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We compute zero-temperature ground-state energies, one- and two-body densities, collective-
excitation spectra, transition densities, and static and dynamic structure functions of He clusters

up to a cluster size of N=112 particles. The ground-state properties are computed using a second-
order diffusion Monte Carlo algorithm with 3astrow and triplet trial functions used for importance
sampling, Excitation energies, transition densities, and dynamic structure functions are obtained
by solving a generalized Feynman eigenvalue equation. We determine the systematic variation of
collective energies with cluster size, demonstrate the existence of persistent oscillations in transi-
tion densities, evaluate the strength of collective modes quantitatively, and show how the cluster
continuum excitation spectrum can be directly mapped by the dynamic structure function. By corn-

parison with the full static structure function, the collective quadrupole state is found to exhaust
approximately 25% of the total strength.

I. INTRODUCTION

The study of finite He clusters and, more gener-
ally, quantum liquids in confined geometries, is currently
an active area of experimental and theoretical re-
search. Helium clusters are unique in that they are the
only known bosonic, but fully quantum, finite systems.
Because of the simplicity of the He- He potential, he-
lium clusters are excellent laboratories for the study of
finite quantum many-particle systems. In this case, un-
like t,hat of nuclei, it is possible to calculate intrinsic
many-body eA'ects microscopically, unhampered by the
complexity of the interaction.

Theoretical approaches for the study of quantum
many-particle systems naturally begin with the ground-
state structure and its energetics. However, quantities
that are experimentally more readily accessible are exci-
tation energies and the dynamic structure function. Re-
cent interest in the study of collective excitations
in finite He clusters have been primarily motivated by
the need to understand the finite-size dependence of
superfluidity ' and the relation between the bulk liquid
compressibility and giant resonance energies. This
has led to the study of vibrational and rotational
collective excitations. Experimentally, the most accessi-
ble quantity is the dynamic structure function, which
is directly measured by neutron and x-ray scattering in
the case of bulk liquid helium and by electron scattering
in the case of finite nuclei. The scattering of neutrons
ofI' He clusters would provide a unique opportunity of
directly confronting experimental data with precise first-
principles calculations. Finally, since the properties of
the excitation spectra contain information on details of

the ground-state structure, the theoretical study of ex-
cited states also provides valuable feedback on the ade-
quacy of ground-state theories.

In this work, we describe our eKorts to understand the
zero-temperature ground-state structure of 4He clusters
by Monte Carlo methods. More importantly, we show
that by directly solving the generalized Feynman eigen-
value equation with inputs of one- and two-body ground-
state densities, we not only determine the optimal exci-
tation functions and collective excitation energies, but
simultaneously obtain a parameter-free dynamic struc-
ture function. Further study of sum rules then allows
us to determine precisely the collective strength of each
state.

The paper is organized as follows: In Sec. II, we dis-
cuss existing methods for determining the ground-state
structure of 4He clusters. In order to make our paper as
complete as possible, we have tried to summarize each
method in some detail. In Sec. III, we present ground-
state results based on our own variational Monte Carlo
(VMC) calculations using Jastrow and triplet trial func-
tions and diffusion Monte Carlo (DMC) calculations us-

ing a second-order algorithm. Comparisons are made
with other calculations. In Sec. IV, collective excita-
tions are determined via a generalized Feynman eigen-
value equation. Significant diAerences in excitation en-
ergies are observed between calculations, which employ
only variational ground-state densities, or density func-
tionals, and those that use exact ground-state densities.
The systematic trend of collective energies with cluster
size is studied and oscillations in the transition densi-
ties are demonstrated. Section V presents results on the
dynamic structure function, from which one can readily
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identify the cluster excitation spectrum in the contin-
uum. Section VI discusses sum rules and uses them to
ascertain, quantitatively, the strength of each collective
state. Section VII contains our summary and conclu-
sions.

II. CROUND-STATE METHODS

The ground-state structure of quantum liquid drops
can be calculated —in order of increasing degree of sophis-
tication and computational effort —by non-local-density-
functional theory, variational Monte Carlo methods, and
exact solutions of the many-particle Schrodinger equa-
tion. In order to discuss our results in the wider context
of what has been done up to now on helium droplets,
we will begin with a brief discussion of each available
theoretical method for ground-state calculations.

A popular method for the description of nonuniform
quantum systems is the density-functional theory. In-
deed, for the specific problem at hand, one of the formal
problems of density-functional theory —the question of
"v representability" —does not occur. In principle, the
ground state energy can be written as a functional of the
ground state density pi(r)

Eo = Eo[p (r)] (2.1)

which is, in turn, obtained by minimizing the energy
through the extremum principle:

bE'0

bpi(r)
(2 2)

The concrete application of density-functional theory
requires the specification of E[pi(r)] in a neighborhood
reasonably close to the true ground-state density. Since
this information is normally not available, one must re-
sort to approximations. Most common is the local-density
approximation (LDA). In this approximation, one first
writes the total energy as the sum of a kinetic energy
T[pi(r)] p/us a correlation energy E,[pi(r)]:

Eo[pi(r)] = T[pi(r)] + E,[pi(r)] . (2 3)

h
T[pi(r)] =

2

2
dsr 7'+pi(r) (2.4)

The correlation energy is the volume integral of the cor-
relation energy density e, [p](r),

E.[ i(r)] = e.[pi](r)d" (2.5)

Then, one approximates the correlation-energy density
by the correlation-energy density e, (p) of the homoge
neous phase

&.[ il(i) = «(pi(r)) (2.6)

which is assumed to be a known function of the den-

T[pi(r)] is the kinetic energy of a weakly interacting
model system with the density pi(r); i.e. , for the case
of a Bose system under consideration here, we have sim-
ply

sity. More complicated versions of the density-functional
theory —non-local-density approximation (NLDA) —may
also include gradient corrections:

e [p](r) = e (p (r) 7» (r)) . (2 7)

e.(r) = -h[pi(r)]'+ -c[pi(r)]'+'+ dl 7pi(r)l' . (2 8)

The parameters b, c, and p are adjusted such that the
ground-state energy, density, and compressibility of the
homogeneous phase are reproduced. The coefBcient d
is fixed to account for the experimental surface energy.
The inclusion of gradient corrections to the local density
functional is quite important. Without such corrections
one obtains a surface energy that falls short of the ex-
perimental value of 0.274 KA z by about a factor of
3. Adding gradient corrections introduces another ad-
justable parameter, which is used to fit the surface en-

ergy. The surface width of the droplets is then also pre-
dicted correctly, which lends credibility to the approach.
Using the density functional (2.8), it is straightforward to
calculate the ground-state structure of a helium droplet.

Microscopic calculations start from a Hamiltonian

h ).&.'+ ):o(lr* —ril) (2.9)

where one normally uses the potential derived by Aziz et
al. for the two-body interaction. A popular approach
is to start with a variational ansatz for the ground-state
wave function,

Of course, one might think of even more complicated non-
local dependences of the energy functional on the density,
including the exact ground-state theory. To be precise,
we will refer to NLDA (LDA) as an energy functional of
the form (2.5) with the specific choice (2.6) or ('2.7).

The application of the (non-)local-density-functional
theory for nonuniform helium liquids encounters both
conceptual and physical difficulties: Conceptually, the
NLDA (LDA) assumes that the uniform phase of the
system under consideration exists at all densities under
consideration. This is true for electronic systems but
not for the helium liquids whose uniform phase exists
only to roughly 60Fo of the equilibrium density. is Any
local- or non-local-density approximation for the helium
liquids therefore implies an extrapolation of the equa-
tion of state into an unphysical density regime. Physi-
cally, the NLDA (LDA) may be thought of as a theory
with an effective, density-dependent zero-range interac-
tion. Hence, one can not expect to treat any effect that
can be attributed to the existence of a substantial hard
core.

