
PHYSICAL REVIEW B VOLUME 45, NUMBER 15 15 APRIL 1992-I

Density of states, electron-transport mechanisms, and chemical potentials
in the presence of inelastic processes

A. N. Khondker and Muhammad A. Alam*
Electrical and Computer Engineering Department, Clarkson University, Potsdam, Pew York 13699

(Received 5 August 1991;revised manuscript received 9 December 1991)

We present a formulation for the estimation of the density of states for quantum structures, such as
the quantum wire and the single- and multiple-barrier structures. Our formulation is based on the quan-
tum kinetic approach as opposed to the single-particle approach; therefore, the model inherently ac-
counts for the exclusion principle and incorporates phase randomizing and/or inelastic collisions. Also
in this paper, we propose a physically meaningful decomposition of the density of states for left- and
right-moving electrons. The total and the decomposed densities of states are then used to define chemi-
cal potentials that may be measured by the symmetric and asymmetric voltage probes. The present ap-
proach eliminates some unphysical features reported in earlier work and enables us to propose an alter-
native, but equivalent, expression to the well-known Tsu-Esaki equation for the tunneling current. In
our transport equations, the usual transmission coefficients are not needed; instead, we introduce the
concept of a state-current density that may be used to describe the current through tunneling barrier
structures. Moreover, we use this concept of the state-current density to comment on the coherent and
the sequential tunneling mechanisms for double-barrier structures.

I. INTRODUCTION

With the advent of molecular beam epitaxial and
metalorganic chemical vapor deposition techniques,
many materials and device structures have been proposed
and fabricated during the last decade. Some of these de-
vices have shown excellent characteristics and have en-
couraged further exploration. ' Many theoretical mod-
els are also being developed to explain the physical prin-
ciples that govern the operation of such devices. Be-
cause of the smaller sizes of these structures, the trans-
port mechanism is dictated by quantum-mechanical in-
terference. Therefore quantum-effect devices require a
description of electronic transport that is substantially
different from that of semiclassical transport mechanisms
used for conventional devices. ' ' In this description
of electronic properties of quantum devices, there are
several quantities which are of interest to researchers,
such as the transmission coefficient and ' the density
of states (DOS). These basic quantities have many
different applications; the transmission and the reflection
coefficients are central to the Buttiker-Landauer descrip-
tion of the conductances of a system at T=0 K and the
electronic DOS is required in a description of the transi-
tion probabilities' ' and in the interpretation of optical
properties of many material.

Calculations of DOS for periodic and random materi-
als are common in the literature. Though most of the
techniques are fairly well known, these calculations are
better suited to application to bulk materials (e.g. , the
coherent-potential approximation) or for the very dilute
concentration of noninteracting impurity atoms (e.g. , per-
turbation techniques). For modern nanofabricated de-
vices neither of the above techniques is useful. The in-
terference effects due to successive elastic scatterers

govern the operation of these devices. Unlike alloys, the
positions and the strengths of the scatterers in these
structures are not random. Therefore the usual method
of statistical averaging is not applicable and one must
solve for the DOS using the complete sample-specific
Hamiltonian.

The second important feature of quantum-effect de-
vices is that these systems are "open." Therefore the
effects of the boundary conditions on the device perfor-
mance are critical and the DOS in these devices will de-
pend on the precise description of boundary conditions.
Some of the models reported in the literature require that
the wave functions go to zero or be periodic at the boun-
daries. ' These boundary conditions may not be physi-
cal in the sense that quantum-effect devices are small and
are coupled to contacts that act as electron reservoirs. It
has been recognized that deep within the reservoirs the
electrons lose their phase memory completely due to in-
elastic collision events. Therefore these electrons must be
described by quasinormal modes characterized by com-
plex eigenenergies. The normalization of the corre-
sponding eigenfunctions, needed in the calculation of the
DOS, is not trivial at all.

Sometimes the calculation of the DOS may be needed
in the presence of an applied bias. One notes that exter-
nal bias destroys the periodic boundary condition as-
sumed for the bulk and is responsible for current in the
device. Hence any proposal for the calculation of the
DOS should account for the asymmetry of the structure
and also provide a theoretical framework for the descrip-
tion of the electron transport. For example, such calcula-
tions are needed in the description of the sequential trans-
port mechanism across double-barrier structures
(DBS).' ' Any convincing argument for or against this
theory must, therefore, calculate the DOS in a biased
structure.
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A general formalism that calculates the DOS should
also be able to prescribe a method that can decompose
the DOS, in a physically meaningful way, between the en-

ergy states for the positive- and negative-flowing elec-
trons and holes. This is needed because if asymmetric
voltage probes are used to couple to the positive- and
negative-flowing electronic current streams, the formal-
ism must predict the correct chemical potentials. Fur-
thermore, a complete procedure must also specify the cal-
culation of the phase-sensitive DOS. The DOS, calcu-
lated in the presence of elastic scatterers, should ap-
proach the phase-insensitive DOS as the phase-
randomizing scattering rate is increased.

