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Wave propagation in one-dimensional disordered structures is studied via a variable R, which
represents the quantum-mechanical resistance to electronic transport, or the ratio of total-energy density
to power Aux for electromagnetic propagation. R is formulated by three distinct methods: (1)
differential equation, (2) perturbation series, (3) state-variable representation. An explicit solution for R
is obtained in the limit of small Auctuations of the potential (or dielectric constant). The
configurational-average state vector is determined in the second cumulant approximation for stationary
processes, and an explicit expression is given for the average (R ) for any potential distribution. The
electron localization length exhibits a minimum as a function of the correlation length of the random po-
tential. The exact expression for (R ) is obtained for a white-noise distribution of potentials (or dielec-
tric constants), both from the perturbation series, and from the state-variable formulation.

I. INTRODUCTION

Electronic conduction in one-dimensional ordered and
disordered solids commands great interest due to current
advances in microstructure technology' and because it
forms the basis for the investigation of complex phenom-
ena, such as asymmetric magnetoresistance, quantum
Hall effect in two-dimensional systems, universal con-
ductance fluctuations in small metallic structures, and
electron localization. The Schrodinger equation, which
appears in the treatment of the above-mentioned prob-
lems is mathematically equivalent to the wave equation
which is used to describe light propagation and photon
1ocalization in dielectric media with a random, especially
layered, refractive index. '

A number of theoretical papers dealing with these to-
pics have appeared, using seemingly unrelated mathemat-
ical methods, such as invariant imbedding, stochastic
differential equations, etc. , deriving "exact" results in
different approximations. It is the purpose of this work
to present the interrelation between the different
mathematical methods, and to derive additional results.
To this end, we introduce a variable R, which plays the
role of normalized resistance to electronic conduction, or
the ratio of the energy density to power Aux in the analo-
gous electromagnetic wave propagation problem in a
dielectric. We shall use different approaches: (I) Derive
a linear, third-order differential equation for R when the
potential (dielectric constant) V(x) is arbitrary. (2) De-
velop a perturbation-theoretical series for R using the
strength of the random part of V(x) as the perturbation
parameter. (3) Study the spatial evolution of a three-
component state vector formed by bilinear combinations
of the wave function. The state variable formulation is
particularly well suited for one-dimensional scattering of
both particle and electromagnetic waves. Following
these developments we will use the theory of stochastic
differential equations to calculate the averages of R in
those cases where this is possible by analytic —as con-
trasted with numerical —methods.

Several explicit solutions are found for R. In particu-
lar, the exact expression for the average value (R ) is
developed for a white-noise distribution of V(x). Com-
parison of our expression for (R ) with previously pub-
lished resu1ts clearly shows that approximations are, in
fact, always present in prior work, contrary to claims of
exactness. We will take the liberty of commenting on the
results of various authors, in particular with respect to
the physical meaning of their approximations, and con-
cerning the validity of their results. Since these com-
ments are extensive, they are reserved for Sec. VII. Fi-
nally, a relationship is found between the electron locali-
zation length and the correlation length of the random
potential.

The starting point of the electronic conduction calcula-
tions is the single-channel Landauer resistance formula
for R ."' Single channel means that we have a one-
dimensional potential V(x), across which electrons are
transmitted. This formula has been derived in many
different ways, be it for electrons of a fixed wave number

ko, or for a Fermi distribution of electrons at zero and
finite temperatures. ' Generalizations include multiple
channels' and conductors of variable cross section. "
Calculations have also included an external electric field
along with the one-dimensional potential V(x). ' ' In
this case a deviation from the Landauer formula arises.
However, this effect is very small for the usual range of
parameters, and therefore does not invalidate the Lan-
dauer formula. The resistance formula is the same for
monoenergetic electrons with energy equal to the Fermi
energy EF, and for a Fermi distribution of electrons.
Therefore, we consider only the former case: k o will

denote the Fermi wave vector.

II. BASIC SCATTERING FORMULAS

Electronic conduction

In a stationary state, the electron wave function P(x)
in a potential V(x) satisfies the Schrodinger equation
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d 2~It
Itj"(x)+ko[1—U(x)]g(x) =0,

where

k A
U(x) = V(x)/E, E= 0

2m

(2.1) I rI +
I tI = 1. As shown by Landauer, the physical resis-

tance is R~(t) =(2e ) 'hR (1), with the unitless resistance
R (1) given by

(2.6)

Since in papers dealing with invariant imbedding' the
electrons are always impinging from the right on V(x),
we adopt the same convention, as illustrated in Fig. 1.
Noting from Fig. 1 that V(x)=0 outside (O, l) and that
the incoming beam has amplitude 1, the solution of (2.1)
1S

It should be noted that some authors define a normalized
conductance G =

I
t

I

= (R + 1) '. A detailed discussion
of this point is given by Landauer. ' Since for continuous
potentials of zero length one has r(0)=0, the boundary
condition for R is

and

P(x)=t(t)e ', x (0

P(x)=e ' +r(t)e ', x )1,

(2.2a)

(2.2b)

R (0)=0 .

Using (2.3), (2.5), and (2.6}one obtains

Ikon (1)—i'(l }I'

4k, IJ(t)I

(2.7}

(2.8}

where r (1) and t (1) are the complex reflection and
transmission amplitudes. They are functionals of U(x),
but for simplicity we indicate only their dependence on l.

The electronic current density J, is

J, =efim 'J,
where the particle current density J is defined by

or, using (2.4),

R (1)= 2p(t) —
2

where
2

2 (1)= +
Q(0) kop(0)

(2.9}

J =1m[/'(x)P'(x)] . (2.3)

Since U(x) is real, it follows from (2.1) and (2.3) that
dJ1'dx =0, i.e., J is independent of x. Evaluating (2.3) at
x =0 yields

J(1)—:J= —koIQ(0)I = —koIt(t)I for all x . (2.4)

Although J is independent of x, the reader is reminded by
(2.4) that it depends on l. This point plays an important
role in defining appropriate state variables to handle sto-
chastic problems in Sec. VI.