Of course, these concerns do not a priori preclude that
one might obtain some physically reasonable predictions
for nonuniform helium liquids from a (non-)local-density-
functional theory, and the simplicity of the concept makes
the approach quite appealing. In an attempt to use
density-functional t,heory for the calculation of nonuni-
form helium liquids, Stringari and Treineri7 suggested a
density functional of the form
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1
pp(rq, . . . , r~) = exp — ) uz(ra) + ).u2(ri rj)

2

T = (E ~)/(H ) (2.11)

) us(r;, r, , rp)
i&j(k

(2.10)

Roughly speaking, the one-body function uq (r) im-

presses the nonuniform structure, the two-body function
uq(r, , rt) deals with the short-ranged repulsion, and the
three-body function us(r, , r&. , r~) describes triplet corre-
lations. Higher-order correlation functions are, in princi-
ple, possible but have not been examined and are most
likely negligible. In variational Monte Carlo calculations,
one normally employs analytic forms for the correlation
functions, which contain a number of free variational pa-
rameters. These parameters are fixed by minimizing the
ground-state energy. However, when the number of vari-

ational parameters proliferates, their optimization is a
highly nontrivial and tedious process. (The method of
correlated reweighting2 may help to reduce this effort
somewhat. ) Moreover, when triplet correlations are in-

cluded, the required computational effort is compara-
ble to, and may even exceed, that of solving for t,he
ground state exactly. Thus there is a point of dimin-

ishing return in pursuing variational Monte Carlo calcu-
lations. The other danger of this procedure is that an
"educated guess, " or limited parametrization of the cor-
relation function, may favor or impose physical orders
inappropriate to the system, and one may get out no
more than what one has put into the calculation. Due
to the stationary character of the lowest eigenvalue, this
can still be a useful way of determining the ground-state
energy. However, by the same token, good variational
energies say very little about how good the variational
wave function is. This is especially true when the system
has a large number of degrees of freedom. Hence varia-
tional calculations of ground-state densities are normally
less reliable than the calculation of ground-state energy.
We shall return to this important point later on in our
d 1scussrons.

On the most advanced level, the many-particle
Schrodinger equation is solved by the Green s-

function ~ 22 or the diffusion2 s Monte Carlo method.
In principle, ground-state properties can be computed
with an accuracy that is limited only by the amount of
computer time one is willing to invest. In order to prop-
erly appreciate the merits of these methods as well as
their limitations, it is useful for us to summarize some of
their salient features. More details can be found in the
above references.

Monte Carlo methods for solving the many-body
Schrodinger equation can be regarded as a stochastic
means of iterating a transfer matrix T such that for n

sufficiently large, T" converges as T" ~ const x A" ~p)(p ~,

where ~p) is its largest right, eigenstate and A is its largest
eigenvalue. In the case of the Green's-function Monte
Carlo (GFMC) method, T is the resolvent operator

where H = K + V is the many-body Hamiltonian and
E, z are convenient constants. In the case of the DMC
method, T is the evolution or density-matrix operator,

—b, t(H —E) (2.12)

In both cases, the largest right eigenstate of T is the
ground state ~4p) of H with AGFMc ——(E —&)/(Eo-
z) and ADMc = e 't ' ~, from either of which the
ground-state energy E0 can be extracted.

For most applications, the direct iteration of T in the
above forms is impractical due to large statistical fluc-
tuations caused by the rapidly varying interparticle po-
tential. As first shown by Kalos, Levesque, and Verlet,
significant variance reduction can be achieved with im-

portance sampling using a trial function. Importance
sampling can be understood in terms of the transfer ma-
trix as follows: Instead of the original T, one considers
an alternative transfer matrix T "similarily transformed"
by a trial function 4p. For example, in the DMC case,
consider instead

—&t(H —E)C,
-1 —Et(H-E)

pe =e )

where

H = CpHC, = —p +ip a+El.(x)2
0 (2.14)

(@o [O [@o) = 2(@o ~0 ~C'o) —(+'o (O [C'o) . (2.15)

Thus, although the ground-state energy can be exactly
computed by GFMC or DMC methods, an additional
extrapolation error is introduced when computing other
ground-state expectation values. The severity of this er-

ror can be assessed by using different trial functions to
see whether or not one obtains consistent extrapolations.
In cases where the trial function is good or when one is

dealing with operators not very sensitive to details of the

is the transformed Hamiltonian, and G~(x)
'Vk@p(x)/4p(x). The role of the potential is now played
by the local energy EL,(x) = C'o (x)H4p(x), which
is generally a much smoother function than the bare
potential and causes less fiuctuations. In the limit of
4p(x) ~ 4p(x), EI, would reduce to a constant equal to
the exact ground-state energy and produces no Auctua-
tions at all. Furthermore, although (2.14) is no longer
Hermitian, it is apparent that its left and right eigen-
states are, respectively, (4„~4p and 4p ~4„) with un-

changed real eigenvalues E„.Thus with importance sam-

pling, the iteration converges to the product state @p@p.
In GFMC, since the exact resolvent operator is un-

known, it must be sampled by iterating on a simpler,
approximate resolvent. In effect, "a Monte Carlo calcu-
lation within another Monte Carlo calculation" must be
performed. For the DMC method, one can easily sam-

ple an approximate evolution operator directly, which is

exact in the limit of At ~ 0. Second-order algorithms
can significantly reduce this step-size error. In both al-

gorithms the product state 4040 is evolved, but not 40,
To compute the ground-state expectation value of oper-
ators other than the Hamiltonian, a simple perturbative
estimate is usually invoked,
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ground state, this extrapolation error is usually small.
However, this cannot be taken for granted. In particular,
extrapolation errors are the major source of uncertainties
in the computation of ground-state one- and two-body
densities defined by

pi(r) = (@p~ ) &(r; —r, . —r)~@o), (2.16)

pq(r, r') = (@ol) b(r, —r, m —r)b(r& —r, m
—r')leo) .

(2.17)

This, in turn, affects all calculations based on these den-
sities, such as the determination of collective excitation
energies to be described in Sec. III.

(2—4'%%up), this slight discrepancy causes considerable diffi-
culties in extrapolating ground-state densities. This will
be further discussed below. To gauge the adequacy of
the trial function for extrapolating the ground-state ex-
pectation values via Eq. (2.15), we performed another set
of variational calculations with slightly smaller values of
3.2, 3.5, 3.8, and 4.2 A for b, respectively. The results
are shown on the second row. The radii are reduced at
the expense of a slight increase of the energy. We next
incorporate a triplet correlation in a form suggested by
Schmidt et al. ,

~7 which can be derived by suitably sim-

plifying the exact triplet correlation obtained from the
three-body Euler-Lagrange equation:

4ii' —4oexp ——A) Gs Gp+ —A) g (r)r;,

III. GROUND-STATE RESULTS

exp I

—-& (r; —r, )2
(3.1)

where rp m = (1/N) Q,. i r;. We fixed the parameter a
at a = 3.0 A and only adjusted h individually for each
cluster size. For the cited particle numbers, optimal val-
ues for b are roughly 3.3, 3.6, 3.9, and 4.3 A. , respec-
tively. The resulting ground-state properties are shown
in the first row of Table I. The ground-state energy per
particle is within 15% of the GFMC or DMC energy, a
result that is nearly optimal for a Jastrow-type two-body
trial function. Although the percentage difference in the
root-mean-square radius r„, = g(r2) is even smaller

Recent results for the ground-state properties of 48e
clusters of size N = 20, 40, 70, and 112 are summarized
in Table I. We first performed a variational calculation
using the following translationally invariant McMillian-

type two-body trial function with only two variational
parameters,

I' 1
exp

~

(a/r—,,—)s ~2 ' )igj

where

(3.2)

Gs = ) g(rki)rti and g(r) = exp[—(r —r, ) /pJ j .

lpga

(3.3)

The triplet parameters are fixed at A = —0.9, rq ——1.6,
and u = 1.05 for all cluster sizes; these values are roughly
optimal for N = 20. Only the overall size parameter h is
again adjusted for each N. The optimal values for b are
now systematically smaller: h =3.1, 3.3, 3.6, and 3.9 A,
for N=20, 40, 70, 112, respectively. The corresponding
variational energies are within 7—8'%%up of the exact result,
and the rms radii are extremely close to their true val-
ues. Our results are given in the third row of Table I.
The next row gives the VMC results of Pandharipande,
Pieper, and Wiringa using similar triplet correlations.
By fine tuning the pair and triplet correlations (totaling
15 parameters); these authors can further reduce the en-

ergy discrepancy down to 5%. The results of Krishna and

Whaley and their computational efforts are intermediate
between ours and those of Pandharipande, Pieper, and
Wiringa. Because of the complexity of including triplet

TABLE I. Ground-state properties of He clusters as computed by various methods. sp ——Ep/N is the ground-state energy

per particle in degrees K; rp ——(5/3) (r ) N is the unit radius defined from r, in units of A.

