinguish delamination into equilibrium
1L’s from delamination into 1L’s constrained to have the
same 2D space group as the nL. The equilibrium value
per atom is defined as A,=E!L°/N—E!L°/N, where
the index zero indicates the lowest-energy configuration
for the 1L and nL, irrespective of any symmetry change
between the two. The symmetry-constrained counterpart
is Ac;=E%'/N—E\%'/N with i indicating R, H, or S,
as appropriate.

Table I1I shows that none of the 2L’s is even marginal-
ly stable against a symmetry-changing delamination into
a pair of OM(s,m) 1L’s. That is, even A;=—0.3 mhar-
tree for °D(R,B) is smaller in magnitude than the es-
timated precision, 1 mhartree, of a total-energy

difference. As measured by either A, or A ;, the undi-
merized high-symmetry (hexagonal and square) dilayers
are far less stable against delamination than the two
dimerized systems [D _(S,0v) and D _(H,Ov)], a strik-
ing illustration of the energy advantage of dimerization.
In both measures, more than an order of magnitude in
delamination energy is gained via dimerization. As evi-
dent from the almost vanishing symmetry-constrained
interplanar binding energy (A ;= —0.001 hartree/atom)
and the a lattice parameters, the high-symmetry 2L’s
with ¢ /a > 1 behave essentially as two weakly attracting
atomiclike 1L’s.

3. Trilayers

From the 1L and 2L results it is clear that the obvious
candidate for the energetically favored 3L is a stack of
rectangular, molecular, filamentary 1L’s. Two technical
aspects combine with a conceptual problem to make
treating that system less interesting than at first might be
thought. The technical aspects are that the system has
six atoms per unit cell and five lattice parameters to op-
timize (a, b, ¢, ¢,, and ), hence the calculation would be
laborious at best. The conceptual problem is that the
very obviousness of these parallel slices from the filamen-
tary solid means that they are of limited interest since
there can be little doubt from the 1L, 2L, or crystalline
results what the outcome would be; a laborious sequence
of calculations merely to confirm that appraisal had limit-
ed appeal.

In contrast, the behavior of films whose structure is
sliced perpendicular to the filamentary axis is harder to
intuit. For example, at 3L’s a new lattice parameter pos-
sibility occurs, namely the breaking of up-down symme-
try, ¢,7c,. The possibility is addressed most straightfor-
wardly by restricting consideration to the overhead align-
ment. Calculations on gas-phase linear H; show no evi-
dence?? for equilibrium bond-length asymmetry, al-
though nonequilibrium asymmetric structures lie lower
on the calculated-potential surface than symmetric ones
(the potential surface is repulsive).

Similarly, we find no evidence for a broken up-down
symmetry in the overhead H 3L’s. A thought experiment

TABLE III. Calculated constrained and equilibrium interplanar binding energies (A ;,Ao; hartrees

per atom) for hydrogen 2L’s in eight structures at the calculated equilibrium lattice constants a, b, c.
For °D(R,B) and 0D(R,Ov) the values shown are as calculated but are smaller in magnitude than the
estimated precision in a total-energy difference, 0.001 hartree. The systems are ordered from the most

to the least bound.

System a b c c/a Ac, Ag
°D(R,B) 5.06 5.53 4.89 0.97 —0.0003 —0.0003
°D(R,0v) 5.06 5.49 5.43 1.07 —0.0002 —0.0002

