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Resonant tunneling in a resistive wire
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Using a recently developed superposition method, we consider resonant tunneling through a double-
barrier structure in a resistive wire. The wire with finite mean free path permits phase-randomizing
scattering; the barriers are described by elastic scatterers. We analyze in detail the evolving residual-
resistivity dipole surrounding the barriers. We investigate the additional resistance due to the barriers
and study the transition from completely coherent to completely incoherent transmission. The transport
regime is governed by the ratio of the mean free path to the well width. We discuss the effect of phase-
breaking scattering on the tunneling process leading to a decrease in the resonant transmission probabili-
ty and a rise in the off-resonant one. A formula for the density of states in the well is also obtained.

I. INTRODUCTION

Resonant tunneling is attracting increasing attention in
view of recent experiments in which an oscillatory behav-
ior in the conductance of narrow channels with varying
Fermi energy or, equivalently, electron density was ob-
served. It is very likely that in the Si devices investigated
the periodic conductance oscillations are related to the
presence of two dominant scattering centers which define
an isolated segment within the channel. ' On the other
hand, in high-mobility GaAs nanostructures one can ad-
just electrostatically created potential barriers in the
one-dimensional electron gas. Calculations performed
very recently by de Aguiar and Wharam based on the
resonant tunneling concept have shown reasonable agree-
ment with experimental data. However, there are effects
beyond purely ballistic transport, particularly incoherent
scattering events, leading to a broadening of the reso-
nance and a decrease of the peak value. This corresponds
to the measured conductance that is temperature in-
dependent at the lowest temperatures and that shows a
continuously decreasing amplitude of the oscillations as
the temperature is raised. Therefore it is essential to
have a theory of the influence of incoherent processes on
resonant tunneling in order to make sensible contact with
experiment. We develop such a theory in general terms
below.

From a methodical point of view, different approaches
have been proposed to describe coherent and incoherent
propagation simultaneously. In the present context we
mention the Breit-Wigner formalism. ' However, this
method has only a limited range of applicability, namely,
the crossover from coherent to sequential tunneling.
Biittiker ' derived an expression for the conductance
which allows for both coherent and incoherent scattering
processes. His approach models phase randomizing by
connecting the well of the double-barrier structure via
perfect conductors to a reservoir. The reservoir into
which carriers are scattered with a tunable probability
acts as an inelastic scatterer and permits phase breaking.

Our system under consideration, sketched in Fig. 1, is
more natural than Biittiker's model. The two barriers are
located in a wire at points a. For simplicity we focus
on a one-dimensional (one quantum channel) conductor.
The conductor is not a perfect lead but a resistive wire,
assumed to be filled with background scatterers of, on
average, constant density and certain scattering ampli-
tude each, giving rise to a finite mean free path (MFP), I.
Thus, even an unperturbed lead of length L has the resis-
tance

ML

where we have assumed —as in the following —L ))l to
separate the studied section of the wire from the remain-
ing parts of the whole circuit. l is introduced in our mod-
el as a mean-field quantity. It represents the net effect of
the elastic interactions (cf. below) between the carrier and
the background scatterers in the wire through which it
moves after averaging over their positions. In the
configurational average the wire behaves like a homo-

)(
V(z)

r++

FIG. 1. Model of the double-barrier structure. The carrier
propagation in an otherwise homogeneous wire (along the z
axis) of the finite mean free path 1 is affected by the presence of
two potential barriers [ V(z) ] located at points ka. The barriers
are characterized by reflection amplitudes r and transmission
amplitudes t and define a well of width 2a.
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geneous optical medium where l describes the loss of the
coherent wave field. '

If we take now into account the double barrier, we
have to distinguish between three regimes. First, when
the distance between the barriers is small compared with
the MFP, 2a « I, we have coherent resonant tunneling.
In this case the extra resistance arising from the obstacle
is given by the Landauer formula"

2MR
e T

(2)

where T=1—R is the transmission probability for car-
riers to traverse both barriers. T is taken at the Fermi
energy. Second, as the well width increases, 2a =I, in-
coherence gains significance. A carrier which traverses
one of the barriers loses now, with non-negligible proba-
bility, its phase memory before escaping from the well,
due to the interaction with the disordered background
scatterers. Nevertheless, the carriers can execute many
oscillations in the well before they scatter incoherently
and, hence, the resistance comprises detailed information
on the particular configuration of the perturbed wire.
Accordingly, the additional resistance is determined by a
complicated combination of both background and barrier
parameters. The formula for that sequential tunneling
will be given in Sec. V. The third case, 2a ))l, is again
rather simple. During well traversal, each carrier under-
goes phase memory loss and reaches the next barrier with
a phase uncorrelated to that of the incident particle. If
the phase randomization is complete, the extra resistance
can be written as

2M R R

r r+ +8+. (3)

Here W~ is the sum of the resistances due to the individu-
al scatterers, %+, where %~ are given by the Landauer
formula and T+ = 1 —R + refer to the transmission
through one barrier only.