VMC-I

VMC-II
VMC(PPW)'
GFMCb
DMC-I

DMC-II
NLDA'

N =20
Ep/N

—1.447(1)
—1.445(2)
—1.522(2)
—1.573(1)
—1.627(3)
—1.65O(3)
—1.654(3)
—1.659(3)
—1.27

Tp

2.76
2.72
2.68
2.77
2.71
2.71
2.68
2.68
3.11

N =40
Ep/N

—2.196(1)
—2.194(1)
—2.344(l)
—2.389(2)
—2.487(3)
—2.525(3)
—2.529(3)
—2.538(4)
—2.18

f'p

2.63
2.60
2.53
2.54
2.57
2.55
2.53
2.53
2.74

N =70
Ep/N

—2.744(1)
—2.736(2)
—2.966(1)
—3.O31(3)
—3.12(4)
—3.188(3)
—3.170(2)
—3.205(4)
—2.93

rp

2.54
2.51
2.46
2.48
2.47
2.44
2.46
2.43
2.57

N = 112
Ep/N

—3.143(2)
—3.134(1)
—3.427(2)
—3.498(5)
—3.60(1)
—3.702(3)
—3.7O5(3)
—3.726(4)
—3.51

Tp

2.49
2.47
2.40
2.43
2.44
2.40
2.39
2.42
2.47

Reference 5.
References 3 and 4.

'Reference 8.
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correlations, the GFMC calculation of Zabolit;zky and
collaborators and our first DMC calculation only use
two-body trial functions for importance sampling. Our
DMC-I calculation uses the corresponding trial function
401, Eq. (3.1). The average generation size for both cal-
culations is 200, but, whereas the GFMC calculation it-
erated about 3500 generations, the DMC-I calculation,
which uses a second-or der algorithm, iter ated 40 000—
60000 generations. The step size used in the DMC-I
calculation ranges from At=0.002 to 0.0005. With the
use of a second-order algorithm, we have checked that
doubling or halving the step size has, within statistical
fluctuations, no discernible eR'ect on the energy. The
two DMC-I entries correspond to two independent cal-
culations using slightly diA'erent values of b as described
earlier. The GFMC and DMC-I calculations are gener-
ally in good agreement; however, the DMC-I energies are
systematically about 2% lower than those of GFMC. To
further examine the source of this discrepancy, as well
as to minimize the extrapolation error in computing the
ground-state densities, we performed another DMC cal-
culation, DMC-II, using the triplet trial function 4101, Eq.
(3.2), as the importance function. In this case, we limited
the number of generation iterated to 10000—20000 and
lowered the target population for N = 70 to 100, but kept
the step sizes identical to those of DMC-I. As can be seen
from Table I, the agreements between DMC-I and DMC-
II results are excellent. Particularly reassuring is the fact
that, despite differences in VMC radii, the extrapolated
DMC radii are very similar. These agreements not only
confirm the convergences of the DMC algorithm, but they
also demonstrate its robustness. The algorithm is capa-
ble of extracting exact ground-state properties from a
rather crude trial function Co.

For completeness and comparison, we show in the last
row of Table I the results of the NLDA calculation by
Stringari and Treiner based on the density functional
(2.8). For larger clusters, both their energies and radii are
in reasonable agreement with GFMC and DMC results.
This is expected, since the density functional of Ref. 17
has been fitted such that it reproduces the bulk binding
energy, compressibility, saturation density, and surface
energy. For small clusters, which are mostly surface, their
theory is, as expected, less satisfactory.

The average of all DMC energies and unit radii
ro (5/3) ~ (r ) ~ —N ~ over the range of cluster size
N=20 —112 can be fitted quite accurately by (z = N i~s)

0.0

—2.0-

—4 0-

—6.0-

—8.0
OO 112 70 40

N on N scale
20

FIG. 1. The ground-state energy per particle as a function
of cluster size. The two lines give the linear and the quadratic
fits. The dashed line indicates the bulk value.

0.03

N=20

0.02-

cluster calculations, heavier clusters must be considered.
However, the fact the one can obtain the bulk energy to
within 5'%%uo from cluster calculations of about 100 particles
is in itself quite satisfactory. (The average of the two
extrapolated values is, interestingly, —7.14 K.)

Figures 2—5 show the VMC and the DMC one-body
densities corresponding to energies quoted in Table I.
Again, despite differences in VMC densities, excellent
agreement is found among the three DMC calculations,
particularly in the outer region of the droplets. While
all VMC densities are generally smooth, DMC densities
generally show persistent oscillations. In particular, the
DMC-I for the N = 70 and 112 densities clearly develop
a "shoulder" near the surface. It cannot be completely
ruled out that these density oscillations are extremely
long-lived metastable states that would eventually disap-
pear if iterations were continued far beyond 60000 gen-
erations. On the other hand, the appearance of a geo-
metric shell structure as a consequence of the hard-core-
like interaction between the particles is entirely plausible.
The dismissal of these density oscillations by mere fiat

and

—= —7.4754 + 21.2729z —14.8586z~

~o —2.179g + 0.626gz + 1.gg35z' .

(3 4)

(3.5)

0.01-

The extrapolated bulk energy from this fit is —7.4754 K,
which is 5% below the experimental value of —7.15 K. It
should be pointed out that the extrapolated bulk energy
is very sensitive to the order of polynomial used. We also
show in Fig. 1 a linear fit that goes through the last two
data points. In this case the extrapolated bulk energy
is —6.80 K, 5%%uo above the experimental value. If one
is to accurately extrapolate the bulk energy from finite

0.08 5.0 10.0 15.0

FIG. 2. The one-body density for a N = 20 helium clus-
ter. The solid line and solid circles are VMC-II and DMC-II
results using triplet trial function 4s' (3.2). The two dashed
lines and open circles and triangles are two VMC-I and DMC-
I results using the two-body trial wave function 4O (3.1).
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0.03

0.02- -~
(t

N=40

0.03

0.02.

0.01- 0.01-

0.0%) 5.0 10.0

()()
15.0

0.0$ 5.0 10.0

( )( )

15.0

FIG. 3. Same as Fig. 2 for N = 40. FIG. 5. Same as Fig. 2 for N = 112.

is therefore equally groundless. Figure 5 clearly shows
that two completely independent DMC-I runs, with dif-

ferent trial functions, yielded similar patterns of oscilla-
tion. A pattern of oscillation like that of the N = 70
case was also evident in the GFMC calculation4 using a
completely different algorithm. Density oscillations also
persisted in our triplet, DMC-II calculations. However,

due to the smaller number of iterations, it is difficult to
decide whether the pattern of oscillation matches the one
of DMC-I. We will come back to the question of density
oscillation when we discuss transition densities.

The density-functional and the VMC calculations give
reasonable densities profile compared with our DMC cal-
culations. However, they are generally smooth and show
no indication of a surface shoulder structure or inte-
rior density oscillations. This is hardly surprising since
any shell structure of the droplets is a hard-core effect,
which is not included in the NDLA. As mentioned ear-
lier, parametrized variational calculations of the ground
state can reflect no more structure than what has orig-
inally been allowed for in the variational wave function;
they therefore have very little to say about these energy-
insensitive density oscillations. We expect, however, that
fully optimized variational calculations of the kind intro-
duced in Ref. 29 would confirm the shell structure of
droplets considered here. In passing, we should point
out that, since the energy difference per particle be-

pz(r) = J d'r& d'rgb(r —~rg —rg()pz(r&, rz) . (3.6)

This function can be obtained with good statistics and
is generally smooth. In comparison with DMC results,
the triplet wave function 4& is clearly superior to the
two-body Jastrow function 41o. The VMC-II calcula-
tion not only gives the correct height for the nearest-
neighbor peak, but it also yields a clear next-nearest-
neighbor "bump" for the case of N = 70 and 112, in
agreement with DMC calculations. Again, despite ob-
vious difFerences in VMC results, excellent agreement is
found between the two DMC calculations. In this case,
the adequacy of (2.15) for extrapolating ground-state ex-
pectation values is amply con6rmed. The pair-distance

1.0,

0.8.

tween the best VMC calculation with no oscillations and
DMC is, at most, 0.2 K, these systematic density oscil-
lations are not expected to be seen in finite temperature
calculations at 0.5 K.

