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Electronic conductance of a two-dimensional electron gas in the presence of periodic potentials
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We utilize mode-matching and transfer-matrix methods to study the transport properties of an elec-
tron through two-dimensionally modulated periodic potentials. The model structures treated here are
finite-size one- and two-dimensional arrays of quantum boxes (lateral surface superlattice) and antidots.
The structure is divided into a chain of uniform waveguide sections in the direction of current flow, and
mode matching is imposed across the boundaries. The transfer-matrix technique is utilized to obtain the
transmission probability for the composite superlattice structures. Energy dependences of the two-
terminal conductance are presented in terms of the transition from one-dimensional to two-dimensional
transport. Increasing the number of quantum boxes in the lateral surface superlattice shows that
Lorentzian-shaped transmission resonances in a single quantum box are brought together to form a
Bloch band structure. Complete reflections over broad energy ranges, due to the formation of minigaps,
and a strong resonant behavior due to discrete states in minibands are observed in the energy depen-
dence of the conductance. For the antidot lattice, the formation of the Bloch band structure is found to
arise as a drop in the conductance. If attractive scattering centers are embedded in a two-dimensional
electron gas, transmission resonances due to quasibound states are observed.

I. INTRODUCTION

There have been a considerable number of experimen-
tal and theoretical investigations on a periodically modu-
lated two-dimensional electron gas (2DEG) in recent
years. ' The potential modulation introduces a Bloch
band structure within the conduction band in the direc-
tion of the periodic potential. The Bloch electron is
characterized by a characteristic length a, the periodicity
of the potential being of the form V(x)= V(x+a). An
electron is Bragg reflected whenever integer multiples of
the Fermi wavelength are equal to 2a. Historically, Esaki
and Tsu proposed in 1970 a realization of energy gaps
(minigaps) and bands (minibands) in a synthetic superlat-
tice, which is created by an alternative growth of different
semiconductors with different band-gap energies. Instead
of the conventional superlattice, in which the periodic
potential is produced perpendicular to a substrate, it is
possible to achieve a lateral surface superlattice (LSSL)
by use of multiple narrow gates in a field-effect transis-
tor, ' in which the potential modulation is defined in the
plane of the 2DEG. The advantage is that the potential
can be controlled by changing the bias applied to the
gates. Owing to advances in microfabrication technolo-

gy, it is now possible to create in-plane potential modula-
tions of periodicity much smaller than the electron mean
free path and the inelastic-scattering length. A manifes-
tation of ballistic transport and phase coherence in split-
gate devices has been demonstrated in recent experi-
ments.

In experiments on a one-dimensional (ID) LSSL, a
grating gate is typically created on top of the heterostruc-
ture and the conductance is measured as a function of the
gate voltage of the electrode, which tunes electron densi-

ty and the amplitude of the potential modulation. A reg-

ular reproducible structure in the conductance has been
revealed at low temperatures and has been attributed to
the Bragg reflection. However, because of the free-
electron motion in the direction parallel to the 1D LSSL,
all the occupied bands overlap at the Fermi energy. True
gaps with zero density of states, which provide the
clearest resonant structures in the conductance, are
formed by creating two periodic potentials in a right an-

gle. Although there are some experimental works '

aimed at this subject, the interpretation of the observa-
tions in the 2D LSSL is not unambiguous. The analysis is
not easy since it is considerably difBcult to distinguish be-
tween the effects due to the formation of true minigaps
and the effects that arise from quantum interference
within a single quantum box. One of the ways to over-
come this diSculty is to investigate a LSSL with a small
number of unit cells. The miniband for the finite super-
lattice with N unit cells consists of a group of N almost
dispersionless states, which merge into a continuous band
in the limit N~ 00. The discretized minibands give rise
to transmission resonances when energy is swept as a
series of N peaks in the conductance. A theoretical
analysis of the finite narrow 1D LSSL has been presented
by Ulloa et aI. ' and the experimental observation has
been reported by Kouwenhoven et al. "