D _(H,Ov) 5.44 1.46 0.27 —0.026 +0.002
D _(S,0v) 5.39 1.46 0.27 —0.027 +0.002
D. (H,Ov) 2.62 4.37 1.67 —0.001 +0.027
D . (H,Op) 2.62 4.37 1.67 —0.001 +0.027
D . (S,0v) 2.48 4.23 1.71 —0.001 +0.028
D (S5,0p) 2.47 4.32 1.75 —0.001 +0.028
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on the two possible component 2L’s using the calculated
results for the square 2L’s illustrates why this happens in
the square 3L with unequal ¢;’s. Denote the supposedly
shorter H, bond length as /;. If one sets it to the free H,
bond length, then the proper component 2L with which
to make identification is D _(S,0v) (¢ =1.46 a.u. versus
1,=1.41 a.u.), hence a is set at about 5.4 a.u. Alterna-
tively, one can go out the H; potential surface to a low-
energy (nonequilibrium) molecular configuration that is
asymmetric and still has /,=1.41 a.u. (Ref. 22). Such
configurations typically have /, =4.3 a.u. or so. This sug-
gests that the relevant 2L for identification with is
D (S,0v) (from Table II: c =4.23 a.u.), whence the com-
ponent intraplanar lattice parameter is about @ =2.5 a.u.
The evident point is that the attempt to keep at least one
of the H; bonds close to the H, value while breaking up-
down symmetry will introduce large in-plane strains. In
fact, the unequal bond system relaxes those strains to an
a value not far from the average of the two 2L’s (3.84 a.u.
actual versus 3.95 average).

For the equilibrium 3L’s (equal ¢;’s) the energetic or-
dering is Er_cy,0n<Er_ts,on <Er_mov ~Er_mE)
<Er_(son~Er_(sE) In view of the 2L results, the re-

lationships among the 3L’s exhibit no qualitative
surprises: ¢/a <1 is favored because it can give a some-
what molecular ¢ =1.77 a.u. while hexagonal structure is
energetically favored because of packing.

Considered among themselves, the energetic ordering
of the 3L’s matches the predictions of Brovman, Kagan,
and Kholas® for the crystal. The quasifilamentary struc-
tures, i.e., those with ¢ /a < 1[T _(S,0v) and T _(H,0v)],
should be energetically favored as compared with the pla-
nar ones [T.(S,0Ov), T.(S,E), T.,(H,Ov), and
T, (H,E)]. Because these are, from the crystalline per-
spective, slices perpendicular to the filamentary axis, this
class of filamentary 3L’s is energetically disadvantaged
with respect to both long-chain filamentary 3L’s and fila-
mentary 1L and 2L’s. The energetic preference for hex-
agonal ordering over square (ET<( H,Ov)<ET<(S,Ov)) for

the quasifilamentary structure also matches the predic-
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tion of Ref. 3 that what they denote as the triangular fila-
mentary family is energetically favored over the quadra-
tic filamentary family.

h iti ~
The near equalities Er_mon~Er (uEe»

Er, (s,on~Er_(s k) and the very large ¢ /a in both cases

are at least consistent with the interpretation that the
interplanar binding in these cases is largely van der Waals
in character. The energy barrier between the two stack-
ings (overhead, eclipsed) is not readily calculable because
of numerical difficulties in maintaining uniform precision
limits while passing from one rather high-symmetry
structure to another through a series of lower-symmetry
ones. Nevertheless, the degeneracy found in both hexag-
onal and square symmetries may indicate a rather soft
shear modulus for sliding the planes over one another.

It was remarked earlier that the crystalline calculations
of Barbee et al.”® find that for P>380+50 GPa, the
primitive-hexagonal phase with ¢ /a =~0.6 is most stable.
Although the T _(S,0v) structure has an even more
dramatically anisotropic c/a, our finding is consistent
with Barbee et al., particularly when the possibility of
bond contraction owing to a vacuum exterior (as opposed
to a crystalline one) is taken into account.

4. Layer-number dependencies

The behavior of structural energetics as a function of n
can be appraised in a variety of ways. We focus first on
fixed stacking, then on minimum-energy configurations.
Table IV gives the n dependence of the overhead stacked
systems.

For both square and hexagonal films a general trend is
evident in the case of ¢ >a: ¢ decreases modestly, a is
stable, and the systems become slightly more bound with
increasing n. Further, E /N is almost independent of
stacking or number of layers. All of these features are
consistent with the description of the ¢ > a n layers as ex-
tremely weakly bound assemblies of 1L’s.

No such trend is evident for square and hexagonal sys-
tems with ¢ <a, a manifestation of the fact that all the

TABLE IV. Comparison of energy and structure n dependencies (n =1,2,3) for the square and hex-
agonal overhead cases. Note that M(H,a) is included twice and that °D(R,Ov) is included for conveni-
ence of comparison, E,, /N is the total energy per atom; a, b, ¢ are the equilibrium lattice parameters.

