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Optical excitation of electrons in an asymmetric double quantum well is theoretically examined. The
well is biased to align the excited levels and permit resonant electron tunneling. Emphasis is made on
the photoinduced transfer of electrons counter to the bias electric-field force. Systems with a weak po-
larization relaxation (dephasing) are studied with use of the conventional Schrodinger-equation tech-
nique. A density-matrix approach is developed to describe optical excitations in the presence of an arbi-
trary dephasing. Quantum beats, which follow a short-pulse excitation of the double well, are shown to
depend crucially on the dephasing. The excitation profiles obtained for cases of different dephasing re-
veal the full range of tunneling coupling between the wells from completely coherent to incoherent (step-
wise).

I. INTRODUCTION

The aim of this paper is to consider theoretically pro-
cesses of optical excitation and electron transfer in an
asymmetric double quantum well, i.e., in a system con-
sisting of two different quantum wells coupled by electron
tunneling. We will concentrate on intersubband electron-
ic transitions, which are excited by far-ir radiation, and
consider both optically linear and nonlinear effects. We
will focus on the effect of the light-induced transfer of
electrons from one well to the other in the double quan-
tum well. It is important that in biased quantum wells
such a transfer can occur against the electric-field force
and with high quantum yield (up to 0.5).

A quantum well is a semiconductor heterostructure
(see, e.g., Ref. 1) whose potential confines electrons to a
small region. Such confinement brings about quantum
splitting of the electron energy bands into subbands
separated by excitation energy on the order of A /m a,
where m' is the electron effective mass and a is a
confinement size (width of the well). In what follows, we
will assume that the conduction-band states are popu-
lated due to a modulation doping of the barrier regions
and/or an incoherent optical excitation from the valence
band, and consider purely electronic transitions between
subbands of the conduction band (often called QWEST's
[quantum-well electronic (inter)subband transitions]). We
will also assume the electron density to be small enough
to exclude excitonic and other many-body effects.

Much work has been done on the electronic, optical,
and kinetic properties of semiconductor double quantum
wells (see, e.g., Ref. 1, and references cited therein, and
also recently published papers, ' which are relevant for
the present work). A fundamental phenomenon, which is
a subject of the study, is resonant tunneling between the
quantum wells. A distinctive feature of this phenomenon
is a considerable enhancement of the tunneling probabili-
ty if the energies of the donor and acceptor levels are

close enough. To describe theoretically this phenomenon
or interpret experimental results, most of the above-cited
works rely on the use of the Schrodinger equation. In
this approach, ' the wave functions of resonant levels in
the wells are mixed due to tunneling, and these states
repulse, forming a doublet separated by the energy 2~r~,
where ~ is the tunneling amplitude. The tunneling is de-
scribed by the delocalization of the electron wave func-
tion. Such tunneling is often called coherent, and we will
follow this terminology. It is well understood (see, e.g. ,
Refs. 3, 4, and 7) that relaxation destroys coherence and
makes tunneling incoherent (stepwise). When the relaxa-
tion rate I becomes on order of the tunneling amplitude
r or greater, the incoherent (stepwise) tunneling takes
place between nonmixed states.

To describe a general case of an arbitrary relaxation,
we will use the density-matrix technique, which allows
one to fully take into account the relaxation, including
the dephasing contribution to the polarization-relaxation
rate. Such a contribution, which is usually neglected,
may be important. The Schrodinger-equation approach
will also be used below to describe coherent tunneling for
the sake of comparison.

To explain the essence of the electron-transfer effect,
let us consider an asymmetric double quantum well with
an electric field applied perpendicular to the well plane.
The schematic of the confining potential and electron lev-
els (subbands) is shown in Fig. 1(a) with ~1) and ~2) as
the ground states in the narrow (N ) and wide ( W) wells,
respectively. The excited state in the N well is ~3), and in
the W well ~4). Let us assume that the electric field
aligns the excited levels ~3) and ~4), so that tunneling
from one excited level to the other is resonantly
enhanced.

Qualitatively, the electron-transfer effect is most pro-
nounced in the coherent-tunneling case. We should men-
tion that there exists convincing evidence of feasibility of
at least partially coherent tunneling based on the observa-
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FIG. 1. Coupled wide (8') and narrow (N) quantum wells

[(a) in the absence of bias, (b) in the presence of bias, where the
excited levels are aligned]. The schematic represents the
con6ning potential, energy levels, and radiative (wavy arrow)
and nonradiative (dashed arrows) transitions. The regions A

and B containing a dense electron gas serve as electrodes for the
capacitance coupling of the double well to an external circuit.
The insulating barriers A W and NB are supposed to be thick
and high enough to exclude considerable tunneling through
them (see text).

tion of coherent oscillations in a double quantum well,
which has been suggested earlier. Also, the possibility of
partially coherent tunneling is witnessed by the observa-
tions of the electron-transfer kinetics independent of the
barrier width, and of the resistance resonance in coupled
quantum wells. ' However, it is not known how strongly
the observed effects are changed if relaxation, especially
polarization relaxation, is appreciable. Below we shall
describe a coherent picture of the electron-transfer effect
and address a general case in Sec. III.

In the coherent case, the aligned excited states form a
doublet, the upper and lower components of which we
denote as ~+) and

~

—). The ~+)-state wave functions
are delocalized over both the N and 8'wells due to reso-
nant tunneling. In contrast, the lower levels are not
aligned, and the ~1) state is basically localized in the N
well and ~2) in the %well. Since the subband splitting of
the W well is smaller, the overall ground state is ~1) in
the N well [see Fig. 1(b)]. We assume both the electron
density and the temperature to be not very high, so that
only the

~
1 ) state is considerably populated.