The aim of this paper is to present a methodically new
approach which describes the continuous transition from
completely coherent tunneling through the double-
barrier structure, formula (2), to the completely in-
coherent tunneling, formula (3). The transport regime is
governed by the relation between MFP and well width.
We can influence the ratio l /2a either by a change of the
distance, i.e., the sample design, or, alternatively, by a
change of l. As is well known, the MFP depends on the
carrier energy, which is controlled by the Fermi energy,
i.e., the gate voltage in practice, and the temperature as
well. In spite of some oversimplifications, our model, in
comparison with previous attempts to incorporate
phase-randomizing processes, thus has the advantage
that the "incoherence measure, " I/2a, can be related
straightforwardly to properties of the real physical sys-
tem.

We solve the problem defined above with the superpo-
sition method. This formalism rests on a simple and, go-
ing back to its origin, old idea the wave field and the
corresponding density matrix, too, can be constructed by
the superposition of waves emerging from all scatterers

belonging to a given system. We have shown ' ' that
the superposition method, also in its lowest approxima-
tion, is well suited to treat the dc transport in problems
with inhomogeneities or spatial restrictions. The main
assumption of the superposition method as applied in the
next section is A,F « l, i.e., the MFP in the wire is large
compared to the Fermi wavelength. We remark that
Datta' derived recently a kinetic equation for steady-
state quantum transport which is similar to the superpo-
sition formula. In generalization of our framework, how-
ever, he considers from the very beginning elastic and in-
elastic phase-breaking background scattering. Therefore
we believe that our results remain valid if we use I as an
effective parameter determined by both processes. Owing
to this phenomenological interpretation, I is influenced by
temperature effects, too.

Within the superposition method we handle only an
elastic, time-independent scattering problem of nonin-
teracting carriers. This aspect can be considered, up to a
certain point, of course, as an advantage. It is worth not-
ing that the influence of the electric field on the double-
barrier structure' and the complicated effect due to the
space-charge pileup (taking place because of the accumu-
lation of electrons within the well) can be included in our
model by an appropriate (self-consistent) calculation of
the single-barrier reflection and transmission amplitudes,
r and t (Fig. l), respectively. Time-dependent feedback
processes, ' however, are beyond our scope.

The superposition method can be applied to the
diffusion case with a given carrier-density gradient or to
the mobility case with a driving force. The diffusion
case is mathematically much simpler than the force case
and therefore we choose it to start with. This decision is
only a formal matter because it is well known how to go
from diffusivity to conductivity via the Einstein
equivalence.

Our paper is organized in the following way. In Sec. II
we outline briefly the basic formulas of the superposition
method and give the Green functions. In Secs. III and IV
we construct, in a two-step procedure, the solution in the
diffusion picture. In Sec. V the result is transformed into
the force picture, i.e., the density pileup arising from the
barriers passes into a voltage drop and yields the extra
resistance, and we discuss some limiting forms. The den-
sity of states in the well as a function of the Fermi energy
is considered in Sec. VI, in which the role of incoherence
is also indicated. Last, we give a short summary in Sec.
VII.

II. SUPERPOSITION METHOD
AND GREEN FUNCTIONS

The stationary diffusion current is driven by a carrier-
density gradient that approaches its unperturbed value
far from the double barrier in a homogeneous wire,
gradp=const. Then, according to Lenk, the current-
induced carrier redistribution due to the obstacles, 5p,
obeys, in the same approximation as in the mentioned pa-
per, an integral equation
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I k
5p(z ) =p;„d(z )+ f dz'~ G(z, z' }~

5p(z') .
W

(4)

6 is the one-particle Green function

[ii /Bz +k —(2m/R ) V(z)]6(z,z')= —5(z —z'),
where k=k'+ik" denotes the medium wave number.
Its imaginary part k"=(2l )

' follows from the presence
of background scatterers and is responsible for the at-
tenuation of the coherent wave field. ' In Eq. (5) the po-
tential, V(z) (Fig. 1},describes the barriers disturbing the
propagation process. For convenience, G =G +G~ is
decomposed into an unperturbed wire term ( V—:0),
G (z,z')=(i/2k)exp(ik~z —z'~), and a scattering part
G„.