System a b c c/a —E./N
M(H,a) 2.61 0.5434
D . (H,0v) 2.62 4.37 1.67 0.5443
T, (HOv) 2.62 422 1.61 0.5448
M(S,a) 2.46 2.46 0.5428
D (S,0v) 2.48 2.48 4.23 1.71 0.5437
T. (S,0v) 2.47 2.47 4.06 1.64 0.5442
M (H,a) 2.61 0.5434
D _(H,0v) 5.44 1.46 0.27 0.5697
T .(HOv) 3.80 1.78 0.47 0.5527
M(R,a) 4.84 1.91 0.39 (b/a) 0.5582
D _(S,0v) 5.39 5.39 1.46 0.27 0.5695
T . (S,0v) 3.70 3.70 1.77 0.48 0.5514
°D(R,0v) 5.06 5.49 5.43 1.07 0.5715
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2L’s are closely related to the H, molecule, whereas the
3L’s are less well related to the H; molecule. While all
the ¢ <a cases are n-layer filamentary structures in the
literal sense of the definition of Brovman et al.,> the fact
that they are slices across filaments in the corresponding
crystal means that any residual chains are in-plane, or-
thogonal to their crystalline counterparts. Reflection on
Table IV will confirm that the result is a set of intrachain
separations and interchain distances which is dominated
by the opportunities for dimerization in the various sys-
tems, not the ancestral crystalline filamentary structure.
Thus the filamentary 2L’s [D _(S,0v), D _(H,Ov)] have
interchain spacing of ¢ =1.46 a.u. but intrachain spacing
of 5.39 a.u., while the same quantities for the 3L analogs
are 1.77 and 3.7-3.8 a.u., respectively. For the rectangu-
lar 1L M(R,a), the intrachain spacing, 1.91 a.u., is
reassuringly close to the 1.88 a.u. calculated for linear
chains!! and rings. % 1°

B. Structural transitions

Brovman, Kagan, and Kholas® predicted that in crys-
talline H, ‘“all the uniaxial structures have energy minima
both at ¢ /a <1 and at ¢ /a > 1, but the latter lie higher in
energy at P =0. With increasing pressure, both minima
shift towards the ideal value c¢/a.” The 2L which is
analogous in the sense of corresponding to a 3D Bravais
lattice is D(S,0v). Figure 4 shows the total energy per
atom and optimized interplanar distance ¢, as functions
of the lattice parameter a for both the molecular (¢ <a)
and monatomic (¢ >a) versions of this 2L. (For the
molecular 2L, points below @ =2.7 a.u. are not shown be-
cause the energy valley is too flat as a function of ¢ to al-
low reliable determination of the minimum.) Clearly, ¢
for the molecular 2L at its own equilibrium is very close
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FIG. 4. Optimum E /N and c as a function of optimized a
for both D _ (S,0v) (solid curve) and D . (S,0v) (dotted curve).
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to the isolated molecule bond length of 1.401 a.u.

The prediction of Brovman, Kagan, and Kholas is
equivalent to two implicit claims. In the case of
D _(S,0v), the first is that the energies of the ¢ <a and
¢ > a structures merge smoothly as a function of a. Fig-
ure 4 shows clearly that such is not the case. The second
implicit claim is that the appropriate way to understand
the passage from ¢ <a to ¢ > a is to follow the minimum-
energy function for the former until its intersection with
the latter. Following that reasoning in the setting of Fig.
4 leads to the interpretation that, under intraplanar
stress, ¢ at first decreases very slightly from 1.46 to 1.41
a.u. Between a =3.5 and 3.4 a.u. the molecular 2L be-
comes a band overlap metal (see Sec. IV). This change in
bonding is reflected in the somewhat more rapid increase
of ¢ with declining a evident in Fig. 4. Finally, atomic or-
dering becomes energetically preferably with a discon-
tinuous jump in ¢ /a.