In this paper, a complete description of an application
of the waveguide-matching technique to the analysis of
quantum-mechanical transmission through periodic po-
tentials is given. We treat finite period 1D and 2D lateral
superlattices and antidot lattices as model structures.
We decompose the periodic potentials into successive
waveguide sections in the longitudinal direction. The
transmission probability through the entire system is
evaluated numerically by use of a mode-matching
method, ' which characterizes the junctions, and the
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II. NUMERICAL APPROACH

In this section details of the numerical method are
given for the 2D LSSL structure. A similar procedure is
applied for the antidot structure, though some differences
in the numerical procedure will be pointed out in Sec.
III B. Typical model structures we discuss in this paper
are sketched in Fig. l. The global quantum waveguide
consists of a finite strip defined by (0 &x & L, 0 &y & W),
in which periodic potential modulations are taken into
account, and two semi-infinite strips defined by
(—ao &x &0, 0&y & W) and (L &x & ao, 0&y & W),
which are connected to two reservoirs at each end. We
ignore inelastic scattering throughout the device. The
Schrodinger equation for a noninteracting 2DEG in the

(a)

x=0 x=N„a

V„(x)
v (y)

transfer-matrix technique, which enables us to calculate
the transmission through the cascaded waveguide. We
have evaluated energy dependences of the conductance
for the periodic potentials of various dimension. The for-
mation of the Bloch band structure in the conduction
band is shown by the appearance of regular structure in
the conductance. Note that, although we restrict our dis-
cussion to the zero-magnetic-field regime, it is straight-
forward to include the presence of a perpendicular mag-
netic field in our numerical technique.

N„ N

V(x,y) = U„g5(x —ja ) + U~ g 5(y —ja )
j=O j=O

—= V„(x)+V (y),

(2a)

(2b)

where a is the dimension of an individual quantum box.
The device geometry is chosen such that we have
N„a=L and N a = 8'. In experiments on the LSSL, the
superlattice potential is typically produced by applying
negative bias to the grating or grid gate, so that a modu-
lation described by a sine function may be realistic be-
cause of the screening. We note that our method can
easily be extended to treat a Kronig-Penney-type poten-
tial and the proper choice of the potential is not essential
to the following discussion. The LSSL structure is
separated for each period in the x direction into N„uni-
form waveguide sections. The mode matching is con-
sidered across the junctions x =ja (j=0, 1, ... ,N„},
where the 5-function potential occurs. The generalized
continuity condition for the wave function and its normal
derivative gives a matrix which relates the amplitudes be-
tween modes in the left-hand side and right-hand side
semi-infinite strips.

Consider transmission and reflection properties of an
electron with energy EF incident on the 2D LSSL poten-
tial. The wave vector has a longitudinal component
along the x axis and a transverse component along the y
axis, which is quantized in the finite width channel. The
general solution of the wave function in each waveguide
segment is given in terms of a superposition of the eigen-
modes y„(y)in the y direction:

effective-mass approximation is

f2 Q2 Q2+ + V, (y)+ V(x,y) %(x,y)
2m Qx Qy

=E%'(x,y ), (1)

where m is the electron effective mass, V, (y) represents a
confining potential in the direction perpendicular to the
current fiow, and V(x,y} is the periodic potential. From
now on, we assume that the potential modulation is
characterized by a 5 function, for simplicity. Therefore,
we have

(b)
x=0 x=N„a q'(x, y) =gp„(x)y„(y),

)(
a

where y„(y)satisfy a 1D Schrodinger equation:

d
, +V, (3»+V, (3» X.(y)=E.X.(y),

2m dy
(4)

FIG. 1. Schematic view of the electron waveguides with pres-
ence of finite-size periodic potential modulations. (a) 2D lateral
surface superlattice and (b) 2D array of antidots (indicated by
open circles) with N„=N„=5.5-function potentials are as-
sumed in the calculation. The device is divided into N„+2uni-
form waveguide sections and the wave function is matched
across the boundaries at x = la.

where E„arethe subband energies. Throughout this pa-
per, we assume hard-wall confinement along the guide
edge walls. Therefore, in the two semi-infinite strips, or
in the absence of the superlattice potential in the y direc-
tion ( U =0), the eigenfunctions have the form

y„(y)—:u„(y)=+2/W sin y

The eigenfunctions in the uniform waveguide section
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Cn 2 gglm hnm
l, m Pn