Figure 6 compares our VMC and DMC results for the
pair-distance distribution p2(r) defined by

0.03 0.6-

qd
I

0.02-,

N=70 0.4-

0.2-

0.01-
'3.0 5.0 10.0 15.0 20.0 25.0

0.08 5.0 10.0
r ( )

FIG. 4. Same as Fig. 2 for S = 70.

15.0

FIG. 6. The pair-distance distribution function as defined

by Eq. (3.6) for cluster sizes (from bottom to top) 1V =20, 40,

70, and 112. The solid line and crosses are VMC-II and DMC-

II results using the triplet trial function 4O (3.2). The dashed

line and open circles are VMC-I and DMC-I results using the

Jastrow trial wave function 40 (3.1).
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V'„'p, (r, r')
' ~ v'p ( )v'p (")

Calculations of excitation energies differ in the treatment
of Eq. (4.5): The lowese possible upper bound for the
excitation energy is obtained by minimizing the energy
difFerence ha with respect to the excitation function P(r).
This leads to the eigenvalue equation

d r'Hi(r, r')P(r') = hu d r'S(r, r')P(r'), (4 8)

which is the desired generalization of the I'eynman dis-
persion relation. In the limit of the uniform system,
one recovers from it the ordinary I'eynman spectrum
w(k) = hkz/2mS(k). In contrast to the case of bulk
liquid helium, the lack of experimental information on
the pair distributions for quantum liquid drops precludes
the use of Eq. (4.8) to predict the spectra of collective
excitations from measurements of the structure function.
However, since the pair distribution function can be ob-
tained accurately by an exact solution of the Schrodinger
equation, construction of the excited states is just a sim-
ple matter of solving the eigenvalue problem (4.8).

Previous excited-state calculations by Wiringa, Pieper,
and Pandharipande and Krishna and Whaley did
not use exact ground-state densities nor the optimal ex-
citation function. Instead, Wiringa, Pieper, and Pand-
haripande expanded the excitation function in terms of
parametrized polynomials and Krishna and Whaley ex-
panded in terms of spherical Bessel functions. By ex-
plicitly orthogonalizing these excited states, Krishna and
Whaley were also able to estimate some higher-lying exci-
tation energies. Although the connection of the density-
functional theory of Casas and Stringaris to the Feynman
ansatz is less obvious, we will show later that this theory
can be interpreted as a zero-range effective interaction
theory.

Optimizing the excitation function by exactly solving
the eigenvalue problem (4.8) has the significant advan-

y(r) = ) A(r)pe(r . z), (4 9)

p2(r, r') —pi(r) pi(r') .2l + 1

V'pi(i) pi(r'), 4

(4.10)

The partial wave expansion of the last term on the right-
hand side of Eq. (4.7) is somewhat more complicated.

Recalling the definition of pz (r, r') from (3.7), one has

P2 '(«') = V'p(r) p(r') [~e(r, r') + be, o] (4.11)

The nonlocal term in the one-body operator Hi(r, r') can
then be expanded as

with

2l+ I
V„ipz(r, r') = ) de(r, r')Pe(r r'),

e
4x

(4.12)

tages that one does not need to assume any specific form
of the excitation function (as in Ref. 7), the density pro-
file (as in Ref. 9), or the energy functional of the clus-
ters (as in Refs. 8 and 9). Since the excitation functions
are eigenfunctions of a generalized Hermitian eigenvalue

problem, their orthogonality is guaranteed. In this case,
as we shall see, it is rather staightforward to determine
higher excitation energies within the Feynman ansatz.
Our approach is limited only by (a) the statistical and
extrapolation errors in sampling the exact one- and two-

body ground-state densities, and (b) the adequacy of the
Feynman ansatz, Eqs. (4.1) and (4.2) above.

The eigenvalue problem (4.8) can be decoupled and
solved by expanding the excitation function and the two-

body density in partial waves,

(e-i) 2

e(. ') —. . . , +,„, , (-),I e —i ~ pz (" ") ~+ ~ i e+2 (e+i) (4.13)

Both the left- and the right-hand sides of Eq. (4.8) have eioo exact zero-energy eigenfunctions p(r) = V'pi(r) and

P(r) = c.rvepi (r), where c is an arbitrary constant vector. Neither of these states corresponds to a physical excitation.
This is most easily seen by going back to Eqs. (4.2) and (4.3): The first state is a monopole state corresponding to
a constant correlation operator; it vanishes identically when the ground-state expectation value is subtracted. The
second is a dipole state corresponding to a correlation function f(r) = c r, which describes the translation of the
whole droplet. It also vanishes identically due to the translational invariance of the excitation operator: In this case
F(ri, . . . r~) = Q,. , f(r; —r, ) = 0.

It should be clear that it is important for any numerical calculation to maintain these exact properties of the
eigenvalue problem (4.8). We show in the Appendix that, in order to guarantee both zero eigenvalues in the partial
wave expansion, the sequential relation

d "ip2(r ) pi(r)pi(r )j = pi(r) (4.14)
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must be exactly obeyed by the two-body density, and p2(r, r') must be calculated from a translationally invariant
wave function satisfying

dsr'r. r'pg(r, r') = r2—p(r) . (4.15)

If one or both of these conditions are violated, however slightly, spurious solutions may result. By the nature of Monte
Carlo simulations, these two relations are exactly satisfied independent of statistical and extrapolation errors. Thus,
for the calculation of excited states, any smoothing of the data must be done very cautiously; otherwise it can do
more harm than good.

The center-of-mass correction term in the second line of Eq. (4.7) couples neighboring even and odd multipoles of
the two-body density (2.17), cf. Eq. (4.13). We have found, however, that apart from guaranteeing one exact zero
eigenvalue in the dipole channel, the effect of these higher-order components is extremely small and can be safely
ignored.

Having calculated the excitation function, we obtain finally the (unnormalized) transition density

6pi(r) = J d rg d rrv ) b(r; —r, —r)F(rq, . . . , rw)@~(rq, . . . , rm)

= p, (r)f(r)+ f d r'Qq(r, r') —p, (r)pq(r')]f(r') . (4.16)

The Feynman theory employed here can also be interpreted in terms of a linear-response theory with a local particle-
hole interaction. The density-density response function is given by the usual random-phase approximation (RPA)
relation

y(rq rg'td) = gp(r~rqu) + f d vied r4yp(ri rsvp)v& t (ra rs)z(rc rz w), (4.17)

where go(ri, rq, u) is the response function of a "noninteracting" system defined by the one-body Hamiltonian Hi.

yo(ri, r2, u) = 2y pq(ri)Hi[(hu) —Hi + i(7] +pi(r2) . (4.18)

In Eq. (4.17), the local particle-hole interaction is defined as the second variational derivative of the correlation energy
functional with respect to the density

(4.19)

The decomposition of the total ground-state energy into a kinetic energy of the noninteracting system with density
pi(r), and "correlation energy" E, is, of course, well defined only in theories that are based on perturbation theory
and/or effective interactions. For example, in the density-functional calculations, Casas and Stringari make the
identification

Vp h(ri, rp) = b+ c 2+ — (1+p)p"(ri) ——((7i —V2) b(ri —r2) .
2

(4.20)

This also illustrates our earlier statement that the NLDA can be understood as an effective zero-range theory.
In theories in which the ground state is directly sampled by Monte Carlo methods, the particle-hole interaction no

longer plays a central role. The primary two-body quantity of linear response theory is then the two-body density or
the pair distribution function. Of course, once a relationship between the pair density and the particle-hole interaction
[like the one provided by the RPA relation (4.17)] is established, the one- and two-body densities provide sufficient
information to determine this particle-hole interaction. The case of a Bose system is particularly simple, since an
algebraic relationship between the static structure function S(r, r') and the particle-hale interaction V& h(r, r') can be
derived.