Suppose that ir light excites an intersubband transition
in the N band, i.e., one of the transitions of the type

~
1)~ ~+ ) shown in Fig. 1(b) by a wavy arrow. Since the

splitting of the levels in the N well is assumed to be can-
siderably greater, the radiation does not excite a transi-
tion in the 8'well. The electron excited to either of the

~
2 ) states is quantum mechanically delocalized over

both the wells. Subsequent relaxation brings about elec-
tron transitions to the ground states ~1) and ~2), shown
in Fig. 1(b) by dashed arrows. The transition rates are
proportional to the probabilities for an electron to be lo-
calized in the corresponding wells, and for aligned levels
are on the same order of magnitude. Thus, with an ap-
preciable probability, the electron comes to the state ~2),

which is mainly localized in the 8'well.
Summarizing, a net result of the photoexcitation of the

intersubband transition in the N well is a transfer of the
electron from the N well to the W well in the direction of
the potential increase [see Fig. 1(b)], i.e., against the
direction of the field force. Indeed, the energy needed for
such a transfer is taken from the exciting radiation. Note
that if the transition in the wide well is excited, the elec-
tron transfer would occur in the direction of the field
force.

The closest counterpart of the above-described effect is
the observation by Sauer, Thonke, and Tsang of pho-
toinduced space-charge buildup due to asymmetric elec-
tron and hole tunneling in coupled quantum wells. The
effect of Ref. 2 is similar to the present effect in regard to
electron transfer against the electric-field force, but, nev-
ertheless, is essentially different in the following respects.
First, there is no relaxation involved in charge buildup in
Ref. 2, and, as a result, the electron buildup is minimum
for the levels aligned, while in our case it is maximum.
Also, for the aligned excited levels, after switching off the
optical excitation, the charge, which has been transferred
between wells, disappears in a time on the order of the
resonant-tunneling time, while in our case the charge
transferred is stable on this temporal scale. Second, the
effect is induced by interband transitions, and therefore
the portion of the photon energy accumulated in the po-
tential energy of a transferred electron is small, as dis-
tinct from the present effect based on intersubband tran-
sitions. Third, the charge transfer in Ref. 2 is based on
the difference in the tunneling time of the electrons in the
conduction band and holes in the valence band, while no
conduction-band holes participate and no such require-
ment is relevant for the present effect.

The Schrodinger-equation description is presented in
Sec. II. The density-matrix approach is developed in Sec.
III, including the obtaining of the basic equations (Sec.
III A), study of the temporal dynamics (Sec. III B), sta-
tionary solutions (Sec. IIIC), and numerical examples
(Sec. IIID). The results obtained in the paper are dis-
cussed in Sec. IV.

II. COHERENT ELECTRON TRANSFER
IN THE SCHRODINGER-EQUATION FORMALISM

An electron in a heterostructure is characterized by the
quantum number of the state in the well i =1,2, +, —
and the momentum p of the movement in the well plain,
its energy being c;+p /2m*, with c,; as the subband-
edge energy. For typical times of interwell tunneling,
which are normally much less then the electron transla-
tion relaxation times, one can consider p as a conserving
quantum number. Also, the photon momentum is much
less than a characteristic electron momentum, which al-
lows one to consider p as being conserved by the interac-
tion with light. Taking into account that subbands in the
well are highly parallel, one concludes that the energy of
an intersubband transition j,p~i, p, either tunneling or
electromagnetic, does not depend on p, and is simply the
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transition energy for the states in the well, c; —=c; —c. .
These arguments allow one to describe electron states in
the well and kinetics of the intersubband transitions sepa-
rately from the lateral movement, as is conventionally
done.

The maximum counterfield transfer effect occurs at low
temperatures T «1/m a, which we assume. The rate
equations describing the populations n; of the states Ii ),
i = 1,2, —,+ have the form

Bn1
W+ni + (1')++W+ )n+ +p(2n2at

Bn2
V2+ + 712 2dt

Bn+
=w+n) —(w++y+)n+ .

at

Here + means either + or —;y -,. are phenomenological
rate constants for decay from higher- to lower-lying
stat~s, Il )~jI), i =+,—,2,j =2, 1, and y~=y2~+y(+.,

m+ and w are mell-known Einstein coeScients for the
transitions 1)~I+) and Il)~I —), which can con-
ventionally be expressed in terms of the corresponding
dipole matrix elements @+1 and d

w+ = IEd+, I
I +,[(0—s+) ) + —,

' I +) ] ', with E as the

amplitude of the light wave and 0 as the light frequency.
To simplify notation, we use the system of units in which
A=1.

The probability of electron transfer from the N to the
8'well is equal to the population number n2. Assuming
that the radiation excites one of the transitions

I 1 ) ~I+ ) or I 1)~I —), one finds from the stationary
solution of Eq. (1) that

n =y2+W+[y2)'++W (2V2+)'2+)] (2)

"2=)'2 (W+)'2+ /'Y+ W —1'2 —/'Y —} .

The corresponding expression for the transfer quantum
yield Q has the form

Q —(W+f2+/} ++W I'2 /) )(W+ ) ~ (4)

As one can see from Eqs. (1)—(4), the electron-transfer
kinetics is determined by the decay constants y,- and the
matrix elements d+1, which, in turn, depend on the
wave-function mixing between the individual wells. This
mixing is described by the probabilities P+ ' and P'+~ for
an electron in the mixed I+ ) state to be in the corre-

where @2=y(2 is the decay constant of the state I2).
For the limiting case of nonsaturating light intensities,

w+ ((y2y+(2y2+ y2+ ) ', assuming both transitions

I
1 )~ I+ ) and

I
1 ) ~ I

—) to occur, and taking into ac-
count that the contributions of these transitions are addi-

tive, one obtains from Eq. (2)

Q=y2f n2dQ 1 (w++w )dQ
L

(6)

From this, taking into account Eqs. (3) and (5), one ob-
tains

Q
—

y (p(N)p( W) /~ +p(N)p(W) /~ )(p(N) +p(N) )
—)

To determine the transfer probability (2), we also need
to estimate the interwell transition constant y2=y, 2.
Note that y2 is proportional to the probability P'2 ' for an
electron in the state I 2 ), which is mainly localized in the
W well, to appear in the N well and experience a relaxa-
tion there. Assuming the relaxation of all states in the N
well to occur with the same rate, determined, e.g., by col-
lisions, one can estimate y2= y3P2, and obtain from Eq.(N)

(2) the saturated transfer probability

n (s) —
( 1+2~ p(N) /~ p( w)

)
—i

Since the nonresonant transfer rate is much less than the
resonant one, i.e., P'2 ' «P'+ ', the value of n2' is close
to unity.