~ nP 'qI
The two-terminal conductance of the system is given by
the linear conductance formula'

(l) +(
+ 1 — 8)

Pn
(17a)

n 2 Xglmhnm
l, m

~ n
LP i(ql p )a

e
Pn

g(+)+ 1+ 8(e
Pn

(17b)

(k) e
— n
+ik x

(18)

i.e., only one of the incoming or outgoing modes in the
perfect lead is occupied, the wave function in the right-
hand-side semi-infinite strip may generally be described
as

where P=2m U„/fi . Repeating this mode-matching pro-
cedure, we can obtain the relation between modes in the
entrance and the exit of the LSSL. If the wave function
in the left-hand-side semi-infinite strip has the form

m, n

(24)

III. RESULTS AND DISCUSSION

where the sum runs only over the propagating modes.
For the usual mode-matching technique, a system of

linear equations for the expansion coefficients like those
in (15}needs to be solved for each incident mode. This is
unfavorable when there are many modes below the Fermi
energy in the perfect lead. The number of equations, i.e.,
the size of the matrix, which characterizes the system, in-
creases with an increasing number of uniform waveguide
sections. For the technique utilized in this paper, howev-
er, the conductance is easily given once I'+—„'and J'*„'are
obtained, and the number depends only on the total num-
ber of modes taken into account, in other words, indepen-
dent of the number of uniform waveguide sections.
Therefore, the transfer-matrix technique remarkably
saves CPU time.

(2) ~(I(k) m +g(+) m
)f'n ~ mn e mne (19)

The coefficients I' „'and J'*„'are calculated using (17).
When an electron is incident through mode n, the wave

function is given in terms of a superposition of one right-
moving and all left-moving waves:

(20)

(21)

This should contain only right-moving waves with ampli-
tudes t „,which represent the transmission amplitude
from mode n in the left-hand-side lead to mode m in the
right-hand-side lead. Therefore, this mode-matching pro-
cedure results in the following equations

where r
„

is the reflection amplitude from mode n to
mode m in the left-hand-side lead. Using (18)—(20), the
wave function in the right-hand-side lead is given as

I'+'+Jr, I' ' e
m l

A. Lateral surface superlattice

For the 1D LSSL (N~ = 1 or U =0), we have

g)m =h(m =5&m and q(=p) =k&. Therefore, (17) is re-
duced to

C„= 1 —i e "2„—i Bn,P ikn . P
n 2 n

(25a)

In this section we present numerical results for the
conductance of lateral superlattices and arrays of anti-
dots as shown in Fig. 1. The energy dependences of the
two-terminal conductance are evaluated for various di-
mension lattices. In the following examples, the width of
the external leads is assumed to be the same with that of
the superlattice region. In reality, an appropriate choice
of the junction geometry depends on the experimental
setup. For the 2D LSSL, the artificially imposed hard-
ball boundary condition should not affect the results. On
the other hand, a coupling of the narrow channel to the
external system with large width induces strong mode
mixing. ' The overall trend of the structures in the con-
ductance is, however, supposed to be robust against the
details of the injection process. '

(22a} D„=i A„+ 1+ e "Bn .
2kn

n 2k„
(25b)

(22b)

n

(23a)

n

(23b)

By solving (22), one can evaluate the transmission and
reflection coefficients T n and R „as

An electron impinging on the superlattice potential is
partially transmitted or reflected within the same mode,
i.e., there is no mixing of electron states between the sub-
bands for the 1D superlattice potential and each 1D sub-
band carries current independently. The orthogonality
relation (9) gives a similar result across the boundaries for
the 2D LSSL except x =0 and x =L. Therefore, we can
say that the superlattice potential in the x direction in-
duces multiple reflections, while that in the y direction
causes mode mixing at the entrance and the exit of the
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LSSL structure. In the following, we assume an identical
dimensionless barrier potential U, in two orthogonal
directions.