In this paper, we present a method for the calculation
of the local DOS for nanofabricated quantum-effect de-
vices. We have modeled these devices as open systems
using the steady-state quantum transport theory pro-
posed by Datta and co-workers. ' ' Also, we show that
there are two reasons for the unphysical behavior of the
separate chemical potentials, defined by them, ' for the
left- and right-moving electrons. First, in order to define
separate chemical potentials one needs to be able to
correctly decompose the electrons into two groups, left-
and right-moving electrons. We have earlier reported
such a procedure. ' Second, one must also be able to ob-
tain separate DOS's for left-moving and right-moving
electron and holes. In this paper, we therefore propose a
physically meaningful framework for the decomposition
of the total DOS into states for the positive- and
negative-flowing electrons. We then show that separate
chemical potentials can indeed by defined with the help
of our decomposition procedure. It is important to men-
tion that the above procedures are not in violation of the
uncertainty principle' because the retarded Green's
functions are estimated using the effective mass equation
within the envelope function approximation. Therefore
the local density of electrons and the DOS are inherently
defined as an average over a unit cell of the periodic lat-
tice.

In Sec. II we develop a formalism for the calculation of
the DOS based on the quantum kinetic equation. A sim-
ple formula is derived for the total density of states that
does not require the specification of a complete set of
orthonormal wave functions. ' Therefore the calculation
of the DOS has been simplified enormously. Moreover,
we include the effects of phase-breaking and inelastic pro-
cesses that tend to wash out the interference effects due
to elastic potential barriers. In Sec. III we present our
procedure for the decomposition of the total DOS. We
show that, contrary to the common assumption, the DOS
does not split into halves. ' Based on the definition of the
decomposed DOS, we suggest an alternative, physically
meaningful description of tunneling current through elas-
tic barriers. Section IV contains derivations of expres-
sions for the chemical potentials in the one-dimensional
(1D) structures under applied bias. We include a discus-
sion on the use of asymmetric probes for the measure-
ment of chemical potentials in Sec. V. In Sec. VI we dis-
cuss the implications of the concept of the state-current
densities and the quantum kinetic formulation on the ex-
isting tunneling theories for the DBS. Sections VII and

VIII include some numerical results and the conclusions,
respectively.

II. CALCULATION OF THK DENSITY OF STATES:
THE MODEL

In this section we present a formulation for the deter-
mination of the DOS in a region of elastic scatterers con-
nected to electron reservoirs. We include the effect of
phonon scattering following the model by Datta. ' ' He
used a form of Hamiltonian that assumes that the inelas-
tic collisions are caused by a distribution of independent
oscillators. Each oscillator interacts with the electrons
through a 5 potential in the space. This assumption re-
duced the electron self-energy to a 5 function in space.
The Keldysh formulation ' was employed to rigorously
justify the use of imaginary optical potentials. Datta also
derived a kinetic equation for steady-state quantum
transport using only the diagonal elements of the correla-
tion function G (r, r;E). We shall extend and modify
Datta's formulation for 1D structures to propose two
differential equations that govern the evolution of the
DOS for the positive- and the negative-moving electrons
as a function of x.

Details of our description of electronic transport have
been reported earlier. ' For the sake of continuity, we
will define only the relevant quantities. The key idea of
our formulation is the following. We describe the elec-
tronic states using composite propagating waves, travel-
ing with spatially varying group velocities, rather than
just plane waves with wave numbers kk (x). In our mod-
el the transport of electrons in a quantum system is com-
pletely and uniquely described by two group velocities
vg+(x, E„) and vg (x,E„) for the positive- and negative-
flowing electrons, respectively. ' ' ' In fact all the
relevant transport coeScients, e.g., the scattering rates
and the forward and backward scattering probabilities,
can be expressed in terms of these quantities. The trans-
port electrons may encounter inelastic collisions at ran-
dom points in space. However, regardless of the location
of their last scattering, electrons with the same energy
and traveling in the same direction have the same local
group velocity. This simple yet important fact is central
to our transport model.