The scattering of carriers incident at a barrier gives
rise to a current-induced coherent density change p;„d
which reads

Pind P i +P2'

pi(z) =4k' grad p f dz'Im 6;,(z,z'), 6~(z,z')
00 Bz

(6a}

p2(z)=i2k' grad p f dz'6„(z,z'), 6,', (z,z') . (6b)
00 z'

Since pjgd is subject to a multiple scattering process in the
wire which destroys phase relations, the coherent density
is attenuated and localized within a few MFP around the
barriers. Corresponding to Eq. (4), p;„d acts as an initial
distribution of a transport process to follow. Asymptoti-
cally, this is classical diffusion. We emphasize, however,
that only the pure-wire term ~6 ~

in the integral on the
I

responsible for the long-range behavior of the diffusive
solution 5p(z}. Nevertheless, the integrand comprises
two further contributions with 6 and

~
6 ~, respective-

ly. Thus a defect acts twofold: it yields a coherent densi-
ty perturbation and affects the following diffusion pro-
cess.

Supposing that the width of the barriers is small com-
pared to the MFP, we do not use the potential V(z) in
Eq. (5) directly, but characterize the barriers as usual by
re6ection and transmission amplitudes, r and t, defined in
accordance with Fig. 1. These amplitudes are con-
veniently expressed in the form

t+=T+~ exp(iy+),

r++ =iR+~ exp[i( p+i+r+ }],
r +=iR'~ exp[i(p +~ )],
r+ =iR '+~ exp[i(ip+ r+)],—

(8)

r =iR '~ exp[i(y r}]-,
where, for example, for the right barrier, T+ = ~t+ ~

and

R+ = ~r++ ~

= ~r+ ~
are the transmission and reflection

coefficient, respectively; 9i+ is the phase accumulated
during barrier transversal; q++~+ is the phase change
associated with re6ection for carriers incident from the
right-hand side; and y+ —~+ is the phase change due to
reflection of carriers from the left-hand side (lhs). Let us
now apply Eqs. (8) to find 6 outside the barriers. For
brevity we do not present this calculation but only give
the final result,

right-hand side (rhs} of (4) is due to the diff'usion pole in a
q-space representation

I k
lim ~6 ~

(q)=1,

(r e 2'"'+t2 r e2'"'Z ')6 (z+z'), z' & —a

6 (z,z')= (t r+ e '"'Z ')G (z+z')+(t Z ' —1)6 (z —z'), —a &z'&a

(t t+Z ' 1)6 (z —z')—, z'&a.
(9)

/=4k'a+y+ —~++ip +v (10)

The phase accumulated by traversing the piece of wire
between the barriers is

Equations (9) are valid in the domain z & —a. Ob-
viously, the denominator Z =1—r + r+ e ' '=—1

+(R R+)'~ e'~ '~' sums up the coherent contribu-
tions for one or more full revolutions in the well before
losing phase memory. The phase increment associated
with a revolution reads

2ak'=2a(2mE)'~2/R,

where E is the energy of the carriers.
To get solutions for z & a we have to interchange all in-

dices and to transfer accordingly the domains of z' in (9).
As far as we are interested in the density pileup it is
sufficient to consider Eq. (4) on the lhs (z & —a) and rhs
(z &a) of the double barrier (see below). Both intervals
are described by the set of Green functions (9) and its
counterpart. On the other hand, the Green function in
the remaining region, —a &z,z'&a,

6 (Z Z } [ e2ika(e&kz +r 2ika ikz') ikz+r e2—ika(e ikz'+r e2ikaeik—z }e
—ikz]

2kz +- +— —+ (12)
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yields the density of states in the well as discussed in Sec.
VI.