We have numerically solved the stationary Schrodinger
equation in the coordinate representation with the
confining potential V(x } shown in Fig. 1. For the
method of solution, the dependence of V(x) on the chem-
ical composition of the well and effective mass m * adopt-
ed in the calculations, see Ref. 5.

As an example, we consider the double-well system (see

Fig. 1} A W barrier-W well WN barrier-N well N-B barrier-
with the widths equal to 100, 19, 8, 14.5, and 100 nm, all
the barriers being Alo 1Gao 9As, which corresponds to the
well depth Uo =77.5 me V. The solution yields the
dependence of the excited level detuning
e43=2. 56(E —6.4) meV, where E is the bias field in

sponding N or W well.
To find the decay constants y;-, we invoke a quantum-

mechanical idea that the relaxation causes localization,
and an electron localizes in the well in which it has ex-
perienced the relaxation. This assumption is valid if the
nonresonant-tunneling rate is small, which is equivalent
to neglect of the overlap of the wave functions in different
wells (see below). The decay rate of the excited electron
in the N well is equal to the decay rate y3 of the state I 3 ),
and, similarly, the decay rate in the W well is y4 of the
I4) state. To determine d+i, we take into account the
fact that, with neglect of the overlap, the electromagnetic
radiation couples the ground state

I
1 ), which is mainly

localized in the N well, only to the 3) component of the
mixed states. From these arguments we find

(N) ( W)
V 1+ V3P + V2+ V4P+

Id+ I'= Id3 I'p'"'

An important characteristic of the electron-transfer
process is the mean quantum yield Q for the wideband ra-
diation, i.e., for light whose spectral width is much
greater than the radiation transition widths. It is defined
by the expression [cf. Eq. (4)]
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kV/cm; the aligning electric field is Eo =6.4 kV/cm. For
the aligning field, the solution gives the energy levels
(meV) E,=4.7, E2=15.9, E =40.9, and E+=43.9; the
tunneling amplitude v.=1.5 meV; the dipole matrix ele-
ments d+&/e=2. 4 nm, d &/e= —3.0 nm with e as the
elementary charge; and the localization probabilities
P' '=0 98 P'~=0 99 P' '=0.58, and P' '=0.42.
From the last set of data we see that the state

~
1 ) is, in

fact, localized in the N well and ~2) in the W well, while
the ~+) and

~

—) states are almost evenly delocalized
over both the wells, as assumed above.

The transition rate y2 with P~2 '=0.01 (see above) is

very small with respect to y3, which ensures a high sa-
turated probability (8) n ~z' =0.99, low optical excitation
rates w" needed to achieve saturation of the ~2) state
w"-y2«y+, and comparatively long lifetime t, =y2 '

of the transferred charge after switching off the radiation.
In practical terms, the typical decay rate of the excited
states is @=10' s '=0.66 meV, which yields t, =0. 1 ns.
For the linewidth of -2 meV characteristic of QWEST's
and the dipole elements given above, the saturation light
intensity I, = e +r y2/cr + can be estimated as I, -60
kW/cm2.

Besides the data shown above, the computation pro-
vides escape rates ytr; from the ~i ) states in the double
well to the 8 region [Fig. 1(b)], i.e., in the direction of the
potential drop. As expected, the largest of the obtained
rates are those for the excited states, yz =1.8 peV and
ye+=1. 1 peV. These escape rates play the role of the
rate constants for a parasitic process of the light-induced
leak from the quantum well. However, comparing yz+
to the tunneling amplitude ~=1.5 meV and also to the
rates y2+-0. 3 meV of the population of the ~2) state
from ~+), we arrive at the conclusion that the escape
current is negligibly small with respect to the interwell
tunneling current, and can cause only a very small posi-
tive charging of the well system as a whole without
affecting the counterfield electron transfer.

The mean transfer quantum yield Q as a function of
the bias electric field E calculated from Eqs. (5) and (7)
for @3=@4is shown in Fig. 2 by a solid line. As one can
see, Q has a rather sharp resonance at the field E=6.4
kV/cm, which exactly corresponds to alignment of the
excited levels in the two coupled wells. The maximum
value is Q,„=0.55, and, as the computations show, it
essentially does not depend upon the barrier width, which
is a consequence of the coherency of the tunneling. As
one can conclude from Eq. (7), the most favorable case
for the counterfield transfer is not the simplest choice
y3 y4 as above, but rather y4 » y3, in which case Q can
be close to unity.

The tunneling amplitude ~ is an essential parameter
that determines whether the tunneling is coherent or not
(see Secs. III and IV). This amplitude, which is equal to
half the minimum value of the doublet splitting c+, has
been determined from the solution of the Schrodinger
equation as a function of the width L~& of the interwell
(WN) barrier for the system of the above type with the
widths 100, 19, L~N, 14.5, and 100 nm. The result is
shown in Fig. 3, from which we can see that, in the range

0.5—

0.3—

0.2—
g

0. f—

0.0
2.5 5.0 7.5 f 0.0 f 2.5

P'ield E (keV/cm)

of L~z considered, ~ is an exponential function of L~z,
as expected.

The numerical solution given above illustrates basic
features of the counterfield transfer effects, and, in princi-
ple, takes into account mixing between all the states in
both the wells, and the effect of the continuum states.
However, the nature of the numerical solution is such
that the analytical dependence of the effect on the param-
eters of the problem remains unclear. To elucidate this
dependence, we will einploy a conventional (see, e.g., Ref.
1) approximate approach based on the mixing of only two
excited states ~3) and ~4) and neglect of the overlap in-

tegral. The latter is equivalent to the orthogonality con-
dition (3~4) =0. The transfer integral t in the notation
of Ref. 1 is exactly our tunneling amplitude ~, and the ap-

10

E

10

Barrier width (nrn)
20

FIG. 3. Tunneling amplitude ~ (meV) as a function of the
central barrier width L~~ (nm) in the double logarithmic scale.

FIG. 2. Quantum yield Q of the electron transfer counter to
the field force as a function of the electric field E applied to the
double well. The data are obtained from numerical computa-
tion according to Eq. (7) (solid line) and with the use of analyti-

cal formula (12) (dashed line).
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proximation under consideration is nothing else but the
tight-binding model with zero overlap in the basis of the
two states 13 & and 14 &.