In many widely studied quantum structures, the elastic
barriers are present only in the direction of current flow.
Therefore we can easily decompose the DOS into two
DOS's: one for the longitudinal direction and the other
for the lateral direction. For such quantum structures
with wide lateral widths, e.g., the single- or multiple-
barrier structures, the DOS as a function of total electron
energy E can be easily calculated by carrying out the con-
volution integral in energy between the 1D DOS and the
lateral DOS. We will therefore ignore the lateral DOS in
our formulation and concentrate only on the 1D DOS for
the longitudinal component of the energy E„. The ex-
pression for the 1D DOS (for both spins) is given as

2
N(x, E„)= ——ImG "(x,x,E„) .

7T

Here G "(x,x,E„)is the solution of the Schrodinger equa-
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tion modified by the presence of the optical (local) poten-
tial-' '

E —Ho(x)+ 6"(x,x „E„)=5(x —x i ) .
2rq x,E„

The Hamiltonian Ho(x) contains the potential energy
term that is determined by the band discontinuity and the
self-consistent Hartree potential, and r&(x, E„) is the
phase-breaking time. The function G (x,x„E„)there-
fore contains all the interference effects due to elastic bar-
riers located in a dissipative environment.

Although the direct calculation of the retarded Green's
function is often difticult, we use a straightforward tech-
nique to compute the diagonal elements of the Green's
function. ' In the following we will briefly describe our
method. Using Eq. (1) the DOS is given by'

BG"(x,x „E„)IBx
Z(x,x„E„)=

im ' 6"(x,x „E„)
(4)

and is calculated using the known values of the logarith-
mic derivative in the asymptotic regions inside the elec-
tron reservoirs connected to the structure. One of the
key results in this formulation is for the function
Z(x, x„E„);'

u+(x, E„), x &x,
—,'Re[Z (x,x „E„)]= '

The terms us+(x, E„) and us (x,E„) are the local group
velocities of the right-moving and the left-moving elec-
trons, respectively. It can be shown that us+(x, E„))0
and us (x,E„)(0. It is interesting to note that the densi-

ty of states does not require any specification of the basis
functions and altogether avoids such calculations.

III. DECOMPOSITION OF THE DOS

While the density of states is a very well-known quanti-

ty, it is not obvious that these do not always split into
halves for the right- and the left-moving electrons, respec-
tively. ' This is particularly true especially in the pres-
ence of elastic barriers. In the past, an attempt to decom-
pose the DOS into two parts in the momentum space us-

ing the Wigner formalism has resulted in a negative DOS,
which is physically inconsistent. ' In the following we
present a rigorous derivation that leads to a simple
scheme for such a decomposition. Interestingly, we ac-
complish this in real space. The decomposition of the
DOS has several important consequences. We will dis-
cuss these later in this paper. Note that in the determina-
tion of the total DOS we have used Eq. (1). In this case

N(x, E„)=Im
Z+(x, E„)—Z (x,E„)

where Z+(x, E„)=Z (x+,x,E„) and Z (x,E„)=Z (x,x,E„)and the function Z (x,x „E ) is defined as

i
G "(x,x „E)I'

N (xE )= f dx,
2m x

'
ry x„EX

(9)

Note that Eqs. (7)—(9) depend on r&(x,E„) which is a
function of the electron and the hole densities, n (x,E„)
and p(x, E„), respectively. However, since n (x,E„)and

p (x,E„) themselves depend on the DOS, one would need
an iterative procedure. This means, in a biased structure
the estimation of the DOS then becomes an integral part
of a self-consistent procedure for the calculation of the
current flow through the structure. Therefore the DOS
in a quantum system is inherently related to the transport
of particles, i.e., the electrons and the holes. The changes
in the DOS, therefore, reflect the influences of the elastic
barriers and phase-breaking processes on the transport of
these particles via G (x,x, ,E„).

Now, in order to evaluate N (x,E ), let us d—efine two
quantities:

J~ (x,E„)=N+(x,E„)u+(x,E ),
Jz (x,E„)=N (x,E„)us (x,E„) .

(10)

The terms J&(x,E„)may be called the state current den-
sity since they are products of the DOS's and their
respective group velocities. Using Eqs. (8)—(11) and fol-
lowing a derivation similar to that described in Ref. 19,
we find JN(x, E ) satisfies the following differential equa-
tions:

we use another equivalent definition of the DOS (for a
single spin), which is intuitively more appealing than the
former

iG (x,xi,E„)i
N(x, E„)= dx,

27' — ' r~(x „E„)
While both of these expressions for the 1D DOS can be
derived from the theory of quantum kinetic equations,
Eq. (7) has a very simple physical interpretation. ' If
electrons and holes are injected by inelastic scattering at
a steady rate at the point x &, they will propagate in both
directions and establish a local electron and hole density
proportional to ~G (x,xi, E)~ . The total contribution at
any x from all x &'s determines the local DOS. Now let us
consider any point x in space. If the electrons and holes
are injected at any x, on the left of x, then a fraction of
those electrons and holes that propagate in the positive
directions will contribute to the local DOS. Note that
both the electrons and the holes travel with the same pos-
itive group velocity uz+(x, E„) (Ref. 19) and, therefore,
they contribute to the DOS for the right-moving electron.
A similar argument can be used to show that the DOS
contributed by all points on the right of x will be for the
left-moving electrons and holes. Thus we can now
decompose the DOS into the right- and the left-moving
DOS's, N+(x, E„)and N (x,E„),respectively, in the fol-
lowing fashion:

iG (x x E)l'
N+(x E )= f dx,

2m. — r~ xi,E„

and
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dJ~ (x,E„) + N(x, E„)
a—+(x,E„)J&(x,E„)+r+(x,E„)

X

(12}

and

where

i vs*(x,E„)i

r (x,E„)=
ug+(x, E„) vg (x—,E„)

and

a*(x,E„)= 1

r&u~*(x, E„)
We could in principle solve for the two equations subject
to appropriate boundary conditions. However, we use a
trick which makes the direct solution unnecessary. If we
add Eqs. (12) and (13), it can be easily seen that

dJ~ dJ~+(x, E„) dJ~ (x,E„)+ =0.
dX dx dX

This means that the function J~(x,E„}is a constant in
space. However, the value of this constant turns out to
be zero, because deep within the reservoir, where all the
effects of the interferences have been washed out,
N+(x, E„)=N (x,E„)=N/2 and v+(x, E„)=8k/m'
and us (x,E„)=—A'k/m'. Therefore individual contri-
butions from the Jz and Jz cancel. We arrive at the fol-
lowing two equations for N*(x,E„}:
N+(x, E„)+N (x,E„)=N(x, E„),
N+(x, E„)vs+(x,E„)+N (x,E„)ug (x,E„)=0 .

The solutions are

(14}

dJ~ (x,E„) N(x, E„)
a(x—,E„)J&(x,E„)+r (x,E„)

dx 7 y

(13)

{electron reservoirs) always contain phase-breaking
and/or inelastic collision processes. The neglect of in-
elastic processes is nonessential and is invoked only for
simplicity. The Tsu-Esaki tunnel current, flowing from
left to right, for such a coherent system is given by

JL z =efdE„T(E„)v(E„)N(E )F(E„), (18)

where T(E„)is the transmission coefficient calculated on
the right of the boundary between the left reservoir and
the device, u (E„)=A'k(E„)/rn is the forward velocity of
electrons, N(E„)= [2Mv(E„)] ' is the usual 1D density
of states (for a single spin) for positively traveling elec-
trons, and F(E„)is the Fermi-Dirac electron distribution
function. ' In the Tsu-Esaki model, electrons are charac-
terized by a velocity haik/m'. Upon scattering from an
elastic barrier a part of the electrons are considered to be
reflected. The reflected electrons travel with a velocity—haik/m . On the other hand, the expression for the
tunneling current in our formalism is

JL a =e fdE„J~(E„)F(E„). {19)

The above expression is evaluated at the same position as
indicated earlier. Notice that the right-moving state-
current density J~ (E„)enters in this definition in a very
meaningful fashion. The term represents the maximum
current-carrying capacity of the energy states at E„.
Multiplication by eF(E„) therefore gives the probable
electronic current density at energy E„. Thus, in our
model, the elastic barrier essentially changes the max-
imum current-carrying capacity of the states in the neigh-
boring regions by modifying both the group velocities
and the DOS. In the absence of inelastic collisions
[r&(x,E„)=~], Jz(x,E„) is constant throughout the
structure [see Eq. (12)], and the right-moving electrons
starting from the left reservoir always travel in the same
direction. Note that, while this picture is quite different
from that of Tsu and Esaki, both of these equations give
the same numerical results.

N+(x, E„)= r (x,E„)N(x,E„) (16)
IV. CALCULATION OF CHEMICAL POTENTIALS

and

N (x,E„)=r+(x,E„)N{x,E„) . (17)

The above result is amazingly simple and is somewhat
unexpected. Note that both of the DOS's are positive
definite and therefore are physically consistent. Equa-
tions (16) and (17}predict that the decomposition of the
DOS is again dictated by the group velocities. The physi-
cal interpretation of Eq. (15) is that the net state-current
density at any x must be zero even under bias while a
constant steady-state current is flowing through the de-
vice.