III. INDUCED DENSII Y

our ansatz and the induced density (13) into (4) yields
after a straightforward calculation

kl gradpR„&+ —,'PS„& + —,'a[1+exp( —2a Il ) ](1—R„&)

To evaluate explicitly the induced density (6} we
neglect the regions of the barriers in the integrals over z'.
Remember that their widths should be small on the I
scale. This approximation allows us to use only the
Green functions (9) defined outside the scatterers. From
Eqs. (6) we obtain for ~z

~
& a

p;„z(z)=sgn(z )1 gradpR& „exp( —~z+a ~/1 )

=0 z& —a, (16)

where we have suppressed as in (13) unimportant oscilla-
tory terms. Note that the undamped ansatz term ka on
the lhs of (4) is canceled by an equivalent one originating
from the pure-wire contribution ~G ~

in the integrand
on the rhs. From Eqs. (16) we derive the total density

where

z( —a
for ' z)a, (13)

Sp(z)=sgn(z)l gradp[T, „'—2/(1+e ' ')], ~z~ &a,
(17a}

5p =2l gradp(R& —R, ) /[S&(1 —R, )+S„(1—R& )],
R~ „=1 —T~ [1—R ~ exp( —2a /1 ) ]I~Z ~

z

=1—Tp(1 —e ' )/[Z[ —T T+e ' '/[Z[ (14)

is the coherent reflection coefBcient for carriers incident
at the double barrier from the lhs (rhs). It is convincing
that 1 —R&„ is determined by two processes, namely,
transmission through one obstacle followed by incoherent
scattering before reaching the next one [second term in
the last line of (14)], and coherent transmission through
the double barrier,

)z )
&a, (17b)

where coefficients are de6ned by

S& „=[ 1 —exp( —2a /l ) ]T+ [1+R +exp( —2a /1 ) ]/ ~

Z
~

and

' "
[S,(1—R„)+S„(1—R, )]

T, =T T+exp( —2a /1 ) /~ Z
~

(15)
X (S(+S„) (19)

In the limiting cases a &)l, R, &

—+1—T+=R+, and
a «L,R, &~1—T T+I~Z~, the induced density (13)
reduces to the simpler result for one obstacle, where in
the latter case the scatterer consists of the two consecu-
tive barriers.

According to (13} there is, related to the diffusion
current ——gradp, a density pileup in front of the double
barrier and a de6ciency behind it. This agrees with the
concept one has in mind if a current is hindered by an
obstacle. We mention, however, that p;„d(z) is in general
not an antisymmetric function of z and, therefore, does
not form a coherent density dipole, cf. the behavior of the
total density change 5p (Sec. IV}. Finally, we point to the
fact that besides the smooth term given in (13) there are
oscillatory interference terms. Their very existence is a
consequence of our nonclassical procedure. As discussed
in Refs. 9 and 14, they are irrelevant for the solution of
the diffusion process and, hence, can be omitted here.

IV. TOTAL DENSITY

Let us first consider these relations and then return to
(17}. S& „can be viewed as probability for a carrier to es-
cape from the well through the left (right) barrier. Owing
to the prefactor [1—exp( —2a/I )] which determines the
amount of particles suffering phase breaking in the piece
of wire between both barriers, S&, denotes an incoherent
transmission coefBcient. Consequently, only the fraction
S&„l(S&+S,} of carriers moving initially in the well
leaves the double barrier to the left (right}. Since the pre-
factor mentioned does not appear in the quotient this
probability gives the total escape rate. In the light of that
interpretation it seems to be reasonable to call T„, from
Eq. (19) the total transmission probability of both bar-
riers, including coherent and incoherent transversing pro-
cesses as well. Indeed, transmission through the sample
from the right to the left, for instance, should be associat-
ed with the term (1—R„) multiplied by the factor we
have just discussed. This picture becomes more convinc-
ing when we transform T„, into

(20)

The integral equation (4) can be easily satisfied by keep-
ing in mind that the corresponding one-dimensional
problem of a single obstacle (located at point z=0)
can be solved by a simple dipole distribution
5p(z ) =a sgn(z), a =const. Now the ansatz 5p(z )
=a sgn(z) for ~z ( & a and 5p=P within the well ( (z ~

& a),
a,P= const, proves to be correct. The unknown parame-
ters, a and P, can be obtained from two independent
equations which may be chosen to be Eq. (4) in the
domains z & —a and z )a for simplicity. Substitution of

T;, =SOS„I(Si+S„) (21)

is the transmission probability for carriers which have
suffered phase-breaking events. It is self-evident that the
coherent coefficient, T, from Eq. (15), cannot be evalu-
ated as if no incoherent scattering takes place within the
well, since it is also influenced by the presence of these

where T„from Eq. (15), is the probability for a carrier to
transverse the double barrier coherently and
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processes. Equations in a similar sense as (20) and espe-
cially formula (21) were originally proposed by
Buttiker. ' Interestingly, Biittiker starts from the Lan-
dauer approach' *" and models the phase-randomizing
agent by a reservoir.