Using the representation (4.18) of yo(r, r', w), one can formally solve for the full response function y(r, r', ~):

y(r, r'; u) = 2 /pi (r) (Hi' [(hu) —Hi —2Hi' V~ h Hi' + i)7] Hi' j+pi (r')

=2V'p (r) ) .(H'4)(r) „, ~, . (H'(-)(")v'p (")
n

flied — fkd~ + nfl
(4.21)
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&&-h (&, &')—:i/ pi (r) V& h (r, r') +pi (r') and the
(„(r) and the h~„are the eigenfunctions and eigenvalues
of the problem

(H, + 2H,' Vp hH,')(„=(bc'„) („. (4.22)
From the density-density response function (4.21) one

obtains finally the static structure function (4.6)

(4.23)

In both Eqs. (4.21) and (4.23), the summation over the
frequencies is understood as an integration when the
spectrum is continuous. The final step in the analysis

is to identify the functions (Hi („)(r) with the exci-
tation functions P„(r) introduced in Eq. (4.8). To this
end, it is enough to realize that the representation (4.23)
of S(r, r') implies that the functions (Hi '(„)(r) satisfy
the eigenvalue problem (4.8); i.e. , they are identical to

the excitation functions, and the (Hi'()(r) are, up to a
normalization factor, identical to the transition densities
(4.16). This analysis serves to make contact between the
method of direct Monte Carlo simulation and the more
conventional RPA approach in computing excited states.
It will also serve as starting point for the calculation of
the full dynamic structure factor S(k, ~) carried out in
the next section.

Having made contact with linear response theory, we
turn now to a discussion of our results. The monopole
and quadrupole excitation energies for N =20, 40, 70, and
112 part, icles as obtained by various methods are sum-
marized in Table II, These excitations are discrete solu-
tions of Eq. (4.8) with an energy below the threshold for
single-particle dissociation, i.e., with energies h~ satisfy-
ing h~+ p & 0. From our fitted energy formula (3.4), we
obtain for the chemical potential

p = dF/dN = —7.4754+ 14.1819m —4.9529z2 K .

(4.24)

1P 4'-1/2 K (4.26)

In the liquid-drop model, all collective monopole modes
are unbound. The energy of the collective monopole ex-
citation can be reduced somewhat by using the exact
unit radius ()2.22 A) for each cluster. However, the ba-
sic assumption of a sharp surface is simply too crude an
approximation for the clusters under discussion. Sim-
ilarly, the quantized liquid-drop calculation of Krishna
and Whaley, which also assumes a sharp surface, gives
an unbound energy of huo —5.7 K for N = 70. (This
is to be distinguished from their Feynman ansatz result
quoted in Table II, huo ——3.90 K.)

The next row gives the RPA results of Casas and
Stringari; followed by five entries using the Feynman
ansatz but only with variational ground-state wave func-
tions. The calculations of Krishna and Whaleyio as
well as Wiringa, Pieper, and Pandharipande7 (WPP)
use parametrized excitation functions as described previ-
ously. Our VMC-I and VMC-II calculations use the op-
timal excitation function in the sense that the eigenvalue
equation (4.8) is solved exactly, but only with input of
densities generated by the variational wave function Co
(3.1) and Co (3.2). The last three rows are results based
on extrapolated ground-state densities generated by our
DMC simulations.

To appreciate the significance of these results, we plot

For the cluster sizes considered, the chemical potentials
are as given in Table II. For reference, the first row gives
the liquid-drop model prediction of

hero ——hc7r/R = 25.6N 'i K, (4.25)

where the sound velocity is taken to be hc = 18.1 KA
and where R = 2.22Ni~s A. is assumed. Using the exper-
imental surface tension of t = 0.27 K A. ~, one also finds
that

TABLE II. Low-lying collective excitations of He clusters as computed by various methods.
huz is the 8-mode collective excitation energy and p. is the chemical potential. Both are given in
units of K.

N =20
p = —2.91

541p h~g

E =40
p, = —3.67

A 4)p h~2

N =70
p = —4.12

A, &p h~g

N = 112
p = —4.58

A&p hu)2

LDM
CS
KW
WPP'
UMC-I

VMC-II
DMC-I

DMC-II

9.43
2.67

2.85
2.79
2.79
2.80
2.72
2.72
2.80

2.32

1.77
2.03
2.14
2.26
1.75
1.77
1.71

7.49

3.0
2.79
3.44
3.58
3.68
3.60
3.53
3.68

1.64

1.4
1.72
1.77
1.84
2.04
1.37
1.50
1.22

6.21
3.90
3.3
2.75
3.38
3.53
3.99
3.94
3.96
3.97

1.24

1.2
1.46
1.52
1.60
1.77
1.50
1.54
1.03

5.31

3.4
2.63
2.97
3.16
3.76
3.92
4.27
4.21

0.98

1.0
1.28
1.27
1.34
1.52
1.76
1.62
1.20

Reference 8.
Reference 10.

'Reference 7.
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in Fig. 13 the monopole energy as a function of N
The trend of each calculation is of special interest and
is shown by connecting each set of data points by a
smooth dotted line. Only the RPA calculation of Casas
and Stringari, in which cluster sizes up to N = 728 are
considered, shows a clear convergence toward the liquid-
drop limit. As we go from the Jastrow trial function
to the triplet trial function, our VMC monopole energy
goes up, in accord with our two DMC calculations. Since
our triplet variation al results for N = 20 and 70 are
in good agreement with those of Krishna and Whaley,
we extended the dotted line connecting our data onto
their result for N = 240 (hue ——2.87 K). The result-
ing trend line, together with that of VMC-I, gives an
excellent impression of how the exact monopole energy
must behave: It must initially increase with N and then
come down around N = 1 12 and eventually approach
the liquid-drop limit. This is physically plausible in that
for small N an increase in cluster size increases the in-
terior density and hence raises the speed of sound and
hence the monopole energy. For large N, the interior
density is already constant; an increase in cluster size
simply increases the wavelength of the excitation and
therefore lowers the monopole energy. This changeover
should occur around cluster sizes such that the central
density no longer increases with N. The cluster size
N = 1 12 fits such a description perfectly; it is actually
also the changeover point of Casas's and Stringari's RPA
calculation, although at a lower energy. The scattering
of the DMC data at N = 112 make this determination
less definitive, but future DMC or GFMC calculation at
N = 240 should resolve this issue.

In view of the good agreement between our triplet
calculation and that of Krishna and Whaley, the result
of Wiringa, Pieper, and Pandharipande is inexplicable.
Their energies are unexpectedly low with no discernible

5.0

4.0.

changeover point.
By virtue of its lower energy, the quadrupole is the

dominant mode of the cluster excitation. A similar plot
of the quadrupole energy is shown in Fig. 14. The first
surprise is that all VMC results cross over the liquid-

drop line in qualitative disagreement with findings of
RPA. Our DMC calculations tend to bring their respec-
tive VMC values back down below the liquid-drop line

but eventually fail at larger N's. The second surprise is

that our triplet wave function not only did not close the
gaps between VMC and DMC results; it widens them fur-
ther. The VMC-II and the DMC-II values can difFer by
as much as 50'%%up. This is very disconcerting, even though
our DMC-II results look reasonable except for the last,
N = 112 data point. This suggests that although 4O
is a clear improvement over 4 0 in accounting for cluster
ground-state energies, one-body densities, pair-distance
densities, and the monopole collective energies, at large
N it may still be inadequate for describing surface struc-
tures, which are important for the quadrupole mode. The
fact that the triple t trial function is increasingly in ade-
quate at larger cluster sizes is also clear. At N = 20, the
difFerence in total ground-state energy between VMC-II
and DMC-II is only about 3 K, comparable to the exci-
tation energies. At N = 112, that diA'erence widens to
about 30 K, an order of magnitude greater than the exci-
tation energies. Thus to compute the quadrupole energy
accurately, one must either further refine the trial func-
tion, or adopt other means of extracting exact ground-
state densities independent of the trial function.

Despite diA'erences in ground-state trial function
and methods of computing excitation energies, the
quadrupole energies of WPP and our VMC-I results are
in reasonable agreement. However, since these results are
not rigorous upper bounds to the excitation energies, and
in view of the above discussion, it is diScult to attach
much signifi cance to this accord.