An important consequence of the decomposition of the
DOS is that we can now propose an alternative point of
view for the theory of tunneling without involving the
transmission coeScients. Let us consider a quantum de-
vice that contains tunneling barriers. We neglect the in-
elastic collisions only in the barrier region; the contacts

In this section, we present expressions for the chemical
potentials in a purely 1D structure at vanishingly low
temperatures. We mention that in 1D structures, the
Fermi-Dirac electron distribution function F(E„) in Eq.
(19) is replaced by the Fermi-Dirac probability function
f (E„)characterized by a chemical potential p+ for the
right-moving electrons. Similarly the left-moving elec-
tron density is determined by a different chemical poten-
tial p . Here we remove the assumption invoked in Sec.
III. We now consider a structure that contains inelastic
or phase-randomizing scatterers everywhere. In this
case, electrons moving with a particular group velocity
may be scattered and a fraction of the scattered electrons
may reverse their direction of travel. Let us now connect
two direction-insensitive voltage probes at positions
x =x

&
and x2. In the following discussion, the subscripts

1 and 2 on p's refer to these two probe locations. We as-
sume here that the reservoirs are located at large dis-
tances from the probes compared to the phase-breaking
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V. MEASUREMENTS
OF THE CHEMICAL POTENTIALS

BY ASYMMETRIC PROBES

In this section we comment on the use of the asym-
metric voltage probes proposed by Buttiker. Such
probes, in our formulation, couple asymmetrically with
the two streams flowing with individual group velocities.
In other words, the probes allow different fractions of the
current streams to equilibrate and in doing so break the
left-right symmetry of the direction-independent probe.
We mention that our probe and that of Buttiker are not
formally the same because Biittiker's asymmetric probes
couple either the k or the —k plane-wave states in the ex-
treme cases. On the other hand, our probes couple the
positive and negative group velocity states in the extreme
cases. However, by using appropriate mapping functions
all the potentials measured by our asymmetric probes
may be translated to Biittiker's measurement and vice
versa. Now if we define I9 as the coupling parameter,
then the chemical potential measured by our asymmetric
probe is

n(x) + (20)

Similarly, using the definition of the decomposed DOS we
can now define the chemical potentials for the right- and
the left-moving electrons, respectively, as Pi&&+Pz&2

pz(x) =
CT )+02

(26)

n+(x) + (21)
where

length. An external applied voltage between the electron
reservoirs creates a chemical potential difference, p&

—p2,
between these two points. The current is carried by elec-
trons with energies almost equal to (p&+pz)/2 and,
therefore, we can omit the energy dependence from our
expressions. Under biased condition, the three chemical
potentials p(x), p+(x), and p (x) will be functions of x.
At the probe locations the three chemical potentials are
related by the inequalities: p,+ )p, )p, and
p~+) p2) pz, respectively. Using equations from Refs.
19 and 28, the net injected right-moving current at
x =x„using Eq. (19), is given as
eN+(x~ )v~+(x& )(p&+ —

pz ). The current densities
J*(x,E„)for the right- and the left-moving electrons, re-

spectively, are then calculated using the procedure
presented earlier. '

The variations in the chemical potentials are given by'

n (x)
N (x)

(22)

where n+(x)+n (x)=n (x) is the total electron density,
N+(x)+N (x)=N(x), and n*(x)=J*(x)/evg—(x). It
can easily be verified that the three chemical potentials
defined above are related by the following equation:
p(x)=@+(x)r +p (x)r+.

Using Eq. (20) at x =x, and x2 we can show that

o. , =A,+(x)r , (x)sin8+A, , (x)r+(x)cos8,

o2=A2 (x)r+( )xsin8+Az+( )xr (x)cos8 .

+ P i'9&+P2'92
P] (23)

p)K) +p2K2

K1+K2
(24)

where ~, = —g(x ~ ), I~2 =g(x, ), rl, = 1+x, and 712
=a 2

—1

and g(x)=n (x)/N(x). Moreover, using Eqs. (20) —(24),
we also express the chemical potential p(x) as functions
of p) and p2 as

@[A,](x)+Ju2A2(x)

1 2

(25)

where A, , (x)=g(x) —g(x~), Az(x) =g(x, )
—g(x). Similar

expressions can be derived for p
—(x) by only replacing

g(x) by g
—(x)=n +(x)/N+ (x)—Note t—hat .Eqs. (23)—(25)

have the same denominator equal to g(x, ) —g(x2), and

the functions that multiply p& and p2 always add up to
unity. We mention that all the quantities calculated
above are phase sensitive. The phase information is re-
tained both in the number of electrons n (x) and the DOS
N(x). In order to compute the phase-averaged quanti-
ties, in all the above expressions we replace g(x) and

(x ) by ( g(x ) ) and ( g
+—(x) ), respectively. The average

can be taken over an integral number of wavelengths.