From (2.2) it follows that the complex reflection
coefficient is given by

r (t)= [ko —iQ( )t][ ko+iQ ( )t] ', Q = (2.5)

Since J is conserved, one may use (2.3)—(2.5) to show that

V(x)
c (x)

I

I

I

I

I

I

I

I

I
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FIG. 1. The random potential V(x) or dielectric constant
e(x) plotted as a function of x in the region (0,1). Vo and eo are
the averages. v(x) is the deviation of the potential from its
average. The arrow indicates the direction of the incident
current J of electrons, or of the power flux ReS of the elec-
tromagnetic field.

The expression (2.8) will be used in Sec. IV to formulate a
perturbation series for R; whereas the latter form (2.9) is
better suited for the state variable representation in Sec.
V.

For a constant potential U0, the resistance is

Ro(l) =— sin (kol +1—Uo),
U0

0
(2.10)

which is also valid for U0&1, where the argument of sin
becomes imaginary.

E(x, t)=zE(x)e (2.11)

From Maxwell's equations it follows that the correspond-

Electromagnetic wave propagation

The mathematical formulation of electromagnetic en-
ergy transport through an inhomogeneous dielectric
medium with dielectric constant e(x) is analogous to the
formulation of electronic transport through a spatially
varying potential V(x). However, the physical meaning
of R (1), in particular the electromagnetic equivalent of
(2.8), requires investigation.

In Fig. 1, assume that an electromagnetic wave is prop-
agating from right to left, as indicated by the arrow
which denotes the direction of the Poynting vector. In
the outside regions x &0 and x ) I, the dielectric con-
stant, magnetic susceptibility, and the speed of light are
denoted by eo, po, and c, respectively. The region (0,1) is
an inhomogeneous dielectric characterized by e(x), and
p0. The electric field is assumed to be plane polarized in
the z direction, with sinusoidal time dependence of radian
frequency co. Using the complex phasor representation,
the electric field is
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ing magnetic field is 2iko 'r'(I)= U(1)[1+r (I)]—2[2—U(1)]r(1) . {3.la)

H(x, t) =yH(x)e

where

E'(x)= i—pocoH(x}, H'(x}= ic—oe(x)E(x) .

(2.12)

(2.13)

Since (3.1a) has been studied extensively in Refs. 18—20
and 31 we will not attempt to find solutions here. How-
ever, we do point out that a Riccati equation of simpler
form is obtained by the transformation (2.5), yielding

E"(x)+ko[1—U(x)]E(x)=0, (2.14)

with ko =Qpoeoa&=cole, and U(x) = [eo—e(x)]/eo.
The complex Poynting vector S=EXH* is given by

S=S(x)x with S(x)= E(x)—H'(x} . (2.15)

Comparing (2.14) with the Schrodinger equation (2.1) it is
evident that electromagnetic propagation may be charac-
terized by the transformation g~E in expression (2.8)
for R. Using (2.13) and (2.15) leads to the form

(2.16)

Here, y and z denote unit vectors in the y and z direction,
respectively.

The wave equation for E(x) is

Q'(I)+Q (I)=—ko[1 —U(1)], (3.1b)

p'" — wp" + 4ko(1 —U)+2 w —w' p'4—3U 1 —U

2 —U 2 —U

2k 2U2
w p =0, (3.2)

with p=p(l), U = U(l), and w = U'(I)/U(l). The bound-
ary conditions which follow directly from (2.1) and (2.7)
are

with boundary condition Q (0)= —iko.
A homogeneous linear differential equation for

p(l) =2R(l)+1 is obtained by repeated differentiation of
(2.9), using (2.1) to eliminate f"(I) The. result is

p(0)=1, p'(0)=0, p"(0)=kQU (0+), (3.3)
where S„(1)=ReS(x) &0 is the power flux in the negative
x direction. It follows from {2.16) and the continuity of E
and H that p(l)=2R (I)+1 is related to the total energy
density 6(x) at x =I+ by

{2.17)

Although the power flux S„(l) is independent of x, it is a
functional of e(x) in the region (0, 1).

III. INVARIANT IMBEDDING: DIFFERENTIAL
EQUATIONS

The main objectives in this section are the development
of a linear differential equation for the resistance R (I),
and the subsequent study of approximate solutions. A
nonlinear Riccati equation for the complex reflection
coefficient r (I) has been studied by several authors.
The method used to develop these differential equations is
referred to as "invariant imbedding. "'

Since the reflection coefficient (or the resistance) is a
global property of the sample, it is not defined for interior
points x in (O, l), but only for the whole length 1. The
essence of the invariance imbedding method is to consid-
er not x but I as the new independent variable. Hence,
even though the potential U(x) is defined in an interval
(O, L), in the invariant imbedding method one adopts the
convention that U(x)=0 for x ) I, with 0&1 &L. Using
this convention, either r (I) or R (I) can be introduced as
a dependent variable, which, by virtue of (2.5) or (2.9) is
related to g(l), f'(I), and g(0). The advantage of such a
variable is that it obeys only one boundary condition,
namely, at I =O. This boundary condition follows from
the physical requirement that r (0)=R (0)=0, and fixes
the logarithmic derivative Q (0)= iko-

From (2.1) and (2.5) it follows that the reflection
coefficient satisfies the Riccati equation

where U(0+) means the limiting value of the potential
approaching zero from the positive side. We exclude
the case where a 5-function potential is placed at 1=0,
since that would contradict the condition R (0)=0.