The stationary Schrodinger equation in this basis is re-
duced to

(e3—e+)(31+&+r (41+ & =0,
(e4 —eg)(41+ &+r&31+ & =o,

(9)

with ez as eigenenergies. The solution of Eq. (9) has the
familiar form e+ =,' [—e4+e3+(e43+4I~I }' ],where

E43:64 K3 is the energy mismatch of the excited levels.
Also, the localization probabilities follow from Eq. (9) as

p(N) p( W) 1 p( W) 1 p(N)

[a~3+(e~43+41r1')'"]'+4lrl'
(10}

Q= Irl'(y3+y4)r4[l~l'(r3+r4) +r3r4e43] ' . (12)

As we see from Eq. (12), Q as a function of the level

mismatch c,43 has the form of a symmetric peak with
width

I el(y4+y3)(y3y&) ' and maximum magnitude

Q,„=(1+y3/r4) '. For the simplest choice y3 r4,
using the dependence e43 2.56(E—6.4} meV (see

above}, the mean quantum yield (12) is plotted in Fig. 2 as

a function of E by the dashed line. We see that both in
magnitude and form a simple analytical formula (12)
agrees well with the result of the complete numerical cal-
culation (Fig. 2, solid line). This shows good applicability
of the truncated-basis tight-binding approach used above
to derive Eq. (12).

As mentioned above, Q,„=0.5 for y3=y4, and

Q,„~1 for y4&&y3. The values of Q,„do not depend
on the tunneling amplitude ~, nor, consequently, on the
barrier width. This is because of the coherent quantum
tunneling assumed above. A high quantum yield of
transfer demonstrated above and its dependence on the
relaxation constant ratio deserves a physical interpreta-
tion. The electron transfer counter to the electric-field
force is based on the quantum-mechanical delocalization
of an electron over both the wells. This delocalization
counterplays the electric-field force and dominates in the
case of realistic fields, where the above approximation is
valid. As a result of the quantum delocalization, the elec-
tron can be found in the W well with a 50% probability.
The relaxation in the 8'well with rate y4 causes the elec-
tron to get localized in this well, i.e., transferred against
the field force. The relaxation in the N well with the rate

Substituting Eq. (10) into (2), we find the analytical ex-
pression for the transfer probability:

n2 = I« 'y4y& '[(e43+4~)(&—~g))'

+-.'(r4&~3 —r3e~3)'] ' .

Here the Rabi frequency 6= —Ed&3 and, as usual, the
notation e, ;J stands for c;—cJ.

The mean quantum yield of transfer is found from Eqs.
(7) and (10):

f3 brings the electron back to the ground state; i.e., it is a
parasitic process. Therefore, Q =1 for y4»y3.

III. EXCITATION AND ELECTRON TRANSFER
IN THE DENSITY-MATRIX FORMALISM

A. Basic equations

r =i[r,e+ V] —R, (13)

where the one-electron energy operator c. is defined as
(ilelJ & =e;5;i, and R is the relaxation operator. In the
low-temperature case, i.e., for neglect of thermal activa-
tion, the diagonal part of R describes spontaneous decays
from higher- to lower-lying levels, and in the model of re-
laxation constants has the form

R,, =n, g y, — g y n, ,
J (J &&) J (J &~)

(14)

where y,. is the rate constant for spontaneous decay
Ij & ~li &.

In what follows, we will neglect direct relaxation tran-
sitions that involve nonresonant inter well tunneling,
13&~12& and 14&~11&, on the grounds of the small
probability of nonresonant tunneling with respect to the
resonant one. The rates of the above processes are negli-
gible with respect to the rates of the collateral two-step
processes involving the resonant tunneling,
13 &

—+14 &
—+12 & and 14 & ~13& ~11&, which will be taken

In the previous section we have described the electron
excitation kinetics and counterfield transfer using the
Schrodinger-equation formalism. Such an approach is
adequate for the coherent mechanism of the electron tun-
neling. The main drawback of this approach is the
neglect of the polarization-relaxation processes, which
tend to destroy the coherence of tunneling. Below we
present a general theory based on the density-matrix ap-
proach, which allows one to describe the full range of the
interwell tunneling regimes from completely coherent in
the case of small polarization relaxation rate to the oppo-
site case of completely stepwise for strong polarization
relaxation. The simplifying feature of our approach is
the use of the tight-binding model in the restricted basis
of the states in isolated wells 11 &, 12 &, 13 &, 14 & (see Sec. II)
and of the relaxation-constant model for the relaxation
term in the equation of motion for the density matrix (see
below}.

We start with the Hamiltonian of the system in the
form H=g;e;a; a;+g; V; a; a, where a and a are the
electron creation and annihilation operators, with
i,j=1-4. The one-electron operator V describes interac-
tion with the electromagnetic field and electron interwell
tunneling, and its independent nonzero elements are
V3, = —d»(Ee '"'+c.c.), V43 =~. The one-electron den-

sity matrix r is defined as r; = (a a; &. Its diagonal ma-

trix elements are the population probabilities n; =r;;.
The equation of motion for r can be obtained in the

usual way by commuting the pair operator aJ a; with the
Hamiltonian and adding the relaxation term. This has
the well-known form
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R; =r; r;, r; =
—,'(y, +y )+I ( 1 5)

where I;. & 0 is the pure dephasing term.
Let us introduce, in the usual way, the density matrix

in the interaction representation p =exp( —i st )r exp( i et }.
The equation of motion for p follows from Eq. ( 13):

Bp
a t

=i[p, U] —S

Here

( 16)

into account. Such a neglect is equivalent to the assump-
tion of local character of the relaxation [see the discus-
sion preceding Eq. (5)]. However, the nonresonant-
tunneling process

~
2 )~ ~

1 ) should be included despite its
small rate, because there is no resonant process to com-
pete with it. Thus, only the following decay-rate con-
stants should be taken into consideration: y3:y 13,

y 4
=y 24, y 2

—=y 12. These rate constants have the same
meaning as in Eq. (5}.