Figures 15—18 show our DMC and VMC monopole
transition density as given by Eq. (4.16). Systematic os-
cillations are clearly visible above obvious fluctuations.
In the case of N = 20, where the triplet wave function

3.0-

'~

Ch

+
.---------0----. -0

'I

3.0

2.0-

2.0 I I I I I

728 240 1 12 70 40

N on N scale

I

20

1 0-

FIG. 13. The monopole collective excitation energy as a
function of E ~ The straight and the dashed lines de-
marcate the liquid-drop limit, Eq. (4.25), and the chemical
potential, Eq. (4.24), respectively. Crosses are the RPA re-
sults of Casas and Stringari (Ref. 8). Circles and asterisks
are triplet VMC calculations of Wiringa, Pieper, and Pand-
haripande (Ref. 7) and Krishna and Whaley (Ref. 10), re-

spectivelyy.

Ou r V M C-I and V MC-I I results are denoted by
triangles and squares and our DMC-I and DMC-II results by
dots and stars.

0.0 I I I I I

728 240 1 12 70 40

N on N scale

I

20

FIG. 14. The quadrupole collective excitation energy as
a function of N . Legends are the same as Fig. 13, where
results exist. The straight line now gives the liquid-drop limit,
Eq. (4.26).
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0.03 0.03

0.02-

N=20

0 0.02-

0.01- 0.01-

0.00 0.00

5.0 10.0
()l )

15.0 5.0 10.0 15.0

FIG. 15. The monopole transition density for a N = 20
helium cluster. The dots and crosses are DMC-II and VMC-
II results, respectively. They are connected by smooth and
dashed lines to guide the eye. For comparison, their corre-
sponding one-body densities are indicated by a solid and a
dashed line. The scale for the transition density is arbitrary;
the axis is marked primarily for plotting the one-body density.

40 is not too bad a ground state, the corresponding vari-
ational transition density also shows similar oscillations.
As we go to higher N, oscillations in the VMC densities
appear to have gone away while those in DMC persist.
We have argued previously, ~~ on the basis of DMC-I cal-
culations alone (Figs. 17 and 18), that these oscillations,
which have wavelengths of the order of 3 A. , are evidence
of geometric shell structure connected with the hard-
sphere-like interaction between helium atoms. This in-

terpretation is now further strengthened with our triplet
calculation for 1V = 20 and 40 (Figs. 15 and 16). The
position of the centers of the first two maxima in N = 20
and 70 are nearly the same, while those of N = 40 and
112 are also similar. It remains to be explained, how-

ever, why they do not all agree. It cannot be completely
ruled out that these shell-like oscillations are very long-
lived metastable states. On the other hand, as in the
ground-state density case, we have no basis, theoretical
or numerical, for dismissing them a priori. Furthermore,

FIG. 17. Same as Fig. 15 for N = 70 but with DMC-I
and VMC-I results.

they also persist in the quadrupole transition density,
Figures 19—22 show our DMC and VMC quadrupole

transition densities. As expected, in all cases, the exci-
tation is concentrated near the surface. For N = 20, 40,
and 70, where the triplet trial function is used, there is
excellent agreement between DMC and VMC results at
the outer surface. In the case of N = 112, where only
the Jastrow function is used, the agreement is markedly
poorer. In view of Fig. 14, it is only prudent to con-
sider the DMC-II transition density for N = 20, 40, and
70 (Figs. 19—21), for which the corresponding excitation
energies have the right trend, as more reliable. How-
ever, even in the worst case, that of DMt -I at N = 112
(Fig. 22), the transition densities remain qualitatively
similar. To see the systematic organization of these os-
cillations more clearly, we replot Figs. 19—21 as one graph
in Fig. 23. The density heights are scaled to be approxi-
mately the same and the positions of the N = 20 and 40
densities are shifted such that the surface of their one-
body density coincides with that of N = 70. The two
minima are again separated by approximately 3 A.

It is of obvious interest to study the origin of these
oscillations. These may be caused either by the oscilla-
tions of the bare one-body density, which are amplified
by the second derivative of the density appearing in the

0.03
i

I

0.02-

0.03

I

0.02-

N=112

0.01- 0.01-
O

0.00 0.00

5.0 10.0 1 5.0 5.0 10.0
(A)

FIG. 16. Same as Fig. 15 for N = 40. FIG. 18. Same as Fig. 17 for N = 112.
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0.03

N=20

0.03

N=112

0.02. 0.02.

0.01- 0.01-
O

0.00 0.00
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sition density, these oscillations provide strong evidence
for the existence of shell structures in a bosonic quantum
system.

V. DYNAMIC STRUCTURE FUNCTION

where (do/dQ)0 is the differential scattering cross sec-
tion for scattering from a single constitutent, p; and py
are the initial and final momenta, k = py —p; is the
momentum transfer, and

S(k, ~) = ) i(@„ip(k)iiflp)i'b(h~ —E„+Eo) (5.2)
ngO

is the dynamic structure function related to the response
function by

1
S(k, ~) = ——Imp(k, a) (~)0). (5.3)

Inelastic neutron scattering oft' helium clusters could, in
principle, map out the dynamic structure function and
allow us to extract excitation energies and transition den-
sities. Theoretically, the calculation of S(k, u) requires
knowledge of both the excitation spectrum E„—Eo and
the complete set of transition densities (4„~p(k) ~@0). As
a first step towards an exact calculation of S(k, u), to

The excitations of many-body systems such as atoms
or nuclei are normally studied by scattering experiments.
When the probe is weak, we recall that the scattering
cross section is given by the Born approximation by

2

(5.1)

be compared with future experiments, one can replace
the exact spectrum and transition densities by those of
the I'eynman theory, which we have described in the last
section.

When the eigenvalue equation (4.8) is discretized on
a finite mesh, only a discrete subset of the hu & —p con-
tinuum states is obtained. However, since all functions
appearing in the kernels of Eq. (4.8) vanish exponentially
for large distances from the center of mass, one can sim-

ply extend the mesh to large distances to obtain a very
dense spectrum from which reliable information on the
density of states can be extracted. We have typically
discretized the eigenvalue problem (4.8) in a sphere of
50 A radius as compared to our droplet radius of about
10 A. The two-body density pq(r, r') outside of the sam-
pling region is set to the product pi(r) pi(r'), and the
one-body density is extrapolated to large distance by the

known asymptotic form pi(r) exp( —2 2m@/h r )/r
For a given u, Eq. (4.16) is used to calculate the tran-
sition density, from which one obtains a parameter-free
model of the dynamic structure function,

S(r, r';~) = bp (r)bp (r') . (5.4)

In momentum-space, we have

Adopting our conventions for the weight factors of the
partial wave expansion (3.7), and using the same partial
wave expansion as in Eq. (4.9) for bp (r), we write

2S+ 1
S(r, r', u)) = ) bp r(r)bp r(r')Pg(r. i.') .

4x
e

(5.5)

S(k, k';u)) = ds&d3&iei(k r-k' r')S(&, I
)

= ) bpr~(k)bpr„(k')Pr(k k')—:) Sr(k, k', ~)Pg(k k'),
e

(5.6)

where bpr (k) = J d rbpr„(r)jr(kr) is the Fourier-Bessel-transform of the transition density corresponding to angular
momentum / and energy hu. The normalization factors relating the transition densities p (r) to the eigenfunctions

(„(r) are determined by comparison of the relation

/pi�

(r)pi (r )S(r, r') = d(h~) S(r, r', cu) = ) b p „(r)b p„„(r')+ d(h~) b p„(r)bp„(r') (5.7)

with Eq. (4.23). Discretizing the integral over the con-
tinuum states

for the discrete states, and

d(h~) bp„(r)bp (r') = ) b(h~„)bp (r) b p (r'), bp~(r) = +pi(r) ~

b h, ~ ( (r)
(hcu„b h~„))

(5.10)

(5.8)

where b(hu ) is the level spacing at the energy value h~
we identify

in the continuum. The corresponding identifications are
made in each individual angular momentum channel.

In inclusive scattering experiments, only the diago-

nal element of S(k, k', ~) corresponding to the dynamic

structure function is measured:

(5.9) S(k, ~) = S(k, k;~) = ) Sr(k, k;~),
e

(5.11)
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FIG. 24. The 8=0 component of the dynamic structure
function S(k, u) for a N = 20 helium cluster. The single line
to the left of the continuum gives the strength of the discrete
monopole collective mode. The normalization is arbitrary.

we therefore restrict our investigation to diagonal matrix
elements.