We write the potential as the sum of a constant part
Uo and a fluctuating part u (x). To obtain a solution for
~
u (x ) ~

&& 1 with Uo =0, we set

p'(I) =u (1)g (I) (3.4}

and neglect U (x ) =u (x) compared to 1 in (3.2). Most
terms containing derivatives of U(x) then cancel out and
we obtain for g (I) the integro-differential equation

g "(I)+4kog(l) =kou'(I) I u(x)g(x)dx+1 . (3.5}
0

Neglecting the integral, which is justified a posteriori by
the smallness of g(x), the solution is

g(1) =ko f u (x)cos[2ko(l —x)]dx . (3.6)
0

Using (3.6) in (3.4) we obtain for R (I) the expression
I I

R (I)=—,'ko f dx I dy u(x)u(y)cos2ko(x —y), (3.7)

p +—'Q p —4kQp=O .

The solution of this equation yields

(3.8)

which is the same as the result obtained from the first-
order approximation of the perturbation series developed
in Sec. IV. Any approximation based on the smallness of
the fluctuations of the potential must reduce to (3.7),
which will be used in Sec. VII as a benchmark to test re-
sults of different authors.

The case when the potential nearly equals t~ice the
electron kinetic energy also lends itself to an approximate
solution, because the coefficients of (3.2) become singular
for U =2. Setting U(x) =2+u (x) and neglecting u (x)
compared to unity [except, of course in U'(x)], we obtain



45 WAVE PROPAGATION IN ONE-DIMENSIONAL DISORDERED. . . 8575

R ( l ) =sinh —,
' ko l [2+u ( l )],

u(l)= —f dx u (x) «2,1

l 0

(3.9)
n —1

P„(x,x, )=: g I (x;+„x,):, Po=1 . (4.4}

and coskx, and P„(x,x& ) is an iterated integral operator
defined by

in agreement with Ref. 20. To understand why Up=2 is
special, consider the parameter K ( Uo, u )—:k0 [1—Uo—u (x)], which characterizes solutions of the
Schrodinger equation. Since K (2, u ) = —E (0, —u), the
special solution for the case Up=0 and the fluctuating
part equal to —u(x) is the same as the solution for
U0=2 and u (x) with ko replaced by iko

Equations (3.7) and (3.9) are the only approximate
analytical solutions of (3.2) that we could find. Next, we
consider a perturbation series solution for the resistance.

IV. PERTURBATION SERIES

We assume in this section that the normalized poten-
tial U(x)= V(x)/E consists of a constant part Uo, plus
an arbitrarily varying part p, u (x }, such that
~pu (x)

~

(
~ Uo ~, where p, is introduced to identify the or-

der of the perturbation. The Schrodinger equation (2.1)
then may be written as

f"(x)+k f(x)=pkou (x)g(x}, k2=ko(1 —Uo) . (4.1)

We seek a series solution of (4.1) in the form

The symbol:: indicates ordering with i increasing from
right to left, and I(x,y ) is an integral operator defined for
any function f (y) by

I(x,y)f (y)= f dy sink(x —y)u (y)f (y) . (4.5)
0

R (l)=
—,'(1—Uo) '~ Uosinkl+ W(l)

~

with

(4.6)

W(l)= g (pkolk)" f dx„P(x„—l)u(x„)
n=1

XP„(x„,x &
)P(x

& ),

Resistance

Having obtained the solution g(x) in series form, we
turn now to the expression for the resistance R (l) as a
power series in p. For this purpose we substitute (4.2)
into (2.8), apply the boundary condition R (0)=0, and
obtain the exact series expression

P(x)= g p"g„(x) .
n=0

(4 2) where

P(x ) = ( k lk 0 )coskx i sink—x .
Substitution of (4.2) into (4.1) leads to

n

Pkp
g„(x)= P„+,(x,x, )$0(x, ) . (4.3)

The function $0(x) is the general solution of the homo-
geneous part of (4.1), i.e., a linear combination of sinkx

I

When the potential is constant, W(l) =0 and (4.6)
reduces to (2.10). Equation (4.6) allows, in principle, the
calculation of the resistance by perturbation theory to
any order in p.

For the case Uo =0, R (l) reduces to the simpler form

R(l)= —,
' g g R „(l),

n=l m=1

R „(l)=(pko )
+"f dx„ f dx' u (x„)P„(x„,x, )u (x' )P (x', x', )cosko(x„—x' +x, —x', ) .

(4.7)

For an arbitrary potential, the calculation of (4.7) to first
order yields (3.7}, which was obtained from the
differential equation for p(l).

Of special interest are ensemble averaged results which
may be obtained for random potentials. To calculate the
average resistance (R (1)) for an ensemble of potentials,
Eqs. (4.6) or (4.7) with (4.4) shows that one has to calcu-
late certain integrals of the correlation functions of the
potential. The correlation functions are defined by

C„=(u (x„)u(x„,) . . u (xo)u(x' )

Xu(x', ) . . u(xo)), (4.8)

where ( . . . ) denotes the average over the probability
distribution of the potentials in the ensemble, and
xp ~ ~ ~ x xp ~ ~ . , x' are a set of n +m +2 points on
the x axis.

For an arbitrary probability distribution of potentials

2

(R (l) ) =Ra(1)+- kp Up

8 1 —Up

X f dx f dy(u(x)u(x —y})g(x,y),
0 0

where Ro(l) is given by (2.10), and

g(x,y)=cos2kl+ 1 — cos2kx+ 1—2 2

Up Up

(4.9)

cos2ky

+ 1 — cos2k(l —x +y}2

Up

+ —,'cos2k (l —2x +y) —
—,'cos2k (l —y) .