The nondiagonal part of R describes the polarization
relaxation and in the model under consideration is given

by

The system of equations ( 17} is exact for the model un-
der consideration. Below we adopt the resonant approxi-
mation, which is also synonymously called the rotating-
wave approximation (RWA). Applicability of this ap-
proximation is well established for optical fields that are
not very strong . Technical 1y, the R%A is equivalent to
taking into account only the terms containing slowly os-
cillating temporal exponentials in Eq. ( 17). Doing so, we
can explicitly determine the temporal dependence of the
po 1arizations,

p ]s=p]iexp [ i «—ei] }t]

p„=p,4exp[] ( n s4—] )t ],
p43 p4&exp( i s4it ),

and find the system of equations with constant
coefBcien ts:

n 1 = —2 Im(P]&G )+yin2+y&n3
dt

Bn p
y2n 2 +y4 4at

and

U =exp( i et ) V exp( i st )—
S=exp( i et )R exp( —i Et )

Bn 3 =2 Im(p»G )—yzn &
+2 Im(p437 ),

"dt

n 4 = —2 Im(p4ir' } y4n4, — ( 19)

are the interaction and relaxation operators in the in-

teraction representation. The diagonal part of S obvious-
ly coincides with that of R as given by Eq. ( 14). The
nondiagonal part of R is similar to Eq. ( 15) with the sub-
stitution p; for r,-

The equations for the density-matrix elements follow
from Eq. ( 16), taking Eqs. ( 14) and ( 15) into account:

Bn, —2 Im[p]iV» exp( iE»t ) ]+y2n2 +y3n 3a t

Bn 2
y2n 2 +y4n 4at

n 3

at
=2 Im[p» V„exp( ie3]t ) ] y3n 3

+2 Im[p43 r exp( i s43t )]—

P 1 3 =iG(n] —n&)+tap]4 g]&p]3—
dt

BDP14
IGP43+tWP13g14P14a t

dP4& = ir( n 4 n i ) +—iG 'P—]4 g4&P4-at

where the notations [G is defined after Eq. ( 1 1)]

g„=r„+i(n s„), —g„=r„+i—(n s„), —

g4, =—r43 + ) C43

are introduced .

B. Temporal dynamics

(20)

Bn 4

c}t
—2 Im[P43% exp( i3s4)1ty4n4—

~P 1 3 =i(n, n3 )V3]exp( —ie»t )—
at

+iP]4r exp(ie43t )—I ]

~P 14
ip43 V3, e—xp( —i e3]t )

+ ip]z r*exp( —iE43t )—I ]~]4
aP43 =ip, 4 V» exp( i e3]t)—
Bt

+](n4 n3 )wexp(ie43t ) I 43p43

(17)
The fundamental system of Eqs. ( 19) describes both the

temporal evolution and stationary levels of the electron
polarization and population numbers . Beginning with
dynamics the simplest effect is known to be the quantum
beats: the system is excited with a short pulse of light
and, after the pulse is over, the population numbers and
polarizations are changing in time, in some cases in an os-
cillating manner. Such observation conditions are in
close correspondence with the experimental study of Ref.
8.

The kinetics of the quantum beats is described by Eq.
( 19), where G =0. In this case, we see that the equations
related to the tunneling-connected states

~
3 ) and

~
4 )

decouple from the rest of Eqs. ( 19), forming a closed sys-
tem:
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Bn3 —y3n3+2 Im(r*p43),
at

Bn4
y—4n4 —2 Im(r*p43),at

(21)

P43 =ir( n4 n 3 ) —g43p43a

The solution of this system is given by a superposition of
exponentials e " with the coefficients, which can be
found from the initial conditions determined by the exci-
tation process. However, the corresponding characteris-
tic exponents A,„are the eigenvalues of Eq. (21), which do
not depend on the initial conditions.

The system (21) is equivalent to four real equations (the
matrix element p43 is complex). The corresponding
characteristic equation is fourth order and yields analyti-
cal expressions for the four eigenvalues A,„. However,
these expressions are too complicated. Therefore, we will
assume simplifying conditions that do not affect the gen-
eral properties of the solution. These conditions are
zero-level mismatch (E43=0) and equal decay rates of the
excited levels (y3=y4). In this case, we determine the
four characteristic exponents k„A,2, A, +, and A, to be

X, = —y, , X,= —r„, ,

x = —
—,'(y, +r„)+(-,'I,', —4lrl2)'" .

We can see from Eq. (22) that the first two exponents
correspond to purely decaying (aperiodical) kinetics. The
two other exponents k+ may have an imaginary part and,
consequently, describe an oscillating evolution depending
on the relation between the pure dephasing term I 43 [cf.
Eq. (15)] and the tunneling amplitude r. Namely, if
I 43 & 4I r I, then the oscillations of the populations n 3, and
n 4 and polarization P43 with the frequency
a1b =(4lrl —

—,'I 43)' are possible, depending on the ini-

tial conditions. Let us emphasize that cob does not de-
pend whatsoever on the population decay rates y, .

Physically, the oscillations considered above mean
coherent-tunneling transitions of an electron from one
quantum well to the other and back. These oscillations
decay with the rate y3+I43/2 depending on both the
population decay constant y3 and the dephasing rate I 43.
Such coherent oscillations have been suggested in Ref. 7
and have been observed experimentally in Ref. 8. How-
ever, in the theoretical description of Refs. 7 and 8, the
dephasing has not been taking into account. If the de-

phasing is negligible (I 43 « lel), the frequency cob of
beats is equal to the doublet splitting, and for the case of
exactly aligned levels we have c0„=2I~I, in accord with
Refs. 7 and 8. However, in a practical situation, the de-
phasing is not small, and cab &2lrl. As the results ob-
tained above show, the dephasing relaxation rate I 43 is a
very important parameter that not only determines the
values of the frequency and decay rate of oscillations, but
their very existence.