As a first example, we consider the simplest geometry,
i.e., a single quantum box connected to two ideal leads on
both sides. For large barrier potentials, the device be-
comes a zero-dimensional box with discrete levels in the
three spatial directions. The quasibound states in the
quantum box are expected to show strong transmission
resonances when the Fermi energy aligns with the
bound-state energy. The number of potential variations
in the x direction is reduced to two in Fig. 3. We plot the
conductance of coupled parallel quantum boxes (N„=1)
as a function of Fermi wave vector kF and the periodicity
of the lattice a. The dimensionless parameter kFaim.
counts the number of subbands below the Fermi energy
in a unit cell. If we take a =100 nm, the sheet electron
concentration of 2DEG to fulfill kza /@=1 .is
n, =1.6X10' m . %'hen N =1, one can see distinct
sharp resonances with an amplitude 2e /h. This reso-
nant conduction through the zero-dimensional states
defined between barriers arises from a similar mechanism
to tunneling phenomena found in resonant tunneling
diodes. When N is increased, the resonance splits into
N peaks corresponding to nearly degenerate states in the

y direction. An oscillation in the conductance, which is
interpreted in terms of resonant tunneling via localized
states in the quantum box, has been observed experimen-
tally in double barrier' and double constriction'
geometries. Smith et al. have observed (in the double-
barrier geometry) large oscillations due to resonant con-
duction through zero-dimensional states when the nega-
tive gate voltage is strong and a series of small peaks for
weak negative gate voltage. '

15
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O
V

(2, 1)
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0.5 1

Since there is no mode mixing when N =1, the con-
ductance is given by the sum of contributions of individu-
al channels. The transmission probability for the n mode
is analytically obtained. If the asymmetry of the ampli-
tude of the left and right barriers is taken into account as
UL and Uz, one obtains

1.5 2 2.5 3 3.5 4
kFa i~

FIG. 3. Conductance (in units of 2e /h) as a function of
k+a/~ for coupled parallel quantum boxes (N„=1). Each
curve corresponds, from top to bottom, to N~ =4 to N~ =1, re-
spectively. The peak indexes (n, m) (see text) are indicated for
the conductance of a single quantum box (lowest curve). The
resonances split into multiple peaks when N„is increased due to
degeneracy in the y direction. The strength of the potential
considered, which is assumed to be identical in two directions, is

U, =1.0. The higher three curves are ofFset by 4X2e /h,
3 X 2e /Q, and 2 X2e /Q for clarity.

r,r„
1+(1+I )(1+I ) —2+(1+1 )(1+I ) cos(2k„a+5)

(26}

—,'(I I +I z ) +2[1—cos(2k„a)]
(27}

The energies at which the maximum of transmission
occurs are given by

kF 8'
='}/m +n (m =1,2, . .. ) .

7T
(28)

If the resonances are well separated in energy, a single
quasibound state in the quantum box gives a resonance of
the form of a Lorentzian centered around the resonance
energy. ' At resonances the transmission coe%cient ap-

where I =(y ) =(A k„/mU&) are leak efficiency to the

leads and tan(5) =(yL +ya )/(1 —
yL yx ). It may be

noteworthy that (26) is independent of the polarity of U

except for the sign of 5. In the weak link limit
(1"L,I z ~0},(26) can be approximated by

proaches unity when the barrier is symmetric, while it is
reduced for an asymmetric barrier by up to a factor
4I ii/I L if I L » I s. The larger the resonance indices

m, the broader the peak width and the lower the resonant
energy below the prediction of (28). The sets of indices
( n, m ) corresponding to peaks are denoted in Fig. 3 for
the lowest curve. Even for the symmetric quantum box,
splitting of levels due to leaks in the x direction are seen
in Fig. 3. The details of the position of the peaks in ener-

gy are strongly sensitive to an asymmetry in the sample
dimensions in the two orthogonal directions. In the limit
8'—+ ~, the conductance is given by taking a sum over n

of (28). Because of a free-electron motion in the y
direction, a single resonance has a shape of
G(E) ~(E E„}', where E,—is the resonance energy,
instead of the Lorentzian.