Figures 24—27 show plots of our DMC-I calculation of
the monopole component of Sr(k, id). Similar plots of the
quadrupole component produced by our DMC-II calcula-
tion are shown on Figs. 28—31. For the DMC-II calcula-
tion, the statistics are not as good as in the DMC-I case.
The monopole and the quadrupole channels each have
one discrete mode. These states are drawn as lines just
left of the continuum in the plots. The overall and rel-
ative normalization between the discrete and continuum
states is arbitrary. The dipole component is qualitatively
similar but without the discrete bound state. For com-

FIG. 26. Same as Fig. 24 for N = 70, taken from Ref. 13.

parison, we draw, in the figures, the Feynman dispersion
relation for bulk liquid helium. At a fixed value of the ex-
citation energy h~, the quantity S(k, ~) is just the square
of the Fourier-Bessel transform of the corresponding tran-
sition density as a function of k. The overall picture that
emerges consists of a series of "ridges" running roughly
parallel to the Feynman dispersion curve, punctuated by
discrete sets of peaks. As the cluster size becomes larger,
these peaks become denser along the Feynman curve, fol-
lowing it with remarkable faithfulness, especially at ener-
gies above the roton minimum. The peaks at the maxon
and the roton part of the Feynman curve are particu-
larly prominent. The sharply defined peaks that space
out at discrete values of h~ clearly reflect the quantized
character of collective excitations appropriate for a finite

N= 40 N = ii8

3
A
M ~

3
A
M ~

O;
O O:

O

O 10.0 20.0
hfa)

30.0
(K}

'O 10.0 20.0
he

30.0
(K)

40.0

FIG. 25. Same as Fig. 24 for N = 40. FIG. 27. Same as Fig. 24 for N = 112.
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FIG. 28. The 8=2 component of the dynamic structure
function S(k, u) for a N = 20 helium cluster. The single line
to the left of the continuum gives the strength of the discrete
quadrupole collective mode. The normalization is arbitrary.

droplet. The regular repetition of peaks and ridges along
k with diminishing strength appears to be due mostly
to "diffractive" effects —this feature arises simply from
squaring the Fourier transforms of a transition density
which is nonzero only within the droplet. The ridges have
the correct spacing in k of roughly 7r/R, where R is the
droplet radius. Obviously, this interpretation does not
explain the peak that develops at the roton minimum.

To study the structure of S(k, ~) in more detail, we

show corresponding contour plots in Figs. 32—39. It is
now clear that one can directly read off the resonance
excitation spectrum of a finite droplet by noting the lo-
cations of these scattering peaks. The maxon peak moves

FIG. 30, Same as Fig. 28 for S = 70.

up in energy as the cluster gets larger, but seems to be al-
ready stabilized at N = 70. The phonon part of the peak
ridge, originally to the right of the Feynman curve for N,
systematically moves left to be centered on the Feynman
curve as N increases. The energy spacing between peaks
also correctly shrinks with increasing cluster sizes. Thus
the dynamic structure-structure function directly maps
the cluster excitation spectrum in a very graphic manner
and provides a nice picture of how the continuous bulk
dispersion relations develop out of the discrete excitation
spectra of clusters.

The discrete spectra obtained by orthogonalization in
Ref. 9 are in qualitative agreement with our results but
differ in details. In particular, the results of Krishna and

N= 40 I = 112

3
A
M ~
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A
M ~

0:0 0;0

0 10.0 20.0
ncaa

30.0
(K)

40.0
00 10.0 20.0

%fit
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FIG. 29. Same as Fig. 28 for N = 40. FIG. 31. Same as Fig. 28 for N = 11~.
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n
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S~~k u&~for a N = 20 helium clus-namic structure function S~, u& or
ter The contour lines depict levels of exponentially varying
strength.

Whale are substantially below ours and the Feynman
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FIG. 34. Same as Fig. 32 for N = 70.

mi(r', r) = ) (F.„—F., )~ (@D ) b(r' —r;) 9„')
ng0

x 4„

VI. SUM RULES AND COLLECTIVE STRENGTH

The study of sum rules is useful for understanaing par-
ticular features of collective states. In general, one con-
siders the nth energy weighted moments

IMost of the infinite set of moments m„(r, r cannot
be calculated without a specific theoretical model for
the density-density response function, for example in t e
random-phase approximation (4.17). Exceptions are the

d moments which are model independent in the
sense that they require information on the ground-s a e
structure only, in particular,

30.0- 30.0 =

20.0- 20.0-

10.0- 100- O

0.0
0.0 1.0

N= 40

2.0
0.0

0.0 1.0

N = 112

2.0 3.0
k ()( ')

FIG. 33. Same as Fig. 32 for 1V = 40.

()( ')

FIG. 35. Same as Fig. 32 for N = 112.
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N= VO

2.0 3.0

mg(r, r') = g pg(r)H (tr, r')y pg(r') (6.2)

A, ll d

mp (r, r') = gp g (r)S(r, r') gpg (r') .

For any trial one-body function f(r), the ratio

mt[f] f dsrdsr' f'(r)mg(r, r') f(r')
mp[f] f d rdsr' f"(r)mp(r, r') f(r')

(6.3)

(6.4)

FIG. 36. Contour plot of the 1=2 component of the dy-
namic structure function S(k, u) for a N = 2D helium clus-
ter. The contour lines depict levels of exponentially varying
strength.

()( ')

FIG. 38. Same as Fig. 36 for N = 70.

is obviously identical to our variational expression (4.5).
Thus, mt[f]/mp[f] is an upper bound for the excitation
energy of the lowest-lying collective mode with the sym-
metry of the excitation function:

my [f] ) fr4lp (6.5)
mp

Other sum rules like ms or m q depend on the spe-
cific model of the response function. Our theory of
the excited states implies the random-phase approxima-
tion. Hence, there are only two independent quantities,
namely, Hq(r, r') and S(r, r'), and the other sum rules
provide no additional information.

Sum rules may be utilized in two difkrent mays: One

30.0 30.0—
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10.0-

34
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FIG. 37. Same as Fig. 36 for N = 40.
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FIG. 39. Same as Fig. 36 for N = 112.
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FIG. 40. Sum rule results for cluster size N = 20. The
solid line is the cluster static structure function computed
with DMC-II densities according to Eq. (6.8). For compari-
son, the short-dashed line is the triplet variational structure
function computed with VMC-II densities. The dotted line is
the experimental bulk helium structure function. The contri-
bution to S(k) from the quadrupole collective state is given
b the solid hump. The sum of contributions from all states
in the three lowest angular momentum modes is given by the
long-dashed line.

is to use the inequality (6.5) to estimate low-lying ex-

citation energies from an "intelligent guess" of the ex-
citation operator f(r). We have determined the excita-
tion operator optimally by exactly minimizing the ratio

my[f]/mo[f] with respect to f(r). The other use of sum-

rules is to analyze the contribution of specific excitations
to the full static structure function S(k) and to deter-
mine which collective state will be most likely excited

by an external probe. In that case, the function f(r)
describes the external probe. Since such a probe wil

normally be a plane wave, we work in momentum space
and consider, as in the preceding section, only diagonal
matrix elements. In other words, we use the excitation
operator f(r) = exp(ik r).

For finite systems, sum rules can be discussed on two

levels. First, we can study sum rules in each individual
angular-momentum channel. This will give information
on the relative strength of a specific excited state as com-

FIG. 42. Same as Fig. 40 for E = 70.

pared with the total excitation strength in a given angu-
lar momentum channel. For our purpose, we are most
interested in the monopole and the quadrupole channel.
For this study, we can directly compute the angular mo-
mentum components of the static structure function by
Fourier transforming S(r, r') [cf. Eq. (4.6)]

'k
Sr(k) = — d cd r'gpq(r)pq(r')e'" ' '

N
x S(r, r') Pq(r r'), (6.6)

and compare with the result of integrating the dynamic
structure function

d(her)Sr(k, ~)

(6.7)

When solving the eigenvalue problem (4.8) on a finite
mesh, these two methods of calculating Sr(k) provide an
excellent check on the numerics of computing excitation
energies and transition densities.