C. Stationary solutions

b =2lr I'«[(g 13g14+ Irl')f '],
c—:2IGI Re[(g43g, 4+IGI )f '],
f—=g43(g 13g 14+ lrl')+g13 I G I'

(24)

are introduced. As follows from the second equation of
the Eqs. (19), the probability n2 of the electron transfer is

simply related to n4 by
—1

2 y4y2 4 (25)

The expressions (23) are exact. However, they are
somewhat cumbersome and difficult to analyze. In par-
ticular, it is difficult to see from Eq. (24) how the
Schrodinger-approach results (see Sec. II) can be repro-
duced. Therefore, prior to giving numerical examples,
we shall consider simplifying limiting cases, restricting
ourselves to an optically non saturated regime
IGI ((y;, lrl. Assuming this, we obtain from Eq. (23)
closed expressions for the population numbers:

The stationary solution of Eq. (19) can be obtained in a
straightforward manner. The expressions for the popula-
tion probabilities of the excited levels are

n3 = [c(b+y4) —a(a+y4)]

X {c [b(3+y4ly 2)+ 2y4]+ y3y4+ b(y 3+y4)

+a I:y3(1+y4~3 2) a(3+y4~y2) 3Y4)]
(23)

n4 = [a(y3 a)+—cb ]

X {c[b(3+y4ly2)+2y4]+y3y4+b(y3+y4)

+a[y3(1+y4~y2) a(3+y4~y2) 3y4]]

where the notations

a =2lrl'IGI'Re(f

&3 — {I:Irl +I 131 14
—« —e31)«—e41))[lrl I 43(2I 14 y4)+y4I 14—(I 43+E32)]2 2 2

X
+ [I 13(&—

E41 )+ I 14(&—E31)][ lr I'(21 43(II —E41 )
—y4E43)+ y4(II —

e41 )( I 43+ 843) ]],
2lrl IGIn4=

X {[lrl'+r„r„—(n —E„)(n—E„)]r„(2r„+y3)

+ I. ~13«—
&41)+~14( &—

&31)) [y3E43+ 2~43( &—
&41) ] ]

where the notation
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x= I[Ill'+r»r„—(II—s»)(f~ —e„))'+[r»(II—.„)+I„(II—s»)]'][2lrl'r. ,(r3+r, )+r,r,(r4'3+"„)]
is used. The populations (26) are proportional to 161,i.e., to the light intensity, as expected.

From Eq. (26) we can see how to reproduce the results of Sec. II. If the polarization relaxation rates are much small-
er than the tunneling amplitude,

r„,r„,r„«lrl, (28)

the denominator X (27) in Eq. (26) becomes nearly zero for Q =a+, or E „where e+ are the energies of the doublet lev-
els. In this case, each of the populations n3 and n4 as a function of frequency has two nonoverlapping peaks centered at
the frequencies c+,. In the vicinities of these peaks, the expression for n4 has the form

2lr 'IG I'(I, s —I, s — )(r,s —2l, s — )

[(41rl'+s43)(Q s ) +(I s I e —3) ][2lrl'r„(r, +r, )+s,',r,r, ]
(29)

Taking Eq. (25) into account, we conclude that Eq. (29)
agrees with the result (11) of the Schrodinger-equation
approach only if, in addition to the condition (28), pure
dephasing is negligible with respect to the population re-
laxation,

~14 ++ V4 ~13 + ~3 ~43 + ~4+~3 ' (30)

D. Numerical illustrations

In this section we numerically illustrate properties of
the optical excitation in the coupled quantum wells, with
emphasis on the counterfield electron transfer. We aim
to elucidate the effect of the polarization relaxation on
the electron excitation and transfer.

The exact expressions for the population probabilities
n3 and n4 of the excited levels are given by Eq. (23). The
probability n2 of the electron transfer in accordance with
Eq. (25) simply copies n4. Since the expressions (23) cru-
cially depend on the polarization-relaxation constants
I ]3 I ]4 and I 43 we begin by estimating these constants.

Experimentally, the polarization-relaxation constant is
found as the width of the optical-absorption line under
nonsaturated excitation conditions. Using such an ap-
proach, it has been established in Ref. 14 that at the tem-
peratures T~100 K and the transition energy v~100
meV, the transition width I does not significantly depend
on T, and I /c. =0.03. These data show that the contri-
bution of the optical phonons to the polarization relaxa-
tion under the conditions used is small. ' The optical-
phonon contribution will be even smaller in the absence
of optical-phonon emission, which is the case for s3, %cop,
where cop is the optical-phonon frequency. This condition
is satisfied for the system under consideration.

Inapplicability of the Schrodinger-equation approach in
the presence of the dephasing is evident if we consider the
mean quantum yield Q (6), which can be calculated from
Eqs. (25) and (29):

g= 21
rl' r r [2r 3lrl'(r3+r4)+r3r4s43]

in comparison with the corresponding result (12). Note
that the condition (28) may be realistic, but (30) is nor-
mally not the case (see below). Therefore, taking into ac-
count the polarization relaxation with the use of the
density-matrix techniques is essential.

With the optical phonons excluded, the remaining
mechanism of the dephasing is based on the fluctuation of
plus-minus one monolayer in the width of the well. This
mechanism is also supported' by the experimental data
on the interband transitions in quantum wells. Assuming
this mechanism, we arrive at a simple estimate
I /c=25a/a, where a is the well width and 5a is its fluc-
tuation, 5a =0.3 nm. In our case, e.g., for the N well,
a =14.4 nm and r/a=0. 04. For a crude estimate, the
agreement with the experimental value is reasonable. For
the example considered, this estimate yields I ]3 I )4=1.5
meV. In the absence of optical-phonon emission, a typi-
cal lifetime of the intersubband transition is -3 ps. This
yields the decay constants y3, y4=0. 2 meV. Thus, the
dephasing contributions to the polarization-relaxation
constants dominate, in contrast to the applicability con-
dition (30) of the Schrodinger-equation approach.

To estimate the interwell polarization-relaxation rate
r43 we notice that the fluctuation of the excited-level en-
ergies c3 and c4 are always greater than those of the
ground states c.

&
and c2. In this case, assuming the fluc-

tuations in the different wells to be independent, we ob-
tain a simple relation I'43=(I &3+I &4)', which will be
used below.

The effect of the polarization relaxation on the electron
excitation can be traced in Fig. 4. We can see in Fig. 4(a)
that in the case of a weak dephasing (I &3 I ]4 0. 1

meV), the excitation contours are two almost separate
peaks, which, as can easily be verified, are positioned at
the transitions frequencies c+ of the doublet levels. The
asymmetry of the excitation contour is due to nonzero
level mismatch s43.