An alternative perspective on the process is given in
Fig. 5 which shows E /N as a function of ¢ for a =2.7
a.u. (near the value for which the molecular and atomic
systems have the same optimum total energy per atom).
Remarkably, the barrier, which is only about 0.4 mhar-
tree, occupies the whole region 1.9<c¢<2.5 a.u. The
small ripples in the plateau evident in Fig. 5 are numeri-
cal artifacts, as evidenced by the fact that they disappear
when the density of quadrature points in the exchange-
correlation fitting is increased. Thus we do not find any
family of intermediate structures, which would appear in
Fig. 5 as local minima in that region. We are unable,
therefore, to confirm an ultrathin film analog of the meta-
stable structures (intermediate in density between atomic
and molecular ones) predicted by Wigner and Hun-
tington.! Neither do we find evidence for the closely re-
lated prediction by Brovman, Kagan, and Kholas of a
“quadratic” family of nearly degenerate structures relat-
ed by shifting of ions parallel to the c axis while preserv-
ing the projection in a plane perpendicular to that axis.

Next we return to the molecular ordering in the 1L.
Recall from Table II that the differences in total energy
among the three genuinely molecularly ordered 1L’s are
quite small, on the order of the estimated precision of the

calculation. [Once again we omit M(G,m) as a
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FIG. 5. E, /N for D(S,0v) as a function of interplanar dis-
tance c for fixed a=2.7 a.u. Solid curve: normal mesh for nu-
merical quadrature in exchange-correlation fitting. Dashed
curve: high-density mesh.
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classificational anomaly.] This is suggestive of a low bar-
rier to in-plane rotation. In contrast, the lattice parame-
ter differences among the three are significant: the bind-
ing is quite insensitive to substantial lattice parameter
shifts so long as molecular bonding is maintained.

Considered as bundles of molecular chains, only
4SM (S, m) exhibits both intramolecular and intermolecu-
lar spacings along those chains which are moderately
close to the values for a periodically bounded linear chain
(i.e. ring), namely s =5.64 a.u. for / fixed at 1.41 a.u. in
the 14-atom case,?® as compared with 1.45 and 6.5 a.u.
for M (S,m). Of course, °M(S,m ) cannot exhibit this
behavior because of its intrinsic constraint, (/ +s)=a =b.
The behavior of the °M (R, m) system is less obvious since
it appears to be little more than a minutely relaxed ver-
sion of °M (S, m).

In crystalline H it was suggested long ago' that under
pressure / and s tend to a common value with the key
qualitative issue being whether the process is continuous
or involves a discontinuous change of lattice structure.
Min, Jansen, and Freeman®® have studied the question
in detail for the case of the Pa3 molecular crystal driven
toward the sc atomic crystal. In our notation, they found
[cf. Sec. IV B and Fig. 8 of Ref. 6(b)] that / was essentially
constant at 1.40 a.u. down to a Pa3 lattice constant
equivalent to r,=~1.1 a.u. (r; is the familiar Wigner
electron-sphere radius). Below that r; value Ref. 6(b)
found that [ rises rapidly to the asymptotic value
1=0.5352 a (where a is the Pa3 lattice parameter) and
follows that relation as far as their calculations went.
The asymptotic relationship comes from minimizing the
Madelung energy, which should dominate at high
compression, for the Pa3 structure. It is considerably
shorter than the value for which Pa3 corresponds to sc,
I1=(V3/2)a.

A 1L analog to the crystalline case studied in Ref. 6(b)
is the passage from “’M (S, m) to the special geometry
corresponding to fcc(100). We have treated this with a
detailed series of calculations.?* (Note that this is a con-
strained calculation; relaxation by molecular rotation out
of the plane was not allowed.) The optimal bond length /
and E, /N as a function of the atomic density parameter
p, are shown in Fig. 6 for both “*M (S,m) and the mona-
tomic simple-square system M (S,a) which corresponds
to fcc(100). Here p; is the planar analog to the crystalline
ry. For v atoms per unit cell 7p?= (cell area)/v. The
most remarkable feature of Fig. 6(b) is that it is nearly in-
distinguishable qualitatively from Fig. 8 of Min, Jansen,
and Freeman.’® In particular, / stays almost exactly at
its equilibrium 1L value, I g, =1.45 a.u. until the sys-
tem is substantially compressed. Between p, =1.31 and
1.28 a.u. the system goes metallic (by band overlap; fur-
ther discussion below) and / dips to a minimum of 1.40
a.u. For p, <1.28 a.u. / increases rapidly. (Almost iden-
tical behavior occurs for the metallization of the ¢ <a
2L’s; see Sec. IV.) Note that the monatomic curve in our
case must obey / =a.