I

the average resistance (R ) cannot be found exactly, and
a reasonable truncation of (4.6) is sought. After consider-
able algebra, the complete second-order approximation
for ( R ) is found to be
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Equation (4.9) is valid for any pair-correlation function,
and will be used in a subsequent paper to compare the ac-
curacy of several methods of finding (R ).

Gaussian white noise

X (u(x )u(x„)),
where the sum is over all partitions of the set x1, . . . , x„
into pairs. The white-noise attribute further specifies that

(u(x, )u(x )) =$5(x, —x. ) for all i j (4.10)

The detailed calculation shows that the argument-
ordering property of the operators P„and the asym-
metric factor sink (x;+,—x;) occurring in P„eliminate
all pairing in (4.7), except between u (x;) and u (x,'), for
any i. Thus the only contribution to c „arises from

C„„=(2()"g 5(x, —x ) .
i=1

It follows from (4.7) and (4.11) that

(4.1 1)

An exact expression for (R ) can be obtained for a
"Gaussian white noise" distribution of potentials. In this
case the correlation functions c„are easily evaluated. A
Gaussian process is characterized by the property

(u(x, )u(x2) . u(x„) ) = g (u (x;)u (x, ) )

zi(x)=kp & zp(x)

IPSI'

—Im(Q*P g)
I J(&) I

(5.1)

ing first-order vector differential equation is equivalent to
the original scalar differential equation. In linear system
theory the n components of the vector are called the state
variables. The introduction of state variables, in the
present context, will allow a systematic treatment of sto-
chastic processes.

As state variables one could use the complex functions
itj and g'; however, to determine a physical characteristic
of the system, such as R, it is more direct to introduce
real, bilinear products of these primary state variables
and their complex conjugates f*,g". These will

represent the components of vectors in the direct product
space of the primary state variables and their complex
conjugates. An elegant geometrical description of a par-
ticular state-variable representation of the Schrodinger
equation, and a subsequent analysis of moments of R in
terms of state transition matrices belonging to different
representations of the SO(2, 1) group is given by
Peres. ' State variables have also been introduced by
van Kampen in the analysis of the classical harmonic os-
cillator.

For reasons that will become apparent in the following,
we introduce the real, dimensionless state variables

(R(l)) =
—,
' g (keg)" f dx„h„(x„),

n=1 0

where h„(x„)is given by the recursion relation

(4.12)

The boundary conditions are

(R (0) ) =0, (R (0) )'= —,'kpg, (R (0) )"=0 . (4.14)

Note that these boundary conditions for (R ), which fol-
low directly from (4.12), are different from those for R,
developed in Sec. III. This is a consequence of the
white-noise condition, (4.10), which places a potential at
I =0, in contrast to the commonly used probability distri-
butions of the position of potentials, which are such that
the probability of finding a potential at l =0 is zero. The
solution of the differential equation (4.13) may be ob-
tained in closed form, but we delay its presentation until
Sec. VI where the complete solution of the white-noise
problem is given for the general case with U0%0.

V. THE STATE-VARIABLE METHQD

Starting from an nth-order differential equation one
may consider the original function and its derivatives as
the components of an n-dimensional vector. The result-

X

h„(x„)= dx„,[1—cos2kp(x x i)]h„,(x„,),
0

with initial value h i(x) =1. When the average resistance
(R (1) ), given by (4.12), is differentiated with respect to I,
the following differential equation is obtained:

(R(l ) )"'+4kp(R(l) )' —4ktg(R (1)) =2kpg . (4.13)

IE(
c 2 ImS(x)

S„(l)

z, (x)=
I

pplH(x) I',
S„ I

(5.2)

where S„(l), the real power flux, is independent of x.
Physically, z, and z3 are, respectively, proportional to the
electric- and magnetic-field energy densities, and z2 is
proportional to the reactive power that supplies the
changes in the stored energy.

Differentiation of the variables in (5.1) and use of the
Schrodinger equation (2.1) with U(x) = Up+ u (x) to
eliminate second derivatives, yields the coupled set of
linear, first-order differential equations

z'(x)=kp[ Ap+u (x) A, ]z(x), (5.3)

where p = —i8/Bx. The current density
J(l)=Re(g'PP) & 0, also given by (2.3), is independent of
x. However, it is important to note that J(l) is a func-
tional of the potential V(x). Thus, J(l) cannot be nor-
malized to unity for each member of an ensemble when
V(x) is a stochastic variable, as assumed by Peres in Ref.
25. It is evident from (5.1) that zi(x) and z3(x) are pro-
portional to the particle and kinetic-energy densities, re-
spectively. Writing g in the modulus-phase form it fol-
lows that z2(x) =n'(x)/I2J(l)I is proportional to a
"diffusion" current density.

The corresponding state variables for electromagnetic
propagation are obtained from (5.1) by the transforma-
tion g~E and IJ(1)I—&ppcoS„(ll), with kp=pilc. Explic-
itly, they are
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where z(x) = [z&(x),z2(x),z3(x}] is the state vector. The
symbol T indicates transposition. The unitless, traceless,
matrices Ao and A

&
are defined by

0 2 0 0 0 0
Ao= —q~ 0 1, A, = 1 0 0, (5.4)

0 —2q' 0

where q =k/ko=+1 —Uo.
Equation (5.3) is equivalent to the Schrodinger equa-

tion (2.1), or to the electromagnetic wave Eq. (2.14) if the
state variables are defined by (5.2). It follows directly
from the definitions (5.1) that the state variables satisfy
the constraints

v(x}=M(x)z(x), (5.6)

subject to the requirement that

thus z&(xo) and z3(xo) are opposite extrema. For elec-
tromagnetic wave propagation z&(x)z3(x) 1 may be

written as 2c(x)Q@E(x)CH(x) ~ ~S„(l)~, where c(x) is
the velocity of light in the dielectric, and 8z(x) and
CH(x) are the electric- and magnetic-energy densities,
and S„(l) is the power fiux.