We emphasize that near the peak maxima n4-n3,
which means that the electron transfer counter to the
electric field force occurs with a high probability, an elec-
tron is excited by the light to the 13) state, but appears
with close or even greater probability in the 14) state lo-
calized in the other well. Using Eq. (25), we can make
sure that in the spectral maxima n2=1, i.e., the popula-
tions are saturated. At the same time, the parameter that
governs the polarization saturation 1G1 /I f3«1. This
means, in particular, an absence of field broadening and a
low probability of excitation into the continuum.

With an increase of the dephasing rate [see Figs. 4(b)
and 4(c)], the spectral peaks are broadened and overlap.
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0.04-
Q)
J3

0.03-E

4

Iia =0.1

Ii4 =0.1

tw =0.14

However the op pulation number n4 and, consequently,
the transfer probability n2 (25} do not considerably di-
rninish. This shows that the counterfield transfer effect
persists even for relatively strong d h . F
I =I =1

ng ep asing. For
$ 3 F ]4 10 meV, the doublet structure is corn letel

absent , and the absorption contour is symmetrical and
centered at the frequency c3& of the transition in the iso-
lated narrow well [Fig. 5(c)]. This means that the elec-
tron is first excited within the N well, and then tunnels
into the W well; i.e., the tunneling is incoherent.

The effect of the polarization relaxation is even less evi-
ent for the case of nonequal dephasing rates in the two

wells shown in Fig. 5. With an increase of the dephasing
in the wide well, the peaks begin to broaden [Fig. 5(a), cf.
Fig. 4(a}], but then this broadening stops [Fig. 5(b)] and
reverses: for strong relaxation we obe o serve a sing e nar-
row peak centered at the transition frequency c.3, of an
isolated narrow well [Fig. 5(c)]. Again, this fact shows
t at the tunneiing is incoherent. The narrowing of the
absorption contour for the case of strong dephasin is a
counter art ofpar o the well-known spectroscopic

s rong ep asing is a

phenomenon of the spectral line collapse. This narrow-
ing can be understood from the following arguments.
With an increase of the dephasing in the W well, this we11
behaves like an overdamped resonator. Such a resonator
is known to decouple from a high-quality resonator,
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FIG. 4. Population numbers n3 (solid line} and n (d h dn4 as e
) of the excited levels as functions of th 1 he exciting light fre-

quency 0 (meV) for the dephasing constants shown in the
graphs. The dephasing relaxations in the two coupled wells are
assumed equal I = Il 3 14 The other relevant parameters are
~G~ =0.2 meV, y, =y~=0.2 meV, 1 =0.006 V
me . e double-well system under consideration is described
in t e text.
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FIG. 5. The sam e as Fig. 4, but the dephasing in the narrow
well is the same for all the graphs shown, I »=const, and de-
phasing in the wide well is increasing, I,4= 1, 10, and 20 meV.
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which is the N well. In such a way, a well with a strong
polarization relaxation does not considerably perturb the
other well.

To focus on the effect of counterfield electron transfer,
let us consider Fig. 6, in which the maximum (in the light
frequency) probability of this transfer is shown as a func-
tion of the tunneling amplitude ~. Note that for the
double-well system under consideration, the magnitude of
v. is simply related to the thickness L~N of the interwell
barrier (see Fig. 3).

In the case of low-to-intermediate optical saturation
(~6~ =0.2), we see from Fig. 6(a) that for r «I, 3the
transfer probability strongly depends on ~; in fact,
nz" ~r~. This a feature of a noncoherent electron
transfer. %'ith an increase of ~, the probability nz levels
off. The greater y», the later this leveling takes place
and the lower the limiting magnitude of n2. For the typi-
cal value ~=1 meV, the transfer probability is very high,
n2=0. 7. Thus, the counterfield transfer effect is strong

IGI=O. 2
Iis =0.1

0
0
CL

0.5-
V)
C0

X0

0,0
0.01 0. 1 1 10

Tunneling amplitude ~ (mev)

1 0 — (b) IGI=20

O

0
CL

0.5 -'

C

D

X
0

0.0
0.01

I I I I I I I I 1 I I I I ~ I I I IIt~

0, 1 10
Tunneling amplitude 7 (meV)

FICx. 6. Transfer probability n2 calculated in its spectral
maximum as a function of the tunneling amplitude ~ for the de-
phasing rates y» =0.1, 1, and 10 meV, and the Rabi frequencies
6=0.2 and 20 meV, as shown on the graphs. Other parame-
ters: y&4=@», the decay rates y3 g4 0.2 rneV, @2=0.006
meV, and the level mismatch c43 0.

under the realistic conditions considered. For a high
light intensity ~G~ =20 meV [Fig. 6(b)], the transfer is
completely saturated, n2=1, in the coherent-tunneling
regime. However, there exists an essential difference with
the intermediate-intensity case [Fig. 6(a)]; namely, the
effect of the dephasing is opposite: the higher I », the
higher n2, and the sooner the saturation sets in. This
counterintuitive feature stems from the field broadening,
which prevails over the phase relaxation in this case.

IV. DISCUSSION

This paper pursues two interrelated goals. The first is
to give a theoretical description of a novel effect in asym-
metric double quantum wells, namely, the electron
transfer counter to the bias field. This transfer is based
on the quantum-mechanical delocalization of the electron
over the resonant states, which, in the case under con-
sideration, prevails over the electric-field force (note that
the light itself does not exert any significant force). The
second goal of the paper is to develop a theory that de-
scribes the kinetics of the electron excitation in coupled
quantum wells, taking into account the polarization re-
laxation.

An approach based on the Schrodinger equation pro-
vides a comprehensive description of the problem. This
is given in Sec. II, where general expressions (2) for the
electron-transfer probability n2 and (7) for the mean
quantum yield Q of transfer are obtained [see also Eq.
(12) and Fig. 2].