Determination of the atomic density at which the
molecular and atomic ordering become indistinguishable
is a demanding task, as evident from the two panels of
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FIG. 6. Transition of the *M (S,m) system to the M(S,a)
system as monitored by the optimized total-energy per atom
(upper panel) and the intramolecular bond length / (lower
panel), both as a function of the planar density parameter p;.
[For v atoms per unit cell mp?= (cell area)/v.] Dotted curve
represents atomic system. Solid curve represents molecular sys-
tem including bond-aligned p-type fitting function. Dashed
curve (lower panel only) represents molecular system excluding
bond-aligned p-type fitting function.

Fig. 6. The upper panel shows the smooth, featureless
fashion in which the two total-energy curves join. The
lower panel shows [/ for both “SM(S,m) and M(S,a) (for
which /=a, of course). Included in that lower panel is a
cautionary note. Usage (solid curve) or omission (dashed
curve) of a true p-type fitting function which is centered
on each atom of a molecular pair and aligned along the
molecular axis makes a discernible shift in the position of
the molecular-system curve. The shift illustrates the
difficulty in obtaining a precise value for / when high
atomic density is combined with a situation of rapidly
changing bonding. Our best estimate of the point of
merger is p,=1.05£0.05 a.u. (simple-square lattice pa-
rameter of 1.86 a.u.). This is remarkably close to the 7,
value predicted by Min, Jansen, and Freeman®® to be
the point at which the crystal goes over to Madelung be-
havior (and hence does not achieve the sc structure).
Within numerical precision, our calculation does not
show an analogous Madelung structure as preferred over
fce(100).

The bond-length dip near p,=1.30 a.u. may perhaps
be rationalized as arising from the changing admixture of
the normal !3} molecular bonding state with the repul-
sion from 32;5 state [minimum at 7.85 a.u. (Ref. 25)]
from the next-nearest H atom along the diagonal. With
continued compression (sufficiently small p,), metallic
bonding begins to dominate and / begins its increase to-
ward the value corresponding to atomic spacing.
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IV. ONE-ELECTRON PROPERTIES

The risks associated with interpreting Kohn-Sham ei-
genvalues as one-electron energies are well known?® and
should be borne in mind throughout this discussion. Two
simple, relevant band parameters (Fermi energy or gap
plus occupied bandwidth) are given in Table V for all 22
systems. Energy bands for an exemplary molecular 2L,
D _(S,0v), the corresponding atomic 2L, D . (S,0v), and
both the low-aspect and high-aspect 3L’s, T _ (S,0v) and
T . (S,0v) are plotted in Fig. 7.

With an odd number of electrons per unit cell, the
atomiclike 1L’s and all the 3L’s are metallic by construc-
tion. As we have already seen, the 2L’s with ¢ >a are
essentially weakly perturbed pairs of 1L’s; unsurprisingly,
they too are metallic. As would be expected, all the me-
tallic nL’s have much greater occupied bandwidth W
than all the insulators. W for the hexagonal systems is
typically 0.1-0.7 eV larger than for the corresponding (in
the sense of stacking) square nL’s, consistent with the or-
dering of their cohesive energies.

A striking feature of the results in Table V is the clear
dominance of the molecular ordering mechanism in
determining these key quantities, as shown by the num-
ber of pairs of systems each with essentially the same
band parameters. The common feature of each pair is
whether or not there is H dimerization. This overwhelms
such differences as stacking or lattice symmetry.

As isovalent systems of the same symmetry, the mona-
tomic Li and H 1L’s would be expected to have very
similar work functions ( —¢y), and the same could be ex-
pected for D, (H,Ov), D, (H,Op), D, (S,0v), and

TABLE V. Calculated energy-band parameters €,,, or €/, as
appropriate, and W (the occupied bandwidth) for H 1L, 2L, and
3L’s in the indicated structures at their calculated equilibrium
lattice constants. All values are in eV.