For the following, it is advantageous to transform to an
"interaction representation" by introducing a new state
vector v whose derivative with respect to x is zero when
u (x)—:0. Accordingly, we define

z2(x) —z, (x)z3(x)+1=0, z, (x)z3(x)~1 for all x .

(5.5)

vo(x) = [M(x)zo(x)] =0,
dx

(5.7)

At an extremum point xo of z&(x), defined by zI (xo) =0,
it follows from the state-variable equation (5.3) that
z2(xo)=0 and z3(xo)=0, i.e., xo is also an extremum
point for z3(x). At x =xo, the equality holds in (5.5);

I

where zo(x) is the solution of (5.3) when u (x)=0. Using
(5.3) in v0=0, it follows that for zo arbitrary, M(x)
satisfies the differential equation M'(x)= —koM(x) Ao,
which has the solution

1+cos2kx
1M(x) =exp( —ko A ox) =—

q sin2kx

q (1—cos2kx)

—2q 'sin2kx q ( 1 —cos2kx )

2 cos2kx —
q 'sin2kx

2q sin2kx 1+cos2kx
(5.8)

Note the relation M '(x)=M( —x). Taking the deriva-
tive of (5.6), and using (5.3) and (5.8) one obtains

(5.9)v'(x) =kou(x)M(x) A, M( —x)v(x) .

The formal iterated solution of (5.9) is

(5.10)v(x) =@(x,xo)v(xo),

where the matricant @ is the ordered evolution operator
[see explanation after (4 4)]

4(x,xo) =:exp ko f dy u (y)M(y) A,M( —y)
xo

The solution for the state vector may now be expressed as

(5.11)
z'(0) =

kQ U(0) [0, 1,0]
z(x) =M( —x )@(x,xo)M(xo)z(xo) .

(5.14)
z"(0)=koU(0)[2ko, U'(0)/U(0), 2ko[U(0) 1]]Scattering

It is evident that the boundary condition R (0)=0 is con-
sistent with (5.12). An expression of the same form as
(5.13) was obtained using the transfer-matrix method,
and a two-dimensional harmonic-oscillator analogy.

In Sec. III we derived a linear third-order differential
equation for p(l) with the boundary conditions (3.3).
Since p( l) is a linear combination of state variables it is of
interest to examine the compatibility of the boundary
conditions (3.3) and those for the derivatives of z.
Differentiation of (5.3) allows decoupling of the state vari-
ables and leads third-order differential equations for each
variable. Taking the derivative of (5.3) and using (5.12)
yields the following boundary conditions for these
differential equations:

z(0) = [1,0, 1] (5.12}

The "resistance" R assumes a particularly simple form in
terms of the state variables. Using (5.1) and (2.9), it fol-
lows

R(l)= —,'p(l) —
—,
' with p(l)= —,'[z, (l)+z3(l)] . (5.13)

The complete determination of the state vector re-
quires the specification of the initial vector z(xo}. For
the scattering problem, illustrated in Fig. 1, the boundary
condition at xo =0 follows directly from the definitions of
z„zz, and z3 in (5.1). Using (2.2) and (2.4) one obtains
the initial state vector

The boundary conditions (3.3) follow immediately from
(5.12) and (5.14).

VI. STOCHASTIC PROCESSES

z'(x, E)=ko[ Ao+u (x, e) A, ]z(x,e) (6.1)

with Ao and A
&

given by (5.4), and the state vector z

We wish to treat a stochastic problem in which U(x, E}
is a random process. This means that there exists a class
of potentials U(x, e), one for each value of a random vari-
able e. The symbol ( ) will denote averaging over E
We then consider the stochastic differential equation
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defined by (5.1). In the corresponding Schrodinger equa-
tion the wave function P(x) is replaced by g(x, e), since it
depends on the particular potential chosen from the class
U(x, e}. It is known in the theory of stochastic
differential equations that their treatment may be greatly
simplified if the boundary condition, i.e., z( xo, E), can be
made statistically independent of e T.he solution of (6.1)
for a particular choice of U(x, e) is given by (5.11). Since
M(x) is independent of the random part of the potential,
averaging z(x, e) over E in (5.11) and assuming z(xo) in-
dependent of e, yields

( u ) =0. Stationary processes are defined by the property
that their correlation function may be expressed as

(u(x)u(x —y)) =(u )f (y) for all xand y . (6.3)

In most applications, f (y) depends on a correlation
length l„defined such that the value of the random po-
tential at x, has negligible influence on its value at xz if

~ x, —x 2 ~
))1,. For example, for dichotomic Markov and

Ornstein-Uhlenbeck processes f (y) has the form

(z(x})=M( —x)(4(x,xo))M(xo)z(xo) . (6.2) f(y)=e (6.4)

The particular form of the state vector of Sec. V was
chosen so that z(0} would be independent of e for the
scattering problem of Fig. 1. In fact, the boundary condi-
tion (5.12) is z(xo, e)=[1,0, 1] . Examination of (5.10)
shows that, in general, the average of the matricant
@(x,xo) cannot be evaluated in closed form. However,
as shown by Kubo ' and van Kampen, a reasonable ap-
proximation can be obtained from a cumulant expansion
of in(e).