This equation reduces in various limits to the extreme
cases described in Sec. IV. For example, p &4(x)=p(x),
pz(x)=@+(x), and p &z(x)=p (x). For all intermediate
values of 0 the probe will continuously couple both
streams from one extreme to the other.

VI. RESONANT VERSUS SEQUENTIAL TUNNELING

The concept of the state-current density and the quan-
tum kinetic formulation can be used to combine the two
transport models (the resonant or coherent ' and the
sequential or incoherent tunneling' '

) into a single
comprehensive model for tunneling barrier devices. The
DOS plays a crucial role in the transport processes of
carriers across each barrier in the sequential theory for
DBS. In the present formulation, coherent particles in a
dissipative environment are responsible for the formation
of the local DOS. In view of these statements, it is there-
fore necessary to discuss the similarities and differences
between the present quantum kinetic approach and the
existing models for the sequential tunneling theory. '

Note that in the quantum kinetic approach, the parti-
cles (electrons and holes) that contribute to the DOS
remain coherent and they carry the phase memory of
their respective paths since their most recent scattering.
In fact there is no requirement that the particles that con-
tribute to the local DOS must be scattered into the same
states by inelastic processes. It is possible that a fraction
of the electrons may actually be inelastically scattered
after they have reached the present location. However,
these particles that suffered collisions and those which
did not propagate again and also contribute to the DOS
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at other locations at different energies. In other words,
particles are transported coherently, in a dissipative envi-
ronment, from one local DOS to another and at the same
time they themselves are responsible for the formation of
the loca/ DOS. The effect of inelastic dissipation process-
es is essentially to modify the number of such coherent
particles.

The sequential tunneling process has been defined as "a
two-step process in which electrons first tunnel from the
emitter electrode into the quasibound state in the QW
(quantum well), and then from the well into the collecting
electrode. "" Such a statement is not incompatible with
the quantum transport model because the quasibound
current-carrying states are essentially the result of such a
sequential transport mechanism. To model sequential
tunneling process, Weil and Vinter' employed a space-
averaged DOS in the well which has the following form:

where I, is the elastic broadening due to the finite life-
time of carriers in the well, E and E, are electron energy
and the resonant energy, respectively. Weil and Vinter
calculated the "sequential" current using a transition
Hamiltonian between the emitter and the well states and
showed that the current equals the coherent current cal-
culated using the Tsu-Esaki model. This result showed
that their model is only an alternate description of the
same coherent tunneling process. ' '

On the other hand, the expression of Gupta and Ridley
for the "sequential" current [see Eq. (11), Ref. 13] re-
places I, in the Weil-Vinter current equation by I,+I;,
where I; is due to inelastic scattering. Since the total
current was modeled as a weighted sum of the coherent
and incoherent currents, the authors calculated the
coherent current separately using a Tsu-Esaki-type equa-
tion [see Eq. (10), Ref. 13]. In our opinion, the modified
Weil-Vinter current expression' describes the transport
of both the coherent and incoherent electrons. This is be-
cause the DOS in the well, used by Gupta and Ridley, ap-
plies to both types of electrons. Therefore contrary to
their interpretation, we think that the sequential current
J,' is actually the total current and it is unnecessary to
compute a weighted sum to obtain the total current. This
argument is easy to understand in the light of quantum
kinetic approach in which one can describe the total tun-
neling current, without the aid of a transmission
coefficient, solely by the state-current densities associated
with the electronic DOS.

We think that the greatest challenge for existing theory
for the sequential tunneling lies in the correct estimation
of the DOS within the well. Such a calculation can be-
come more difficult, if not impossible, if inelastic process-
es are considered. We agree with Biittiker that unless
phase-breaking inelastic processes are explicitly included
in the well, one cannot a priori assume that the injected
electrons have encountered phase-breaking collisions as
they propagate sequentially across each barrier. The in-
elastic processes modify the transport mechanisms of
coherent particles that follow different quantum-

mechanical paths and thereby affect the local DOS. Since
the local DOS, on the other hand, influences the scatter-
ing rates I /r&(x, E },' ' of the inelastic phase-breaking
processes, one must calculate the DOS in a self-consistent
fashion.

In the literature, the term "coherent tunneling" has
been used only to describe electrons that tunnel through
both of the barriers without undergoing any phase-
breaking scattering. However, note that every elec-
tron remains coherent between two scattering events. In
this sense, the real difference between a "coherent" and
an "incoherent" electron is their path lengths between
two successive phase-breaking collisions. We have
shown that even a purely coherent tunneling model for
the DBS, generally given by Eq. (18},should not ignore
the fact that the emitter and the collector contacts are al-
ways dissipative. Therefore the coherent models must
also include some form of "limited coherence length" in
the calculation of T(E„). It is our opinion that, in a dis-
sipating environment that contains arbitrary elastic tun-
neling barriers, the two existing models of transport for
the DBS has been accounted for in the quantum kinetic
formulation. Interestingly, quantum kinetic transport
theory' ' does not require separate equations for the
coherent and incoherent electrons to estimate their con-
tributions to the total current.