The density change (17) appears in response to the dou-
ble barrier and occurs in two steps at +a. It is superim-
posed on the wire density gradient and, therefore, associ-
ated with the extra resistance (cf. Sec. V) due to the bar-
riers. The piled-up density inside the well (17b) reaches a
value between those of the lhs and rhs (17a); in particular
5p=O holds for equal scatterers, R =R+. Guided by
our analysis we see the long-range change 5p as a result
of diffusive propagation and recombination of excess and
deficit carriers generating initially the localized coherent
density. This picture is not new. Really, it was intro-
duced by Landauer more than 30 years ago. ' In his
well-known 1957 paper, he pointed out that the transport
field arising from a scatterer is a dipole field called residu-
al resistivity dipole. And, in fact, the total density 5p(z)
outside the well (17a) is an antisymmetric function of z,
i.e., a dipole distribution, in difference to the local quanti-

ty p;„q(z) (13).

V. EXTRA RESISTANCE

At the beginning of this section, we transcribe our re-
sult to the more familiar situation where the current is
driven by a constant electric field. In a charge-
compensating background of (on the average) constant
density the long-range diffusion dipole (17) is reflected by
a voltage drop established within a microscopic screening
length. In particular, if we are interested in the overall
drop following from the scatterers, the density difference
between both sides of the double barrier [Eq. (17a)]
counts. Solution (17) gives the density change on each
energy shell and, generally, voltage drop, resistance, etc.
are related to the sum of all these contributions weighted
by the derivation of the Fermi function and the density of
states. This procedure is outlined in Ref. 9. Here we as-
sume a degenerate electron gas where the spread kT is
small compared to the width of the resonances. With re-
gard to the experimental situation we note, however, that
this is only for the sake of simplicity and the general case
is not excluded. Guided by Ref. 9 we deduce for the ex-
tra resistance due to the barriers (see the Appendix)

[ T,„'—2/( 1+e '/') ]e2
(22)

where T„, is taken at the Fermi energy. Equation (22) as
well as Eqs. (1)—(3) are valid for a single electron, i.e., the
factor for spin degeneracy is omitted everywhere or, for
example, the Coulomb blockage' prevents the double oc-
cupation of a state.

In Fig. 2 the additional resistance due to the double
barrier, Az, from Eq. (22), is shown as function of l (in
units of the width 2a). The upper curve shows the rnax-
imum resistance (off-resonant transmission) and the lower
curve shows the minimum resistance (peak transmission).
The condition for resonance of the transmission probabil-
ity T„, from Eq. (19) is ~Z~ —+min [see Eq. (9)] and thus

/(h/e )

001 01
1/2a

10 100

P=(2m+1)~ [Eq. (10)], where m is an integer. This ex-
pression determines the phase [Eq. (11)] accumulated at
resonance and the corresponding resonant energy E,. On
the other hand, the transmission is minimal or off-
resonant for /=2m~. Generally, the upper and the
lower curve give the amplitude of the resistance oscilla-
tions with varying energy for each ratio 1/2a.

For l »a, when the transport through the barriers is
coherent, our result (22) reduces to the Landauer formula
(2) given in the Introduction. We find in this limit T;, =0
(21) and T= Tto, = T, [Eqs. (20) and (15)]. The validity of
the Landauer formula for an obstacle in a wire was
confirmed within the framework of the superposition
method in Ref. 9. With decreasing MFP a small number
of carriers is scattered incoherently during well traversal
and thus we are in the crossover region from coherent to
sequential tunneling. Figure 2 shows that an increasing
number of sequential processes (decreasing I) leads to an
approach of the maximum resistance and the minimum
resistance caused both by a rise in the minimum
transmission probability and by a decrease in the max-
imum transmission probability. Incoherent processes
lead therefore to lower peak values in the transmission,
but raise the off-resonant transmission. We emphasize,
however, that this behavior of Az is only of importance
if T+ «1, i.e., for example, particles are incident upon
two consecutive barriers of height much greater than
their energy E. Otherwise the resistance of the wire [see
Eq. (1)] would contribute significantly to the total resis-
tance. To study the crossover from coherent resonant
tunneling to sequential tunneling in the case T+ « 1 it is
possible to apply the Breit-Wigner scattering formalism.
Detailed discussions were given by Stone and Lee and

FIG. 2. Resistance of a double-barrier structure for off-

resonant and resonant transmission as a function of the ratio of
mean free path to well width, l/2a. The two barriers forming
the well have transmission probability T =0.7 and T+ =0.6.
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Buttiker. Therefore, the representation of the analogous
results in our model can be omitted.