Stationary processes in the second-order
cumu1ant approximation

We consider the random process U(x, E) with the
properties U(x, e)= Uo+u (x,e}, Uo= ( U(x) ), i e.,

I

The advantage of a cumulant expansion is that successive
terms in the expansion of In(@(x,xo)) are all propor-
tional to (x —xo)l," ', whereas the nth term of the ex-
pansion of (4(x,xo) ) is proportional to (x —xo)". This
property renders the latter expansion useless for
x xp & l ~ In contrast, one may expect to obtain a
reasonable approximation to ( z(x) ) using only a
second-order cumulant expansion. Since we assume
(u (x) ) =0, the second cumulant equals the second mo-
ment of U(x). For a Gaussian distribution of potentials
all moments of U(x) higher than the second moment
vanish, in which case the second cumulant expansion is
exact. To second order in u (x) the cumulant expansion
1s

ln(@(x,xo)) =ko(u ) f dy f dy'f(y —y')M(y) A,M( —y)M(y') A, M( —y') .
0 0

Using the group property of M(x), M(x)M(y) =M(y)M(x) =M(x +y), it follows that

1n(4(x, xo)) =ko(u )f dy M(y) A iQ(y —xo)M( —y),
0

where the matrix Q(y —xo) is defined by

y —xo
Q(y —xo) =ko f dr f (~)M( r) A, M(r—) .

(6.5)

{6.6)

Substituting (6.5) into (6.2) yields the approximate average state vector

(z(x)) =M( —x)exp ko(u )f dy M(y) A, Q(y —xo)M( —y) M(xo)z(xo) .
0

(6.7)

As noted by Kubo, ' for many applications it is con-
venient to transform (6.7) into a differential equation.
Differentiating (6.7), using (5.8) and the properties of
M(x), one finds

largest contribution to the integral over y in (6.5) comes
from the region y —xo (1„the upper limit in Q(x —xo)
may be replaced by infinity. Using (5.3) and (5.8) it fol-
lows froin (6.6) that Q—:Q( 0O ) is the constant matrix

T

with

d (z(x)) =K(x —xo)z(xo),

K(x —xo)=ko[AO+(u ) A iQ(x —xo) j .

(6.8)
-'s

q

Q= ——'(F+C)
2 2

where

q(F —C)—
0

F+C

0
—

—,
'
q (F—C), (6.9)

—
q 's

Here we invoke the assumption that the state vector z(x }
is calculated at a point x such that x —xo ))I, . Since the and

q =klko=+I —Uo
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F=ko J dr f(r), S =ko f dr f (r)sin2kr,
(6.10)

C =ko f dr f (r)cos2kr .

Equation (6.9) is also valid for Uo & l.

Setting K=K( oo ) constant, the solution of (6.8) is

(z(x})=e ' z(xo),

where

(6.11)

+[q (u ) (F—C) +4q —2q '(u )S]
ko

0 2 0

K=ko q '(u )S —
q q(—u )(F—C)

(u )(F+C) —2q —q (u )(F—C)

The behavior of ( z(x }) is determined by the eigenvalues of K, which are the roots I,; of the characteristic equation

3 '2

+2 2(u2)(F —C)

—2(u )[2C+q (u )S(F—C)]=0. (6.12)

kiko[2+1 —
U11

—
—,'(1—

U11) '(u )S] .

The state vector is asymptotically unstable for all

Uo = ( V) /E. For Uo ( 1, the positive real root is
A, 1-(u ). For Uo & 1, all roots are real and
A,3-2+Uo —1&0. Thus the exponential behavior of
(z) is determined by fluctuations in the potential for
E & ( V) and by the average potential for E ( ( V).

Average resistance

We now develop a general explicit expression for the
average state vector (z) in terms of the eigenvalues of
(6.12). From matrix function theory

e "=g,(x}I+g2(x)K+g3(x)K (6.14}

where g,.(x) (i =1,2, 3) are the components of a vector
g (x) defined by

Since (6.12) is the characteristic equation for (z), it is
also the characteristic equation for the average of any
physical quantity which is a linear combination of the
components of ( z ), such as (p ) .

An important question is whether the state vector
(z(x) ) is asymptotically stable for large x. For stability,
i.e., no exponential growth of (z) as x~~, it is re-
quired that Rek, (0 for i =1,2, 3. The parameters which
enter these stability requirements are the average squared
amplitude ( u ) of the random part of the normalized po-
tential U(x), the average Uo=( U(x)) of the potential,
and the sine and cosine transforms of the two-point
correlation function f (r) at the wave numbers 0, and 2k
[see Eq. (6.10)]. General stability conditions, based on
the Routh-Hurwitz criteria, are developed in Appendix
A.

To linear order in ( u 2) the roots of (6.12) are given by

&, =k (1—U ) '(u )C,
(6.13)

A,23= — (1—Uo) '(u )(2F—C)

Ag(x)=h(x) . (6.15)

a=(1—Uo) '~ (u )S,
p=(1 —UG) '(Q )(F—C),
y=(. )(F+C) .

(6.17)

Combining these results with (5.13), the average resis-
tance is given by

A'll A'21(R (l) ) =c32e +c13e +c21e (6.18)

where

c „= (I, —
A,„)I2A~A,„+ko(P—y)(A, +A,„)1

+ko[(P—y)P+2UO( Uo+a)]],
(6.19)

(~3 ~2)~3~2+(~1 ~3+1~3+(~2 ~1)~1~2 '

Equation (6.18) shows that the evaluation of (R (I) ) re-

quires only a knowledge of the pair-correlation functions
of the potential (or dielectric constant} which occur in

(6.17},and the roots of the third-order polynomial (6.12}.
Equations (6.11) and (6.18}, obtained in the second-

order cumulant approximation, are asymptotically exact
for distributions of U(x, e) in the limit when l is much
larger than the correlation length I, . The asymptotic lim-
it corresponds to a Gaussian white-noise distribution of

The rows of A are A;=[1,A, , A,;], i =1,2, 3 and
A, )X A2X A, 3X Th(x)=[e ', e ', e '

] . Substituting (6.14) into (6.11),
and applying the scattering boundary condition (5.12), it
follows that

(z1(x) ) =g1(x)+2( Uo+a)g3(x),

(z2(x) ) =2( Uo+a}g2(x)+2[y —(1+Uo+a)P]g3(x),
(6.16)

(z (x))=g, (x)+(y —p)g (x)

+ [(p—
y )p—2(1 —Uo)( Uo+ a) ]g3(x),

where
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potentials, for which l, is zero. For this case

and the characteristic equation (6.12) reduces to

(A, /ko) +4(1—Uo)(A, /ko) —2p =0, p =2kog .