The lowest curve in Fig. 4 shows the conductance of
narrow 1D LSSL as a function of energy for a sequence
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of four coupled quantum boxes. Within the nearly-free-
electron approximation, the width of the nth minigap is
approximately EE„=2U„,with U„the amplitude of the
Fourier component of the potential at wave vector
k„=2mn /a. For a sine potential, the minigap opens only
for n = 1. On the other hand, the width of the minigap is
independent of n for a 5-function potential. It is clear
that the electron is Bragg reflected when the Fermi ener-

gy lies in the gaps between the discrete states in the mini-
band for the finite LSSL. The number of oscillations in
the conductance separated by broad minima due to mini-

gaps is equal to the number of quantum boxes N . ' The
minibands associated with (n, m) =(1,2) and (2, 1) overlap
at k~a /n =2.2 and therefore the width of the peak of the
former is wider than that of the latter. The formation of
minibands and minigaps in a finite LSSL has been report-
ed using corrugated split-gate structures, in which the 1D
LSSL is realized by a periodic modulation of the constric-

tion width instead of the potential modulation. " A reg-
ular structure in the conductance associted with the for-
mation of the discrete miniband has been observed. We
note that the experiment was performed in the quantized
Hall regime so that it is supposed that the coupling to the
external 2DEG is almost adiabatic and mode mixing due
to width variation is less important.

The conductance of the 2D LSSL is plotted in Fig. 4
for up to N =5. When the potential modulation is weak,
the conductance increases in steps of 2e /h due to con-
tact resistance. When the amplitude of the potential
modulation is increased, one can see broad regions of
zero conductance, corresponding to the formation of
minigaps, and rapid oscillations due to minibands. In the
2D LSSL, N„quantized plateaus, which split into N
peaks, group into the miniband and the minigap develops
before the next miniband. The energies at which mini-

gaps open are nearly independent of N„when the energy
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FIG. 4. Conductance (in units of 2e /h) as a function of kFa/~ for finite period superlattices with N„=4.Each curve, from top to
bottom, corresponds to N~ =5 to N~ =1, respectively. The strength of the potential considered is (a) U, =0.2, (b) U, =0.5, and (c)
U, =2.0. Broad dips due to the formation of minigaps and rapid oscillations due to the N„discrete states in minibands are visible.
The higher edge of the minibands is independent of U, and N~. The curves are offset by 2e /h.
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C„=g nm ik a
5 „—i e A —i B (32a)

nm I~km —k„~~V
ll 2k me

m n

2k„
(32b)

Figure 6 shows the conductance of an array of antidots
as a function of kza/m. Four 5-function potentials
(repulsive impurities) are placed in the y direction while
the number in the x direction is varied from one to six.
The dimensionless amplitude of the antidot potential is

U, —:mU/R =5. The location of the antidots is chosen

modes including the evanescent modes. Distributing
scatterers regularly, however, the mode coupling is al-
lowed only among specific modes. Instead of (17) one ob-
tains the relation

Q„(&)=g f(8)e '/r, , (33)

so that the quantized steps at kza/m =1 are not a@ected
by the antidots. One can see that the antidot potential
alters the transmission coefficient significantly. The
quantized plateau in a perfect wire is smeared by super-
imposing a single column of antidots. The remnant of
the quantized plateau is almost smoothed out when
N =1. Further increase of N results in multiple peaks
due to constructive and destructive electron scattering
from the antidots. It is interesting to note that nearly
complete opaqueness is achieved for N„~2,even for an
energy range where propagating modes already exist in
the external leads. If a single impurity is placed random-
ly in the wire, a finite conductance is obtained
throughout the entire range of energies. ' '

The scattered waves at large distances from the scatter-
ing center are described by
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FIG. 7. Two-terminal conductance (in units of 2e /h) is plot-
ted as a function of the dimensionless strength of the antidot po-
tential U, and kFa/m for 2D lattices of repulsive antidots with
(a) N„=3, N„=5,and (b) X„=X„=5.A "miniband" is formed
around kFa/m= 1 as the antidot lattice is introduced in 2DEG.

FIG. 8. Three-dimensional representations of the conduc-
tance (in units of 2e /h) of attractive antidot lattices as func-
tions of kFa/m. and the strength of the potential U, . The size of
the lattices is (a) %„=2and X~ =5, and (b) N„=X„=5.As the
scatterer is made more attractive, dips corresponding to the
transmission resonances due to the quasibound states move
lower in energy and disappear if they fall below the bottom of
the subband.