On the other level, we can study the contribution of
the individual angular-momentum components to the to-
tal static structure function S(k). This study provides
independent information, since S(k) can be calculated
directly from the pair-distance distribution (3.6):
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FIG. 41. Same as Fig. 40 for N = 40. FIG. 43. Same as Fig. 40 for E = 112.
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S(/;) = ) Sg(k)

d rd r' /pi (r)pi (r') e'" t" " 1S(r, r')

(6.8)

where p2(k) and pi(k) are Fourier transforms of the pair-
distance and one-body densities, respectively. Since the
last line of Eq. (6.8) can be evaluated without the use of
a partial wave expansion, we have an independent test
on the convergence rate of the partial wave expansion.
We also can make statements regarding the probability
with which individual angular momentum channels are
excited by a plane wave probe.

For the four cluster sizes considered, Figs. 40—43 show

comparisons between calculated droplet structure func-
tions S(k), the static structure function of bulk He

at saturation density, and contributions from the in-

dividual angular momentum components and collective
modes. These four figures exhibit two remarkable fea-
tures: One is the greatly reduced overshoot of the droplet

S(k) around k 2 A. , and the other one is the shoul-

der around k 0.5 A, which is absent in the bulk

S(k). In connection with the overshoot reduction, around

k 2 A, we recall that the resonances discussed in the
preceding section follow faithfully the Feynman disper-
sion curve

(6.9)

where the bulk S(k) is used. Taking the droplet S(k)
instead in the same relationship would yield a much
shallower "roton minimum. " Thus it is clear that these
continuum excitations of the system are, at these wave-

lengths, considerably influenced by short-ranged correla-
tions, whereas the full cluster S(k) reflects much more of
averaged properties.

The long-dashed line in Figs. 40—43 represent the sum
of all contributions to S(k) originating from the first
three angular-momentum components, including that of
the collective quadrupole excitation. It appears that the
collective quadrupole is by far the largest single contrib-
utor to the full S(k) and is mainly responsible for the
shoulder observed at k 0.5 A. This shoulder was ob-
served previously in the calculation of Schiavilla et al.ss

However, they did not propose any explanation for its
presence. The quadrupole accounts for more than half of
the total strength in the first three angular-momentum
states and amounts to 25—30% of the overall excitation
strength. By contrast, the monopole's contribution is
negligible {(5%).

VII. SUMMARY AND CONCLUSIONS

Helium clusters are unique bosonic systems of great
intrinsic interest. Because of the relatively simple He-

He interaction, they are also excellent laboratories for
testing our theoretical understanding of finite quantum
many-body systems. With the advent of supercomput-

ers, we have in our grasp unprecedented raw compu-
tational power for understanding the physics of clus-
ters from first principles. What is needed, however, are
theoretical methods and efficient algorithms that can har-
ness this power for the extraction of physical results. We
have presented in this paper microscopic methods for
computing ground-state proper ties and excitation spec-
tra of any finite bosonic quantum systems and have ap-
plied them with great success in elucidating the proper-
ties of helium droplets. In summary, we have (I) com-
puted the exact ground-state energies of helium clusters
using a second-order DMC algorithm with triplet trial
functions (the cluster energies are lower than any pre-
vious Monte Carlo simulation and extrapolate correctly
to t, he experimental bulk energy at, infinite cluster size),
(2) exactly solved the generalized Feynman eigenvalue
equation, which opt, imally determines the one-body ex-
citation operator and collective excitation energies, (3)
determined the systematic variation of collective energies
with cluster size and shown how the liquid-drop limit is
approached, (4) demonstrated the existence of systematic
density oscillation in transition densities, which strongly
suggest the possible existence of geometric shell struc-
ture in helium clusters, (5) computed the cluster dynamic
structure from which the entire cluster excitation spec-
trum can be identified, (6) demonstrated in detail how
t, he continuous bulk phonon-roton spectrum may have
emerged from the discrete cluster resonance spectrum,
and (7) quantitatively determined the strength of each
collective state from the static structure function by use
of sum rules and identified the quadrupole as the domi-
nant collective mode for clusters with size N 100.

One of the major conclusions of our work is that a great
deal of physics can be extracted from knowing just the
one- and two-body ground-state densities. However, the
binning of two-body densities requires an order of mag-
nitude more computer time than that of one-body densi-
ties. By comparison, the mere evaluation of ground-state
energies seems trivial. Moreover, the extraction of exact
one- and two-body densities is hampered by perturba-
tive extrapolation errors that are too dependent on the
quality of the trial function, Most serious is the fact that
the perturbative estimate Eq. (2.15), although it respects
sum rules, does not guarantee the positivity of densities.
A better method for obtaining the exact ground-state
densities would be most helpful. (For some recent sug-
gestions, see Barnet, t, , Reynolds, and I,ester. )

In computing the excited states, we h ave found un-

expected oscillations in the transition density for the
monopole and quadrupole excitation, which are evidently
related to the geometric shell structure of clusters due to
the hard-core-like interaction of He atoms. The fact
that these are very low-energy excitations is also con-
sistent with the observed persistent oscillations iii the
ground state one-body densities. Our analysis of the dy-
namic structure function provides a physically plausible
and appealing picture of the transition from small clus-

ters, whose excitations can be best regarded as being
a discrete series of collective modes and resonances, to
large clusters, whose excitations are essentially contin-
llous alld follow tile phoi'ioll-i'otoll c&li've. Oui' al'ialysis
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of the sum rules and the angular momentum decompo-
sition of the static structure function revealed that the
only discrete excitation with a significant strength is the
collective quadrupole mode.

Althrough our calculation of the dynamic structure
function provides a physically appealing scenario of the
transition from pronounced discrete excited states of a
small system to a basically continuous spectrum of a large
system, it is well known that the Feynman spectrum for
bulk 4He in the regime of the maxon andior roton is only
qualitatively correct. Quantitative uncertainties implicit
in the Feynman ansatz for finite clusters are presently
unknown. For very large droplets they should be of the
same order magnitude as the inaccuracies of the Bijl-
Feynman dispersion relation for bulk liquid. However,
nothing is known for smaller systems. The reduced peak
in the static structure function may hint towards a less
pronounced roton minimum and perhaps less important
corrections to the Feynman spectrum. But the accuracy
of our predictions cannot be determined within the the-
ory. The next step would involve the introduction of two-
body correlations in the excitation function (4.2). This
would require the sampling of three- and four-body corre-
lation functions, which is presently computationally too
demanding. A rather accurate estimate of the impor-
tance of multiple-phonon processes can be obtained by
correlated-basis-function perturbation theory using the
Feynman density fluctuations as a basis.

APPENDIX

In this appendix we show how the existence of two zero-
frequency solutions of the eigenvalue problem is verified
in the partial wave expansion. A check of these exact
properties provide a valuable test for the numerical ac-
curacy of the calculation and, in particular, on the sta-
tistical errors inherent to the Monte Carlo simulation of
the distribution functions. In the monopole channel, we

have
2

(Al)

and hence

f d l~

V'C»(r)p~(r')

dr', p2 t, r' = 0. A2
(y) dT p

The right-hand side of Eq. (4.8) vanishes due to the se-
quential relation (4.14). In the dipole channel, we have

(g2 p(o) („„)

(A3)
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I

The excitation function Pq(r) = c rgpq(r) corresponds

to a dipole excitation pq(r) = 7 gpq(r) and

dr'7 '2 ' 7'gPg (7')
jp~(r)pi(~')

d7' 7' pg (P, 7' )
1 d / /3 D (p)

P7(7) dr

= 2—Qpg(r),
d

dp
(A4)

which is easily seen to cancel the local part of Hq(r, r')
in the dipole channel. In the last line of Eq. (A4), we
have again used the sequential relation (4.14).

The right-hand side is also zero for the same function.
To prove this, consider

d r'r r'pr(r, r') = d r'r r'(@p ) d(r; —r, —r)6'(r —r, —r') yr)
&f2

f p r r& —rc.m. b r; —rc.m. r b r& —rc.m. r @0
igj

@p I . I'& —rc.m. b ri rc.m. —r 6 r~ —rc.m. —r'
)J

—) r (r, —r, , )6(r; —r, —r)d(r; —r, —r') @,)
(A5)
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d r'r r'S(r, r')/pi(r)+pi(r') = 0 . (AG)

This result cancels t, he 6-function term in S(r, r') in

Eq. (4.6), i.e. , we have
In our calculations we have found that both the sequen-
tial relation (4.14) and the relation (A6) are satisfied to
an accuracy better than 1%.
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