(6.20)

(6.21)

Comparing (6.20) with (4.13), where UO=O, it is evident
that (6.21) is the characteristic equation for the average
resistance (R ). If the condition

[4(1—Uo)/3] +p &0 (6.22)

is satisfied, all roots of (6.21) are real, and they, together
with the coefFicients c „,are given in Appendix B.

Insertion of the real roots and c „ into (6.18) yields the
final formula for R (I). If (6.22) is not fulfilled, the roots

are complex, and the final result for R ( l ) is con-
veniently written in the form

The quantities A, B,C and a, b are expressed in Appendix
B in terms of the electron energy and parameters of the
potential.

To our knowledge, Eqs. (6.21)—(6.23) plus Appendix B
is the first complete, exact solution for the average resis-
tance in the white-noise case. For UO=O, (6.23) is the
solution of the differential equation (4.13) obtained from
the perturbation approach, and it satisfies the derivative
boundary conditions (4.14). In the weak correlation lim-

it, p « 1, Eq. (6.23), with UO=0, reduces to the expres-
sion

(6.24)

This relation can also be obtained directly from the series
(4.12) by dropping the oscillatory terms in all Q„. This is

justified, if l is much larger than the electron wavelength
divided by 2~, since then the cosine oscillates many times
in the integration intervals.

VII. DISCUSSION

The three methods developed in the text allow, in prin-
ciple, the calculation of any physical observable connect-
ed to matter- or electromagnetic-wave propagation in
one-dimensional inhomogeneous media. The most gen-
erally applicable of these methods is the perturbation
series expansion for the wave function, which has been
applied to the resistance. The homogeneous linear
differential equation (3.2) also allows one to obtain a solu-
tion to any order of accuracy by iteration.

In most applications the local properties of the inho-
mogeneous medium are not known in detail, but statisti-
cal information is available. An example is a lossless op-
tical fiber with a nonuniform index of refraction. For this
type of medium the state-variable method developed in
Secs. V and VI is the most appropriate one if the correla-
tion length of the relevant property of the medium is

(R (l)) =Ae '+e ' [8 cos(i/3bkol/2)

+C sin( &3bko I /2 ) ]
—

—,
'

(6.23)

small compared with the length of the sample. This
method is again illustrated for the example of the electri-
cal resistance, which is found as a function of the aver-
age, the standard deviation, as well as the two-point
correlation function of the random potential (or dielectric
constant) of the medium.

We will now discuss some results obtained by other au-
thors. First, we consider some work done on the white-
noise case. Heinrichs obtained the result that the aver-
age resistance is proportional to exp[( —,'kog+U~)kol],
valid for kog«1. However, all derivations in his work
are valid only in the very special case Uo =2, i.e., the po-
tential is constant and equal to twice the electron energy.
It is clear that in this case the exponential is completely
dominated by the term Uokol, and the fluctuations of the
potential are negligible. Our result, valid for any Uo&1,
when kog « 1, is proportional to exp(A, , I), where k; is the
positive root in (B6). For the special case Uo=1, the
average resistance is proportional to exp[(4kog)' kol].

Heinrichs also obtained a probability distribution for
the resistance, which is different from the results of Abri-
kosov, or Kumar, or Mel'nikov, or Papanicolau and
Keller, but since it is also based on a constant potential
Uo =2, the results cannot be directly compared to the re-
sults of the other authors which refer to UO=O [see dis-
cussion following (3.9)].

Comparison of our results for the white-noise potential
with those of Kumar is particularly interesting. Kumar
assumes that the logarithmic derivative of the potential,
and not the potential itself, is of the Gaussian white-noise
type. This, however, does not seem to be the reason that
his result for the resistance does not contain oscillatory
terms which are present in the exact solution. It is more
likely that his assumption of a "circular ensemble" is gen-
erally not justified. This assumption states that the angle
0 in the complex plane between the real and imaginary
parts of the reflected amplitude has a uniform distribu-
tion between 0 and 2~ for the respective ensemble of po-
tentials. Kumar obtains the correct exponential behavior
(6.24) (for Uo =0), which may indicate that when

kog «1 the distribution of 8 does approach the circular
ensemble. In fact, results obtained for the phase angle of
the wave function for a two-step random potential by
Erdos and Domanski show that the distribution of 0 is
far from circular, except in the limit stated.

Other authors also obtained expressions for the resis-
tance in the white-noise case. Mel'nikov has the same
results as Papanicolau and Keller with a prefactor l
of the exponential. As (6.24) shows, this result is not
correct. A correct result, with a constant prefactor was
obtained by Abrikosov, although he did not find an ex-
plicit relation between the mean square fluctuation of the
potential and the exponent in (6.24), as we did.