System Egap Ep w
‘M(R,m) 6.8 3.1
M(S,m) 6.9 2.7
BM(S,m) 9.1 2.1
M (G,m) 0 (semimetal) —3.2 8.2
M(R,a) —43 9.9
M (H,a) —33 14.0
M(S,a) —3.7 13.5
°D(R,B) 6.1 34
°D(R,0v) 6.1 3.5
D _(HOv) 8.5 2.2
D _(S,0v) 8.6 2.1
D _(H,Op) see M(G,a)

D . (HOv) —3.8 14.6
D . (H,Op) —3.7 14.7
D . (S,0v) —4.2 14.2
D . (S,0p) —4.3 14.2
T .(H,Ov) —4.9 12.5
T _(S,0v) —5.1 11.8

T, (H,Ov) —3.9 15.0
T.(HE) -39 15.1

T. (S,0v) —4.3 14.7

S (S,E) —4.3 14.6
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D (S,0p), the 2L metals. The actual comparison with
hexagonal Li 1L’s and open hexagonal 2L’s (Ref. 27)
confirms the point: ep(Li,H,1L)=—3.5 eV,
ep[M(H,a)]=—3.3 eV, ¢€g(Li,H2L)=-—3.6 &V,
ep[D . (H,Ov)]=—3.8 eV, and e[D. (H,Op)]=—3.7
eVv.

The most interesting aspect of the electronic structure
is the overlap metallization transition in the filamentary
systems. Again, two cases are considered. For
D _(S,0v), Fig. 8(a) shows that metallization occurs by
indirect gap closure between the I' and K points. Both
the rate of closure and the interval separating bands at a
given point in the BZ are roughly constant over a strik-
ingly large range of a values. We estimate metallization
to occur at about a=3.45 a.u., ¢c=[=1.42 au. As
BM(S,m) changes to M (S,a) metallization is also by in-
direct gap closure between J and K [see Fig. 8(b)] with
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FIG. 7. Energy bands for square H 2L’s and 3L’s (a) D (S,
Ov); (b) D, (S,0v); (c) T .(S,0v); (d) T (S,0v).
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FIG. 8. Indirect gap closure in filamentary systems under ap-
plied stress. Energies are in hartree (a) D _(S,0v); (b)
BM(S,m).

a=3.22 a.u. and /=1.41 a.u. the estimated lattice pa-
rameters at zero gap. These values of / at metallization
are quite comparable with the crystalline prediction of
1.40 a.u. by Min, Jansen, and Freeman.%®

V. COMMENTS

H n layers with n =1,2,3 are dominated by molecular
bonding with metallization by band overlap, much as in
crystalline systems. The structural energetics of the sys-
tems studied suggest strongly that filamentary structures
rather than some crystalline-symmetry expitaxy will
dominate the growth of H slabs.

Akin to most other crystalline and film LDA total-
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energy calculations, this study relied on a simple calcula-
tional strategy, namely an exhaustive search, with respect
to the lattice parameters, of a small, finite set of struc-
tures (22 here). At n=3 a well-known difficulty in this
strategy was encountered. None of the structures treated
is bound with respect to separation into three 1L’s or a
1L plus a 2L. The challenge is not the lack of candidate
structures. We have remarked on the likelihood of a rec-
tangular 3L as energetically favored. Rather, the chal-
lenge is the rapid growth, with increasing n, of candidate
structures. The number of 2L’s and 3L’s one can identify
from the Pa3 molecular-crystal structure is only one ex-
ample. A real barrier to progress is the absence of any
obvious qualitative or semiquantitative procedure to
identify high-priority candidate structures (other than the
obvious rectangular one) which are likely to produce a
bound 3L. Contemporary molecular calculations address
the problem by inclusion of energy-minimization
methods within the computation itself (instead of by
some screening or estimation technique). To our
knowledge this has not been done for crystalline or film
calculations (except by stochastic methods,?® which are
not at issue here). Although certainly it would be of
value to incorporate such techniques, a predictive screen-
ing procedure prior to computation would be helpful
both for physical insight and for reduction of computa-
tional effort.
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