VII. RESULTS AND DISCUSSION

In this section we apply our formalism to calculate the
DOS and the chemical potentials for some representative
quantum structures. In all of the calculations we have
chosen constant values for ~&. The effective masses for
the electrons in the well (barriers) are 0.067mo (0.096mo),
where mo is the free-electron mass. The barrier heights
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FIG. 1. Theoretical 1D DOS for a single barrier as a function
of position x for E„=0.033 eV. (a), (b), and (c) are for N(x, E„),
N+ (x,E ), and X (x,E„), respectively. The value for
~p=1. X10 ' s.
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in all of the calculations have been kept at 0.275 eV.
In Fig. 1 we present the calculated density of states for

a single-barrier structure. The plot shows the DOS as a
function of position, in A, for an electron energy of 0.033
eV. The barrier height and the width are 0.275 eV and
30 A, respectively. Figures 1(a), 1(b), and 1(c) are for the
total, the right-moving, and the left-moving DOS, respec-
tively. As can be seen from Fig. 1(a), the DOS has a
minimum at the center of the barrier. If one moves away
from the center toward the left or right, the DOS in-
creases rapidly and oscillates. The amplitude of the oscil-
lation decreases and the DOS eventually approaches the
value of =1.44X10 states/J rn which corresponds to
the unperturbed DOS in the absence of the barrier.
Again the decrease in the amplitude of the oscillations is
the result of inelastic scattering processes. Figures 1(b)
and 1(c), on the other hand, show an interesting feature
that only the local DOS for electrons approaching the
barrier shows rapid oscillations. However, as the elec-
trons pass through the barrier, the corresponding local
DOS becomes much smoother. The total DOS shown in
Fig. 1(a) is the sum of the other two shown in Figs. 1(b)
and 1(c), as expected.

Figure 2 shows a simplified energy-band diagram of a
double-barrier structure under biased conditions. We
have chosen the well and the barrier widths to be 50 A
each. Positions a, b, and c in this figure are locations in
the left spacer region, in the first barrier, and in the quan-
tum well, respectively. All of our calculations for the
DOS correspond to these three points on the device. For
simplicity we ignore all the space charge effects. We as-
sume that the applied bias creates a uniform electric field.
While the division of the applied voltage is not accurate,
the schematic diagram does resemble a DB structure un-
der bias.

As discussed earlier, the calculation of the DOS in
structures under bias must be done within the self-
consistent procedure of the current-voltage (I V) charac--
teristics. The reason that such a calculation is needed is
the following. The phase-breaking time r~(x, E„) is a
function of the electron and the hole densities, n (x,E„)
and p(x, E„),' respectively. Since

p (x,E„)=N(x,E„) n(x, E„),—
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carrier transport, in the following calculations for DBS,
we did not include the self-consistent current-voltage
(I V) calcula-tion. ' Instead, the value of r& has been tak-
en as a parameter only to demonstrate our procedure.
Therefore the results presented below should be regarded
as approximate, since these represent only the first-order
calculations in a self-consistent iterated procedure.

In Figs. 3(a), 3(b), and 3(c), we plot the DOS versus the
electron energy in the well (position c, Fig. 2) for r&= ~,
10 ", and 10 ' s, respectively. The total bias voltage
on the structure is 0.3 V. Here, we have chosen the flat
part of the conduction band on the left as the reference;
therefore the applied bias lowers the center of the band to
—0.15 eV. Notice that while the DOS falls very sharply
around —0.15 eV for ~&= ~, for other values of ~& it
seems that the DOS is nonzero below the conduction-

one needs to know the DOS's to calculate the values of
r&(x, E, ). Although our formulation inherently contains
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FIG. 2. Schematic plot for the potential energy diagram for a
double-barrier structure.

FIG. 4. Theoretical 1D DOS N(x, E ) as a function of E„.
(a), (b), and (c) correspond to plots at positions x„xb, and x,
(see Fig. 3) in a biased double-barrier structure, respectively.
Here, v.&=1.0X 10 "s. The dashed and the solid curves corre-
spond to the applied biases of 0.2 and 0.3 V, respectively.
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band edge. We mention again that the results are not
wrong because these represent the shape of the DOS
function only at the end of the first iteration. In the fol-
lowing iterations, if carried out, the value of r&(x,E„)for
these energy ranges would become progressively larger.
Larger values of r&(x, E„) will eventually decrease the
DOS below the conduction band. Note that within the
well there are two peaks in the DOS that correspond to
the resonant energies of the system. However, these
three figures clearly show the dependence of the DOS on

especially that the resonant peaks broaden as the
scattering rate is increased.