All the above-mentioned authors solve the white-noise
problem in the limit kog«1 and therefore obtain pure
exponential dependence of the resistance on the length of
the sample. It should be pointed out, however, that the
complete solution (6.23) also contains oscillatory terms,
which die out when the sample length l is such that
kohl ) 1. Furthermore, since (6.23) depends on two in-

dependent parameters, kol and kog, the exact average
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Approximate analytic solutions for the state vector and
observables, such as the resistance, can be obtained for a
correlation length l, less than the sample length l, i.e.,

600

I, /l &1, (7.3)

as discussed in Sec. VI.
To linear order in ( u ) = ((v/E) ), where v (x) is the

deviation of the potential from its average Vp, and E is
the energy of the incident electrons, the average resis-
tance grows exponentially with A, &l for E & Vp, where

ko ((v/E)') f dr f(r)cos2kor+I —Vo/E
p

(7.4)

The correlation function ( v (x)v (x —r) )E=—((v/E) )f (r) is independent of x since we are dealing
with a stationary random process. A sufficient condition
for the validity of (7.4) is

400

kol o

200

0
0 0.5

kolc
1.0 1.5

(2nl, /A, )((v/E) ) «1, (7.5)

kolc = (1—Vc/E)(kog) (7.7)

For Vc =0, (7.7}agrees with (6.24).
There remains the question of the accuracy of the

different methods for random processes other than white
noise. This question is addressed in Ref. 38. Based on
the methods developed in this paper, the probability dis-
tribution of the transmission characteristics of a dicho-
tomic Markov filter is developed in the following publica-
tion.

where A, is the electron wavelength. Comparing this ex-
pression with results obtained by scaling arguments, we
see that the quantity usually designated as the "localiza-
tion length" is the inverse of A, &. Hence the method of
Sec. VI expresses the localization length in terms of the
physical parameters of the problem.

The localization length lo =A, , for stationary process-
es characterized by exponentially decaying correlation
functions with f (r)=exp( r/I, ) i—s

2q'k, '

Ic = [2qkcl, +(2qkol, ) '], (7.6}
(v/E)

where

q =Ql —Vo/E

The normalized localization length kplp has a minimum

value 4q /((v/E) ) at 2qkol, = 1, which corresponds to
a maximum of In(R ) for a given value of 1. The behav-
ior of lo as a function of I, and (u ) for Vo =0 is shown

in Fig. 4. When the correlation length l, is much larger
than ko '=I, /2tr, the localization length lc increases
linearly with l, as the system becomes less random. In
the opposite limit, when 1,/2m is much larger than I„the
effect of the potential fluctuations is diminished because
the electrons do not "sense" the fluctuations. In this case
lp increases, inversely proportional to l, . In the extreme
limit (u )~ac and 1,~0, with (u )l, =g kept con-
stant, |,'7.6) yields the white-noise result

FIG. 4. The localization length Io plotted as a function of the
correlation length I, for exponentially decaying correlation
functions for UO=0. The scales are normalized by the electron
wavelength divided by 2m. The different curves exhibit the
dependence on the strength (u ) of the potential fluctuations.
In the white-noise limit (u~)~oo and 1,~0 such that
( u ) I, =g. This limit would be represented by a point
kolo =(kog} ' on the vertical axis.
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APPENDIX A

In general, the asymptotic stability of (6.11) can be
determined by applying the Routh-Hurwitz criterion
directly to the matrix K. In order for the state vector
(z) to exhibit no exponential growth for large x, the
Routh-Hurwitz criterion lead to the constraints

Pi—=q (F —C)&0,

p2
=——

q ( u )S(F —C) —2C & 0, (A 1)

P3
——[3—2q (u )S+q (u ) (F —C) ](F—C)

+F+C)0 .

If p; & 0 for any i = 1,2, 3, then at least one root of the
characteristic equation (6.12) has a positive real part, and
consequently the system is asymptotically unstable.

Consider stationary processes characterized by correla-
tion functions of the form (u(x)u (x +r) ) = (u )f (r)
with

f (r}=e (A2)

Using (A2) in the definitions of F, S, and C in (6.10), (Al)
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yields

p, =k111,[1—
Up+ (2kpl, ) ]

' & 0

and

When (6.22) is not satisfied the roots of (6.21) are

Ai =akp, A2 3=—,'( —aki~3b)kp,

where

(B4)

p2= —
—,'pi(kpl, ) (I+kpl, (u2)p, ) &0 . (A3)

If pi &0, the system is unstable, and if p, & 0, it is evident
that p2&0, hence the system is also instable. Therefore
(6.11) is always an asymptotically unstable solution for
stationary processes with exponentially decaying corre1a-
tion functions, such as, e.g., a dichotomic Markov pro-
cess, or the Ornstein-Uhlenbeck process.

a —(~+p )1/3 y( p )1/3

[ 4
( 1 U ) ]3+p 2

]
1 /2

(B5)

In the weak correlation limit, to linear order in p =2kpg,
and for Up&1, the roots are

APPENDIX B

For the Gaussian white-noise-type potential, if (6.22) is
satisfied, the characteristic Eq. (6.21) has real roots

A, ,=(l —
U11) 'koan,

3 2 ( 1 Up ) kpgki2+ 1 Upkp
(B6)

A,„+1=2kp[Y~(Up —1)] cos(8+2n1r/3}, ri =0, 1,2,
(B1)

For the special case Uo = 1, the roots are easily obtained
from (B4) and (B5). In the complex case, noting that
b =a +16(1—Up)/3, the average resistance assumes
the form given by (6.23) in the main text, where

where

8=—cos
—1

3 [4( UQ
—1)/3]

The coefficients in (6.18) are

c „=(1/4D}(A, —A,„)[2A, )(,„—p(A, +A,„)+2kpUp2] .

(B3)

A = [2a +ap+ 2(2 —Up )2]D,

D =4[4(l —U11)+3a ],
8 =(4a —ap —2Up)/D,

C = [3a3p +8(1—Up )p

—2a(8 —8Up+3Up)]/(v 3bD) .

(B7}
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