For 2a » I, i.e., exp( —2a/1} close to 0, only small
corrections remain from the completely incoherent
transmission. These coherent corrections are due to a
tiny fraction of carriers that can execute one or more full
revolutions in the well before losing phase memory. The
correction term to the incoherent result (3) depends
therefore on the phase (10) accumulated during well
traversal and is sensitive to the geometrical arrangement
of the barriers. Equation (22}yields in the case where the
carriers can undergo at most one complete revolution be-
fore leaving the well [by expanding Eq. (22) to first order
in exp( —2a /1 )]

posing that the well is wide compared to the Fermi wave-
length to render the averaging procedure valid, Eq. (24)
yields

n(E)/n~(E)=(1 —s }/(I+2s cosP+s ), (26}

with s=+R R+exp( —2a/I). Nevertheless there are
oscillatory density terms. These terms are even dominant
for small barriers, R+ «1, and 2a »1. The reduced
DOS (26} in the resonant well is shown as function of
E E, fo—r three ratios 1/2a in Fig. 3. Equations (10) and
(11) are used to obtain the energy dependence. Here the
energy is measured in units of an attempt-to-escape fre-
quency,

2mB R
B 2 T

R+ T +T++ +2+R R+ f=A'k„/4am = (2a ) 'QE„/2m (27)

2Q
Xexp — cosP

I
(23)

The last formula is valid independent of the magnitude of
the transmission probabilities T+ and confirms clearly
the resonance condition given above. If the Fermi energy
is such that P=(2m+1)n, we have maximum transmis-
sion, and for /=2m' we have minimal transmission.
For 2a »1, Eq. (23} gives exactly the resistance (3) for
completely incoherent transmission. In this limit every
carrier traversing the well is scattered incoherently, the
coherent transmission probability T, [Eq. (15)] vanishes
and SI „=T+. Hence, the total transmission probability
(20) reads (T +T+') '. In the case of strong in-
coherent scattering the resistance contains no detailed in-
formation on the separation of the barriers but is the sum
of the individual resistances. In fact, the density pileup
within the well (17b) reduces then to 5p=l grad p(R /
T —R+/T+) so that the density difference between
both sides of each obstacle obeys the Landauer formula
separately as indicated by the rhs of (3).

14
n(E)/n (E)

12

I/2a = 20

10

I/2a = 6

where k, is the wave number of a carrier in the well at
the resonant energy. Obviously, as the number of in-
coherent processes increases (1/2a decreases), the DOS in
the well becomes less sharply peaked at the resonance en-
ergy and broadens. Furthermore the minimum resistance

VI. DENSITY OF STATES

Besides the transport process the density of states in
the well, n, depends on the degree of sequential tunneling
and its discussion illustrates the efFect of incoherent
scattering, too. The density of states (DOS} is given by
the imaginary part of the corresponding Green function,
namely,

n(z, E)=(2m/M )ImG(z, z} . (24)

According to our decomposition of G [see Eq. (5)], the
DOS comprises an unperturbed term due to the wire,

n (E)=(2m/mA' )ImG (z,z)

0
-2

(E-E,)Ihf
=m /mA k'=(mfi) '&m /2E (25)

where we have suppressed the small imaginary part of k.
If we are not interested in density variations on the scale
of a Fermi wavelength it is suScient to use a DOS which
has been averaged over a small z volume several times
larger than the scale set by the Fermi wavelength. Sup-

FIG. 3. Reduced density of states in the resonant well for
three different ratios of the mean free path I to the well width
2a, i.e., for different degrees of incoherent scattering, as a func-
tion of energy. E, is the resonant energy and f is the well fre-
quency; n (E) is the density of states in the homogeneous wire.
The refiection coefficients are R =R+ =0.9.
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I,= Af l—n(R R+),

and an incoherent contribution,

(28a)

at P=(2m+1)m coincides with an enhanced DOS and
the minimal transmission at $=2mvr is accompanied by
a reduced DOS.