We have also investigated the effects of applied bias on
the shape and the location of the DOS at the three loca-
tions mentioned earlier. In Figs. 4, 5, and 6, we plot
N(x, ,E„),N+(x, ,E„),and N (x;,E„)versus E„,respec-
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FIG. 7. Theoretical 1D DOS for a double barrier as a func-
tion of position x for E„=0.033 eV. (a), (b), and (c) are for
N (x,E„), N+ (x,E„), and N (x,E„), respectively.
7y= 1.0X 10 ' s.

tively, here for i =a, b, c in (a), (b), and (c), respectively.
Figures 4(a), 4(b), and 4(c) show some very interesting
features. For example, for a bias voltage of 0.2 V, the
peaks in the three regions almost coincide around 0.0 eV.
However, as the bias voltage is increased to 0.3 V, the lo-
cations of these peaks in energy are separated. Further-
more, notice that within the barrier [Fig. 4(b)], there are
two peaks located at energies around —0.40 and —0.75
eV. These peaks coincide with the peaks at —0.4 eV in
Fig. 4(a) and at —0.75 eV in Fig. 4(b), respectively. In-
terestingly, by comparing this figure with Figs. 5(b) and
6(b), one finds that these peaks also coincide with peaks
in N+(xb, E„)and N (xb, E„),respectively

In Fig. 7 we present N(x, E„), N+(x, E„), and
N (x,E„)as a function of position in a DBS under a bias
of 0.3 V. We chose an energy of 0.033 eV which does not
coincide with any of the resonant energies in the well.
This calculation was carried out for ~&

= 1.0X 10 ' s.
Note that at the off-resonant energy, the average magni-
tude of the DOS is more than an order of magnitude
smaller than the peaks in the density outside the struc-
ture. The spatial separations in the peaks in the DOS be-
come smaller as one moves to the right because the kinet-
ic energy of electrons increases with a simultaneous de-
crease in the de Broglie wavelengths.

Figures 8 and 9 show plots of the chemical potentials
for the total, the right-moving, and the left-moving elec-
trons in a 1D quantum wire with a single potential bar-
rier. In these plots the values of ~& are 10 ' and 10 ' s,
respectively. The total chemical potentials show the
Friedel-like oscillations that disappear with increased
scattering. The envelopes on the top and the bottom
represent the chemical potentials for the positive- and the
negative-Qowing electrons. In order to generate these
plots, we have calculated the total current and the
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FIG. 9. Plots of the chemical potential p(x) (solid curve) as a
function of position for ~&=1.0X10 " s. The plot has been
normalized to p&

—p2. The upper and the lower envelopes cor-
respond to p+(x) and p (x), respectively.

decomposed currents J*(x,E„)in this structure using the
transport equation developed in Ref. 19. Note that un-
like in earlier work, ' these chemical potentials do not
show any unphysical behavior.

VIII. CONCLUSIONS

This paper deals with the DOS in quantum structures.
We present some numerical results to confirm the validity
of the formulation proposed in this paper. This is one of
a series of papers demonstrating that in order to get phys-
ically meaningful and internally consistent results for
electron transport, the group velocity states may be more
convenient than the usual k states. ' ' ' The main con-
tributions of our paper are listed below.

(I) We have presented a new formulation, using loga-
rithmic derivatives of the retarded Green's function, for
the calculation of the DOS for quantum structures. Our
method is based on the quantum kinetic formulation and
includes the effects of the phase-randomizing andlor the
inelastic processes on the DOS.

(2) We develop a procedure by which the DOS can be

split between states for the right-moving and the left-
moving electrons. This enables us to write an alternative
expression of the Tsu-Esaki equation for the tunneling
current through an elastic barrier. Our current expres-
sion is based on the state-current densities JN(x, E„). In
the description of the carrier transport, the state-current
densities J~ (x,E„)are more useful than merely the densi-

ty of states. We have proved a property for the state-
current density that while the Jtv(x, E„)may be altered
due to the presence of elastic barriers and phase-breaking
processes, the net local state-current density Jtt(x, E„) is
always zero.

(3) We show that the proposed decomposition of the
DOS and the electron densities for each of the current
streams' may be used to estimate physically consistent
chemical potential in 1D structures.

(4) In our opinion, the present usage of the terms
sequential and coherent tunneling found in the literature
is too restricting. The present formulation may resolve
the ongoing debate and may provide a single comprehen-
sive electron-transport theory for many quantum struc-
tures.
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