8514 Y. TAKAGAKI AND D. K. FERRY 45

where M is the number of impurities, f (8) is the scatter-
ing amplitude caused by a single impurity, and r, is the
distance from the ith scattering center. The probability
density in the 8 direction is 4-I

0

15

(34) 10

where R is the average distance from the scattering
center. If the distribution of the impurities is random,
the interference terms vanish because the phases of the
wave functions differ significantly and will usually ensem-
ble average (we do not consider weak localization here).
As a result, we have v= 1. On the other hand, for a regu-
lar impurity lattice, constructive interference between
electrons and the scattering center can lead to v=2, if the
relations

O
(3

0.2 0.4 0.6 0.8 1

kpa /z

1 ~ 2 1.4 1.6

kF(r, r, )=2—m~ (35)

are satisfied. Therefore, efficient control of the electron
transmission by a small number of impurities and elec-
tron diffraction can be expected.

The influence of the antidot potential is shown in Fig. 7
as a function of the strength of the antidot potential U,
and of kza /n. The threshold energy for overall
transmission through the antidot lattice is increased with
increasing U, . Hence, a "miniband" is formed around

kza /n = I and a broad dip, which is similar to the forma-
tion of a minigap though complete reflection is not
achieved, appears near kFa /n = 1.2. In experiments on a
2D array of large antidots (network of quasi-one-
dimensional wires), structure in the conductance has been
observed by Smith et al. and was associated with Bragg
reflection.

In Fig. 8, we show the two-terminal conductance for a
lattice of attractive scatterers. In contrast to the repul-
sive potential, the attractive potential induces quasibound
states which split off from one of the evanescent modes.
A drastic change is induced even by weak potential. As
the potential is made more attractive, the overall conduc-
tance decreases and new dips corresponding to the quasi-
bound states move lower in energy. ' ' The dips disap-
pear when the potential is sufficiently attractive that they
are lowered below the bottom of the subbands. The num-
ber of peaks as U, is varied is equal to N . Figure 9
shows several slices for fixed U, . When the strength of
the scatterer is further increased, the conductance resem-
bles that through the repulsive antidot lattice. ' A broad
dip of nearly perfect reflection, which is classically unex-
pected for an attractive potential, is seen below
kza/m-1 even when the potential is relatively weak.
The threshold of overall propagation and peaks due to
quantum interference move lower in energy when the
scatterer is made more attractive, indicating that this be-
havior arises from the transmission resonances through
the quasibound states.

FIG. 9. Conductance (in units of 2e /h) for 2D attractive an-
tidot lattices with N, =3 and N~ =5. The dimensionless
strength of the antidot potential is U, = —0.8, —2, —3, and —8
from top to bottom. The transmission thresholds move lower in
energy as the potential is made more attractive. The curves are
offset by 3X2e /h for clarity.

IV. SUMMARY

A numerical analysis of finite-size 1D and 2D lateral
superlattices and various rectangular arrays of antidots
has been presented. Transmission and reflection proper-
ties of an electron are evaluated by utilizing a mode-
matching method for electron waveguides. We use these
transmission probabilities to obtain the two-terminal con-
ductance through a periodic potential modulation. In the
energy dependence of the conductance, a formation of
minibands, which are composed of almost dispersionless
states, in finite superlattices gives rise to strong oscilla-
tion regions which are separated by broad dips of zero
conductance due to minigaps. It is found that the lower
edge of the minibands is increased when the superlattice
potential is made strong, whereas the higher edge is in-
dependent of the strength and the size of the superlattice
(a result expected from simple Kronig-Penney models).
When short-range scatterers are placed in the 2DEG so
as to consist of a periodic lattice, the transport properties
are modified because of coherent interaction between
electrons and scatterers. By increasing the number of
columns of impurities, the conductance is made to reveal
an oscillation which resembles a Bloch band structure ap-
pearing as a broad dip. Quasibound states, provided by
an attractive antidot lattice, give rise to a total reflection
over a wide range of energy and strength of the potential.
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