In the crossover region from coherent to sequential
tunneling it is convenient to represent the phase randomi-
zation by a small imaginary part of the energy, I /2.
Thus, if we allow for complex P, the denominator in (26)
vanishes at the energy E=E„—iI /2. The total decay
width I =I,+I;, comprises a coherent width,

more work has to be done to attain a realistic description
of the experiments.

In concluding this paper, we remark that the superpo-
sition method applied proves to be powerful to treat
problems with localized perturbations. Particularly, in
the extension of well-known investigations on double-
barrier structures, we have given a detailed analysis of
the evolving residual-resistivity dipole surrounding the
obstacles [see Eqs. (17)]. Our calculations con6rm
Landauer's idea' that the formation of the residual-
resistivity dipole is the microscopic mechanism which
yields the voltage drop across a scatterer or barrier.

I;,=Af4a/l . (28b)

Expanding Eq. (26) near resonance yields for the number
of states in the well per unit energy

dN 1 I /2=2an(E) =-
dE n (E E, )2+(—I /2)

(29)

We emphasize that this Lorentzian-shaped DOS is
determined by the total width, I . An expression similar
to (29) was derived in Ref. 7.
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APPENDIX: TRANSITION FROM THE DIFFUSION
TO THE FORCE CASE

In the ensemble of all noninteracting carriers, moving
with different energies, the density of the diffusion prob-
lem reads in a homogeneous wire

VII. SUMMARY p(z)= ImG„(z, z)f(E —
lu, (z)),2m

(Al)
We have dealt with resonant tunneling through a

double-barrier structure. The barriers are embedded in a
resistive wire in which phase randomizing takes place.
The resistance of the wire and its phase-breaking proper-
ty are expressed in our model by a single phenomenologi-
cal parameter, the mean free path. We have discussed
the limiting regimes of completely coherent tunneling (2)
and completely incoherent tunneling (3) and have shown
that our result (22) describes the continuous transition be-
tween the two as a function of well width and MFP. In
contrast to a customary approach ' we considered the
double barrier and the wire in a more convincing model
abandoning perfect leads and ideal reservoirs; supposi-
tions on the specific nature of the contact between the
leads and the reservoirs or barriers, respectively, are un-

necessary. That we are able to study the double barrier
in the three different transport regimes without extensive
assumptions is in itself an important result of our
method.

Figure 2 shows that, for off-resonant transmission, in-
coherent scattering increases the transport through the
barriers but destroys the resonant transmission. Thus,
not only coherent resonant tunneling but also incoherent
scattering can give rise to structure in the conductance.
With decreasing MFP, i.e., normally with rising tempera-
ture, the amplitude of the conductance oscillations (or
resistance oscillations according to Fig. 2, respectively)
decreases. This behavior agrees qualitatively with the ex-
perimental data on narrow channels. Nevertheless,

gradp=n (E) df dp
dz

where f is the one-particle distribution function and p(z)
the varying chemical potential. According to the Ein-
stein equivalence, —dp/dz is proportional to a driving
force F, i.e., the overall density gradient can be replaced
by a constant field of force. The current has the value

I=Ff dE — n (E)D(E)d
dE

(A2)

Ap—=5p(z )a ) —5p(z (a )

=2FIdE — n ( E )1(E ) [ T,,t' —2/( 1+e ' ') ]
d

(A3)

with D(E)=8k'l(E)/rn as the ld diffusivity. Now we
use the fact that the Einstein equivalence holds not only
for the current itself but for any current-proportional
quantity. Especially in the force case, a definite asymp-
totic density difference between both sides of the double
barrier corresponds to the distribution (17a) we have
found in the diffusion picture. With the transcription
rule (Al) we get
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for an ensemble of noninteracting particles. For interact-
ing carriers, Ap must be compensated by a screening pro-
cess. Indeed, the electrostatic potential difference hU
created by the final, screened dipole distribution yields
such a shift in the band bottoms on both sides that the re-
sulting carrier densities are equalized. These quantities
fulfill therefore the relation

AU
eI

e'f dE— n (E)D(E)f dEd
dE

n (E)d

2fdE — n (E )l(E )[ T,„'—2/( 1+e 'i') ]

hp=e hU f dE n (E).

Now (A2) —(A4) determine the resistance,

(A4) (A5)

where the spin factor has been omitted everywhere. For
a degenerate gas with a sharp Fermi energy (A5) reduces
to the simpler result (22).
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