However, the Schrodinger-equation approach is only
valid in the absence of the polarization relaxation (de-
phasing), which always exists in real systems. This relax-
ation destroys quantum-mechanical coherence and,
rigorously speaking, makes the stationary states of the
electron nonexistant. Physically, the polarization relaxa-
tion originates from the interaction of an electron with
other parts of the system, in particular, with phonons and
impurities or defects, which are not taken into account in
the Schrodinger equation. In this case, the density-
matrix technique is adequate. Such a technique for the
optical excitation of a double quantum well is developed
in Sec. III.

The free (i.e., in the absence of the optical field) time-
dependent solution of Eq. (19) [see Eq. (20)] gives the fre-
quency of the quantum beats cub. In the presence of
phase relaxation, this frequency does not coincide with
the spacing of the excited-state doublet, and is deter-
mined by the dephasing constant I 43 but not the decay
constants. If the phase relaxation is strong enough,
I 43) 4~r~, then the quantum beats disappear, being com-
pletely replaced by a monotonic relaxation. The results
discussed may be of interest for comparison with recent
experiments of Ref. 8, in which quantum beats in the
double wells have been observed.

In the stationary regime, closed analytical expressions
(23) and (25) for the populations n3 and n~ of the excited
states are obtained. The full range of the transition from
a nearly coherent tunneling regime to an almost in-
coherent one can be traced in Figs. 4 and 5. For a weak
polarization relaxation, the excitation profiles reveal a
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two-peak structure typical for the coherent tunneling. In
this case, the optical wave plays the role of a probe field
exciting the system to the doublet states I+). As the de-
phasing increases, the stationary states I+ ) are no longer
a good zeroth-order approximation, and the interwell
coupling becomes incoherent (stepwise): the first step is
the excitation from the state

I
1 ) to

I
3 ) of the 8'well, fol-

lowed by the second step of the tunneling into the N well.
In qualitative agreement with the above picture, with an
increase of the dephasing, the double-peak structure
disappears, replaced by a single peak centered at the tran-
sition frequency c3&. If the dephasing in the two coupled
wells is increased in the same proportion, the excitation
profiles are broadened [see Fig. 4(c)]. A counterintuitive
feature appears in the case where the dephasing is in-
creased only in the acceptor ( W) well: eventually, a col-
lapse of the spectral line takes place [see Fig. 5(c)].

To avoid any possible misunderstanding, we recall that
the form of the excitation profiles in Figs. 4 and 5 is ob-
tained under the assumption that only the transitions
from the ground state ll) in the N well are excited.
These transitions are positioned on the energy scale to
the right of the transitions in the W well. Therefore, in
practice, the right parts (0 ~ 30 meV) of the excitation
profiles should be close to the ones shown in Figs. 4 and
5, and the left parts may differ. However, for the nonsa-
turating optical excitation, only the transitions in the N
well can occur, because only the

I
1 ) state in this well, as

the overall ground state, is populated at low tempera-
tures. Therefore, under these conditions, the excitation
profiles are correctly given by Eq. (26) in the whole spec-
tral region, predicting dependences similar to those of
Figs. 4 and 5.

As discussed above, the phase relaxation drastically
affects the spectral profiles of the optical excitation.
Also, it is understandable a priori that the probability n2

of the counterfield electron transfer diminishes with the
increase of the dephasing because the transfer is a reso-
nant effect, and the quality of the resonance is reduced by
the polarization relaxation. A question remains as to
which degree n2 is affected. The answer is contained in
Fig. 6(b): for moderate excitation intensities and the
whole conceivable range of I »=0. 1 —10 meV, the prob-
ability n2 changes by only a factor of 0.3. Therefore, the
transfer effect itself is rather stable with respect to the de-

phasing.
Let us discuss possible experimental observation of the

counterfield electron transfer. This effect can be detected
optically by monitoring changes of the intersubband ab-
sorption in the double well: as the transfer proceeds, the
absorption band shifts to a lower frequency by the
amount c2&. Electrical detection of the transfer is also
possible. In this case, external conductors should be in
contact with the regions A and B in Fig. 1. However,
achieving the regime of a stationary current in the exter-
nal circuit is problematic, because in this case the bar-
riers A W and NB should be penetrable for electrons. If
so, the optical excitation, apart from bringing about the

counterfield electron transfer, would also increase the
rate of the electron escape from the N well to the B re-
gion, i.e., in the direction favored by the bias. Thus the
counterfield transfer may be completely masked by this
leak current.

We believe that the most reliable observation is the
detection of the counterfield transfer based on the capaci-
tance coupling of the well to an external circuit. Such
coupling is achievable even with the thick barriers A W
and XB, thus excluding photoinduced leakage from the X
well to the B region, discussed above.

In the case of the capacitance coupling, the regions A

and B (Fig. 1), containing a dense electron gas, play the
role of the capacitor plates. For the regime of zero
current in the external circuit, the counterfield transfer of
electrons induced by switching on the light brings about
an increase of the potential difference hU„~,

b, U„~ =4vrecrni Axle,

&x = f—[I+,(x)l' —I+ (x)l']«x,
(32)
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where ~p, is the wave function of the li ) state, e is the
mean dielectric constant of the well material, cr is the
two-dimensional density of the electron gas in the well,
and x has the meaning of the characteristic distance of
the charge transfer (for the example considered, hx =24
nm). We emphasize that b, U) 0 means that the photo-
current inside the well is directed counter to the potential
drop. Alternatively, if the capacitor is externally kept
under a constant potential difference, then an exciting
light pulse brings about a transient current in the external
circuit opposite to the direction favored by the bias, the
total transferred charge being Q =eSan2hx /L, where L
is the AB distance, and S is the illuminated area
Ax /L =0.1 for the system considered.

We should point out that the theory presented above
does not take into account the photoinduced electric
fields. This condition can always be met if the density o
is low enough. In this case, of course, the potential
change (32) is small. However, it is expedient to mention
the probable qualitative effects of the photoinduced fields.
The potential increase AUzz via changing the electric
field inside the well affects the photoexcitation and elec-
tron transfer. This is feedback that can produce
enhanced nonlinear-optical responses similar to ones ob-
served in Ref. 6 for the interband transitions, and possi-
bly an intrinsic optical bistability. We plan to address
these effects elsewhere.
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